#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1976
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017 |log7

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MATHEMAT ICAE UNIVERSITATIS CAROLINAE

17,1 (1976)
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%iumﬂ: Recently, many authors studied centrally
splitting torsion theories and their applications. Here,
we present a characterization of centrally splitting radi-
cals which covers almost all the results appeared in the
literature.
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In what follows, R stands for an associative ring
with unit and R-mod means the category of unital left R=-
modules. Becall that a preradical r for R-mod is a sub-
functor of the identity Punctor, i.e. r assigns to each
MeR-mod its submodule r(M) in such a way that every ho-
momorphism f£: M—>N induces a homomorphism of r(M) in-
to r(N) by restriction. First of all, we shall list seve-
ral basic definitions and results from (3),(4] and [5] which
will be used in the sequel without any explicit reference.

A non-empty class T of modules is called
- hereditary if it is closed under submodules and isomorph-

ic images,
- cohereditary if it is closed under homomorphic images,

- stable if every M € " has an injective presentation
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in M ,»
- costable if every M e M has a projective presentation
in M .

For a preradical T , S, ( ¥,) means the class of
all MeR-mod with r(M) =M (r(u) = 0) . Obviously Ty
is a cohereditary class closed under direct sums and Fp
is a hereditary class closed under direct products. A prera=
dical r is said to be
- jdempotent if r(r(M)) = r(M) for all Me R-mod ,

- a radical if r(Wr(M) =0 for all Me R-mod ,

- hereditary it r(N) = NAr(M) for all N, Me R-mod , Nc M

- superhereditary 1if it is hereditary and ﬂ’r ig closed
under direct products,

- cohereditary if r(W/N) = (p(M) # N)/N for all N, MeR-
mod , NeM ,

- stable if every injective module splits (a module M splits

3¢ o(M) is a direct summand of M),
- costable if every projective module splits,
- splitting if every module splits,
- cosplitting if 1t is both hereditary and cohereditary,
- centrally splitting if it is cohereditary and r(R) 1is a
ring direct summand of R .
I#f r and 8 are preradicals, we define the preradi-

cals res , rns , Tras and ™ +38 by (ros)(M) =

r(s(®)) , (rns)®) =rdn s(M) , (ras)(M)/r(M) =
o(M/r(1)) and (r + s)(M)

jdempotent then res =ser =TNS (€31, Prop. 3(iv)), if

o(M) + s(M) . If ros is
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both r and s are hereditary then res =8aI =TNS8
([3], Prop. 4(iii)), and if both r and 8 are coheredi-
tery then rAs =8AT =T + 38 (£3), Prop. 13(iii)).
Let r be a preradical. Then
- p 1is hereditary iff it is idempotent and 3'1, is here-
ditary ([41, Prop. 2.1),
i r is hereditary then 3'1. js closed under injective
hulls ([41, Prop. 2.2(1)),
4¢ r is a radical and &, is steble then T is here-
ditary ([41, Prop. 2.2),
» 4s cohereditary iff it is a radical and &, is co-
hereditary ({41, Prop. 4.1),
- if r is idempotent and Tr is costable then r 1is co-
hereditary ([41, Prop. 4.3),
- if r 1is stable then T, 1is closed under injective
hulls ([5], Prop. 2.4(1)),
- 4¢ r is idempotent and J, 1is stable then r is stab-
le ([5], Prop. 2.4(11)),
- if r is costable then ¥, 1s costable ({51, Prop. 3.4
1)),
- 4f r is a radical end ¥, 1is costable then T is co-
stable ([5], Prop. 3.4(ii)),
r 1is costable iff R splits (as a module) ([5], Prop.
3.6).

Further, a hereditary preradical r is stable iff for

all left ideals ISKE R with K/I = r(R/I) there is a
left ideal L with L#I and LAaK =TI (see e.g. [4],
£73,0141).
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Ifr I is a two-sided ideal, we shall say that I' sa-
tisfies the condition (a) ((p)) if xeIx (xe xI) \foz;.all
xeI . This is clearly equivalent to R/I being flat as a
right (left) R-module.

As it is easy to see (cf. [4], Th. 4.11), coheredita-
ry radicals are in a one-to-one correspondence with two-si-
ded ideals given by T ¥—> r(R) end I+>T, r(M) = IM
for all MeR-mod . Similarly, superhereditary preradicals
are in a one-to-one correspondence with two-sided ideals
via r+—>nn K, R/K € ., and I+—>T, r(M) =4m €
eM|In=0} (see [4], Th. 2.12).

If 1 is a two-sided ideal, T is the corresponding
cohereditary radical and s 1is the corresponding superhere=
ditary preradical then
- g 4is a radical iff I2 =1,

- ¢ 1is idempotent iff I? =1,

- p 1is hereditary iff I satisfies (a),

- 4f I 1is finitely generated as & right ideal then T is
superhereditary (147, Prop. 4.8(iv)).

Now let O be a non-empty class of modules. We define
an idempotent preradical Pg, and a radical pa’ by
py, (W) = S\ Im £, £ ¢ Homp(A,M) , A ed and PP =
= N Ker £ , feHom(¥,a), A€l . Denote 3 =4{M/N|M €
€R-mod and N 1is an essential submodule of M3, <=
={NeR-mod | N 1is a small submodule in some module M %,
¢ be a represehtative set of simple modules and define

z

=pg (the singular submodule) , } = p‘e , Soc = Py
(the socle) and 2« = pg (the Jacobson radical).
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§ 1. results

Proposit 1: The followling are equivalent for prera-
dicals r, 8 @

(1) ros =zer and ras =id,

(41) 1 is a radical, s is idempotent and ?r = 3'3

(1i1) r 4s a cohereditary radical and s 1is the su-
perhereditary preradical corresponding to r(R) .

Proof: obvious.

Propogition 2: Let r be a cohereditary radical and
8 be the superhereditary preradical correspoinding to I =
= r(R) . Then the following are equivalent:

(1) s 1is stable,

(1i) r is hereditary (i.e. cosplitting),

(111) 12 =1 and ToE%

(iv) I satisfies (a).

Proof: (1) implies (11). Obviously, Fp = T'g o How
ever, s 1is a radical by {33, Prop. 2.5, so T 1is idempo-
tent and consequently hereditary.

(11) implies (iii). If M € J, then melnm for eve-
ry meM , T being hereditary, and so s{M) =0 .

(141) implies (iv). Let x & Ix and KeI be maxi-
mal with respect to x ¢ K and Ix€K . Since 2 =1 ,
/K e T,€% endso Ix & K , a contradiction.

(iv) implies (i). Obviously, s is idempotent and

Ts = F, is stable.

Proposition 3: Let T be a cohereditary radical and
s be the supzrhereditary rreradical corresponding to I=
= p(R) . Then the following zaTe equivalent:
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(1) r 1is costable,

(i1) s 1is cohereditary,

(13) 12 =1 amda Fge T

(iv) I 1is a left direct summend of R .

Proof: (i) implies (11). Since Ty = 3, is cost~-
able, s 1is cohereditary.

(i1) implies (iii). Since 8 is a cohereditary radi-
cal, 12 = I and for each F & &g , F/r(F) € 3"rn3’a=
= FonF =0,

(111) implies (iv). Obviously s is 'a radical, hence
LR/(0:D), = ¥ (o) oW T* (0:1), =R .

(iv) implies (i). Obviously.

Proposition 4: Let r be a cohereditary radical and
T = r(R) . Then the following are equivalent:

(1) r 1is superhereditary,

(41) I 1is a right direct summand of R ,

(111) I satisfies (a) and it is finitely generated as
a right ideal.

Proof: (i) implies (11). Clearly, I= (O:K)r for so—=
me two-sided ideal K with R/K e 7, - Hence I R/K = R/K
and so I +K =R . However, KE}o:I)1 .

(i1i) implies (1i1) and (iii) implies (1) triviallye.

Propogition 5: The following are equivalent for a pre=
radical r 3

(i) r 1is stable and cosplitting,

(1i) r 1is splitting and cosplitting,

(1) r 1is costable and cosplitting,

(iv) there is a preradical s with rns = zer and
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r+8 =14,

(v) r is centrally splitting.

Proof: (i) implies (ii)., Let F e ¥, and T e Tp -
Then E(T)/T € ¥, and HomR(F,E(T)/T) = 0 , hence
Extp(F,T) = 0, as desired.

(11) implies (iii) trivially.

(441) implies (iv). Let s be the superhereditary
preradical corresponding to r(R). Clearly Te 8 = 2eTr ,

and since r 1is hereditary, rns = 2eT . On the other

hand, r(R) = Re , e?=¢,s80 r(R(l-¢e)=0 and 1E€
€(s +r)(R) . ‘

(1v) implies (v). Obviously r(R) is a ring direct
summand and for every M€ R-mod , M = r(R)M @ s(RM =
=2 p(M) ® s(M) . Now the inclusions r(R)Mer(M) and
s(R)ME s(M) show that r is cohereditarye.

(v) implies (i), r(R) satisfies (a) since r(R) = Re
for some central idempotent e and hence r 1is heredita-
ry. Finally, M =eM ® (1 -e)M=rM) @ (1L -e)¥ for
all MeR-mod .

Theorem: Let T be a cohereditary radical and s be
the superhereditary preradical corresponding to I =r(R) .
Then the following are equivalent:

(1) rns is idempotent and r + s 1s a radical,

(2) ros =sor and ras =8AT ,

(3) sor =1zer and sar =1d,

(4) r is hereditary and s is cohereditary,

(5) rns =gzer and r + 8 =1d,

(6) both r =and s are splitting,
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(7) both r and s are costable,

(8) both I and (0:I), are left direct summands
of R,

(9) 8 1is cohereditary and costable,

(10) s is cohereditary and splitting,

(11) s 1s centrally splitting,

(12) s is cohereditary and stable,

(13) I satisfies (a) and is a left direct summand,

2 _ =

(14) =1 and JFp= F, ,

(15) I satisfies (a) and Fg £ Tp

(16) I is a left direct summend of R and S, &
c 3‘5 ]

(17) r 1is hereditary and costable,

(18) r is hereditary and splitting,

(19) r 1is centrally splitting,

(20) r 1is hereditary and stable,

(21) I satisfies (a) and for every left ideal K
with I + K#+R there is a left ideal LK such that
(I+X)AL=K,

(22) both r and s are stable, o

(23) r(R)As(R) =0 and r(R) +s(R) =R,

(24) v 1is costable and r(R)n s(R) contains no non—

zero nilpotent ideal,

(25) I satisfies (a,(b) and it is principal left
ideal,

(26) I satisfies (a),(b) and it is finitely genera-
ted as a left ideal,

(27) I satisfies (a),(b) and it is principal right

ideal,
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(28) I satisfies (a),(b) and it is finitely genera-
ted as a right ideal,

(29) I satisfies (b) and it is a right direct sum~
mand,

(30) I satisfies (b) and T 18 superhereditary.

Proof: (1) implies (2). Obvious.

(2) implies (3). It is easily seen that res = zer
and rTAs =1id .

(3) implies (4) and (4) implies (5) by Proposition l.

(5) implies (1). Obvious.

(5) implies (6) by Proposition 5.

(6) implies (7) and (7) implies (8) obviously.

(8) implies (9) by Proposition 3.

(9) implies ((10), (10) implies (11) and (11) implies
(12) by Proposition 5.

(12) implies (4) by Proposition 2.

(12) is equivalent to (13) and (13) implies (14) by
Propositions 2 and 3.

(14) implies (15) by Propoa:u:io!; 2.

(15) implies (16) and (16) implies (17) by Propositi-
ons 2 and 3.

(17) implies (18) and (18) implies (19) by Proposition
5e ’ :

(19) implies (13). Obvious.

(19) is equivalent to (20) by Proposition 5.

(20) is equivalent to (21) by Proposition 2.

Thus the conditions (1) - (21) are equivalent.
Furthermore, (6) implies (22) trivially and (22) implies

(20) by Proposition 2. 3 .



(5) implies (23) trivially.

(23) implies (24) by Proposition 3.

(24) implies (19). There is an idempotent e with I=
=Re . If (1 - e)a = be for some a, beR then ebe =0
and be = (1 = e)be o Thus (1 - ¢)RARe = (1 - e)ReEs(R)IN
Ar(R) and so (1 - e)Re =0 . Hence (1 - e)RER(1 - )
and R(1 - e) 1is two-sided.

(19) implies (25) and (25) implies (26) trivially.

(26) implies (16) by Proposition 2 and the dual of Pro-
position 4.

(19) implies (27) and (27) implies (28) trivially.

(28) implies (29) by Proposition 4.

(29) implies (19). Obviously, I + (0:1); =R and (b)
yields In(0:I); =0 .

(30) 1s equivalent to (28) by Proposition 4.

The proof is now complete.

Corollary: Let r, s be preradicals with ros =8°oT =
= ger and ras = 1id = sAar . Then both r and s are

centrally splitting.

§ 2. S reradical centrall tti

Proposition 6: The following conditions are equivalent
for a ring R ¢

(i) Every superhereditary radical is centrally split-—
ting,

(i’) every superhereditary cohereditary radical for

‘mod-R is centrally splitting,
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(11) every costable cohereditary radical is central-
ly splitting,

(i1”) every costable cohereditary radical for mod-R
is centrally splitting,

(1ii) every two-sided ideal which is a left direct sum—-
mend is a ring direct summand,

(iv) every two-sided ideal which is a right direct sum-
mand is a ring direct summand.

Proof: (i) is equivalent to (ii) by Proposition 3 and
Theorem.

(11) is equivalent to (iii) obviously.

(111) implies (iv). If I = fR is two-sided and 2 =
= f then R(1 - £) =Re for some central 1dempotent e ,
and consequently £ 1s centrale.

(iv) implies (iii) similerly. The rest is obvious.

Proposition 7: The following are equivalent:

(1) % is centrally splitting,

(1i) % 1s cohereditary,

(1ii1) =X = zer ,

(1v) R is completely reducible,

(v) Soc =1id ,

(vi) every preradical is centrally splitting,

(vii) Soc is centrally splitting,

(viii) Soc is cohereditery.

Proof: (i) implies (ii), (iv) implies (v), (vi) imp-
1ies (vii), (vii) implies (viii) and (vi) implies (i) tri-
vially.

(11) implies (iii). Let K be a left jdeal maximal
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with respect to Z (R)nK =0 . Then Z(R) @ K=R and
so ZXZ(@R =0.

(111) implies (iv). Every left ideal is a direct summ-
and since no proper left ideal is essential.

(v) implies (vi). Since every module is completely re-
ducible, every preradical 1s splitting, hereditary and cohe-
reditary. Now it suffices to use Proposition 5.

(viii) implies (iv). Clearly, I + Soc(R) = R for eve-
ry maximsl left idesl I . .

Proposition 8: The following are equivalent:
(1) } =1id ,

(11) 7} is centrally splitting,

(111) ¥ 1s hereditary,

(iv) R is a V-ring,

(v) 4 is hereditary,

(vi) 4 = zer ,

(vii) J 4s centrally splitting,

(viii) J is cohereditary and costable,

(1x) % dis splitting,

(x) %(c)=0 forevery cyclic module C.

Proof: (1) implies (ii), (11i) implies (1ii1), (vi) imp-
lies (vii) and (vii) implies (viii) trivielly.

(411) implies (iv). Let, on the contrary, M#4E(M) for
some simple module M . Then M is small in I;(ll) and hen—
ce " (W) = 0. Further, iz NSEG) and EGO/N is small
in E(E(M)/N) then N#O and so MEN . Thus M = } (E(M)),
hence F(M) =M, a contradiction.

(1v) impliea (v). Since j» = pg 3 3;_ is stable.
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(v) implies (vi). If MeR-mod and X € }(M) then
?(R/(O:x)) = R/(0:x) , s0o x=0.
(viii) implies (ix). Since g- (R) =0, 4 = zer .
(ix) implies (x). If C is cyclic then C =
= gf(c) ® X and }(c) is a’ g«-torsion eyclic module.
(x) implies (i). Obviously, every left jdeal is an in-
tersection of maximal left ideals, so R is a V-ring and
0 1is the only cocyclic module small in its injective hull.

§ 3. Applications

From our characterization of centrally splitting radi-
cals, almost all the results concerning central splitting
from [2],(81,091,0111,0121,013] ,[15] can be deduced as simp-
le corollaries. As an illustration, we present the descrip-
tion of n-torsion theories.

Recall that 1f (y,eee, Q, are non-empty classes of
modules, we shall say that (al,..., O‘n) is an n-tor-
sion theory it (Q4, &,,,) is a torsion theory, 1 =1,
240000 = 1 & Q‘l is said to be a ttf-class if it is he-
reditary, cohereditary and closed under extensions and di-
rect products.

Proposition 9: The following conditions are equiva-
lent for a torsion theory (T, %) :

(1) (7,%) 1is centrally splitting,

(11) (%,F) 1is cosplitting and stable,

(111) (7,F) 1is cosplitting and costsble,

(1v) (T,F) 1s cosplitting and splitting,
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(v) (%,7) 4is a torsion theory,
(vi) there is a ring direct summand I of R such
that 7 ={MeR-mod| IM = M} end 5 ={MeR-mod|IM=0%,

(vii) EBxtg(T,F) = Extp(F,T) for all T € 7 end Fe
e ¥.

Proof: The equivalence of Conditions (1) - (vi) and
the implication (i) implies (vii) follow immediately from
Theorem. If (vii) holds then.obviously (7,%) is splitt-
ing. Further, suppose that there are Te T ,FeTF ,
A CSF , NET with r(M)+N and with c/A =r(g/a) (r
is the idempotent radical corresponding to (7,%) ). With
respect to the hypothesis, the exact sequences 0 —> N/r(n)->
—> 7/p(N)—> T/N—>0 and O0—> A—> ¢c—> C/A—>0 split,
a contradiction.

Propogition 10: The following are equivalert:

(1) (a4, 0, a—j) is a 3-torsion theory,

(11) Q, 1s a ttf-class, Q) = Q) end Qg = as ,

(i1i) there is an idempotent two-sided ideal I such
that O, ={MeE-mod| IM = M}, @, ={MeR-mod | IM = O}
and Q5 ={MeR-mod | In¥0 for all O%meM%.

Proof: Easy.

Propogition 11: The following are equivalent:

(1) (Qq, a,, Q3, 0«4) is a 4-torsion theory,

(1i) both (A, end Q3 are ttf-classes, a, =CLZ .
0/3=a,’; and a4= 0,"3 .

(iii) there is a two-sided ideal I which is a right
direct summand such that (&, =<{MeR-mod [(0:D),M =M%,

a, f{MER-mod{ (0:1),M = 0} ={Me R-mod jm=u%, &3=

=§{MeR-mod | IM = 0% and CL4 =4{MeR-mod | Im%0 for all
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OfmeM},

(iv) there is a two-sided ideal K which is a left
direct summand such that Q, ={MeR-mod |k =M, a4, =
=4{MeR-mod | KM = 0% ={Me R-mod | (0:K) M =M, Q3=
=4{MeR| (0:K) M =0} and @, ={Me R-mod | (0:K) ,m%0 for
all OfmeM%, |

(v} (Qy, Qy) 1s costable cohereditary torsion theo-
ry, (Qg 0,3) is a superhereditary cohereditary torsion
theory, ( a3, 04) is a stable superhereditary torsion the-
ory and Qz =3 @4 o

Proof: (ii) implies (iii). It suffices to put I =
= r(R) , where r is the superhereditary cohereditary radi-
cal corresponding to ( O, QB) =

(111) implies (iv). Take K = (0:I); ,

(iv) implies (v). Since X 1is a left direct summand,
(0:K), is a right direct summand. Hence (Q, &) 1s co-
stable by Proposition 3 and (0,3, CL4) is stable by Propo-
sition 2.

The rest is obvious.

Proposition 12: The following are equivalent for eve-

Ty nzb5 .

(1) (al,..., Q’n) is an n-torsion theory,

(11) (Qy, &,) is a centrally splitting torsion theo-
vy, Qp= Q3= Qp=... end &y= Gy = Qg = oee s

(iii) there is a ring direct summsnd I of R such
that {MeR-mod | IM = ¥3= Q; = Gy = ... end {MeR-mod
lM=0%=Q, = 0g=... .

Proof: Obviously, only the impliecation (i) implies
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(i1) needs the proof. However, ('03, Qq) is stable here-
ditary by Proposition 11 and consequently stable cosplitting,
O, being cohereditary.

Corollary: There are only four types of n-torsiop the-
ories, namely

(1) torsion theories which cannot be extended to a 3-
torsion theory,

(11) 3-torsion theories which cannot be extended to a
4-torsion theory,

(1ii) 4-torsion theories whickL cannot be extended to &
5-torsion theory,

(iv) centrally splitting torsion theories.

Corollary: There is a one-to-one correspondence between
- 3-torsion theories and ttf-classes,
- 4-torsion theories and costable ttf-classes,
- centrally splitting torsion theories and stable costable

ttf-classes.
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