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ON COMPACT SPACES WHICH ARE UNIONS OF CERTAIN COLLECTIONS
OF SUBSPACES OF SPECIAL TYPE

A.V. ARHANGEL’SKII, Moscow

Abstract: ILet X be a compact and X = X,u X, where
both Xl and X2 are metrizable. Then X need not be metriz-

able itself but X must be a Fréchet-Urysohn space and for
every Ac X the cellularity number c(A) is equal to the
weight w(A) (Theorem II.10), If X is a compact and X =
= where each Ye ¥ is & developable subspace of
X then the tightness of X is countable (Theorem I.12).
Together with these results we prove a few useful general

lemmas. The following problem is formulated (see II.13).
Iet X = xlu X, where X is a compact and X;, X, are metriz-

able, Is it true then that X is an Eberlein compact?

Key words and phrases: Tightneas, density, Fréchet-
Uryaoﬁ space, sequential space, free sequence, Jr -weight,
network, deveiopable space, uniform base.

AMS: 54425, 54D30 Ref. Z.: 3.961

This article, with exception of the last remark, was
written before the Prague Topological Sympoaium 1976 and

served as a basis for the author’s talk at the symposium.

O.Conventioms and notations. Throughout the paper
the word "space®™ will mean “topological regular Tl-apace'.
"A compact” is a bicompact Hausdorff space. The symbol

will always denote a cardinal number. We shall write =%
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for the first cardinsl which is greater thamn < . Car-
dinals are identified with the corresponding initial or-
dinals, We put N* =41,2,000,0y00e} . I X is & space,
AcX and v~ is a cardinal, then ¢ (A) is the closure of
LinX, e, (A) = Ufel (M): Mc A and IM| =< 3% and
seqed (A) = {xeX: there exists a sequence 4 a,: ne N+}
in 4 converging to x} . A transfinite sequence § ={x_ :
X< TtF of points in X is called "a free sequence”
(see [3]), if for each =< =%  the following condi-
tion holds:

elix <% elix : B &<z} =g, Then
v+ is called "the length” of § and we write: Z(g) =
= ¥+ . The set of all free sequences in X of the length
¥t will be denoted by Fo (X). A space X is called"a
T =compact™ if for every chain C of non-empty closed
sets in X such that |C| £ 2 we have: NC+g. we also
consider the following cardinal-valued invariants: tight-
ness t(X) of X, density a(X) of X, cellularity number
(Souslin number) c¢(X) of X, pseudocharacter ¥ (X) of X,
character x (X) of X and with some others, Their defini-
tions one can find in [5]. The cardinality of a set X is
denoted by | x| .

§ I. General results

I.1. Definition. Iet f=dx :xc<2+}e Fo (X)

ad € = §xl:ic<et}e T (X)) . We put §'< ¢
if (cz,u-ixx:ﬂeac<1:+})\{x,c: Bétx <t}

PEx_ B2 ¥t T, We shall write §,< €, , ir
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§,< §, or §, = §, . Obvioudy, if §“ < §’
and g’ < §€ , then §”< §€ - one only has to remark
that always ¢ £, (e£, (1)) = ¢ £, (A) (see[31).

I.2, Lemma, If € €'e¢ F (X) and §< §, then
el () is closed in c £, (§) and c £, (F)N\ §' is
closed in ¢ £, (§)\ § .

Proof. let yecl, (§ ) and ye c£(c£3(§’)). Then
yeeldix_ :oc < *} for some oc*< =+, Then
yéeldix : o*% o <t} and hence y¢c £ {xg :
: & o <+ .Thus yeel {x .2 oc <ac*3 . We con-
clude that yee £, (§f'). As § and §° are discrete sub-
spaces of X, § is open in ¢ £, (£ ) and ¢’ is open in
¢L 4 (£°). From this the second conclusion of the lemma
follows.

I.3. lemma. If € € 5, (X) and Mccl,(§),

Iml 2 v ,z2 %, , thenMcel({x,: ¢ <a*} ) for
some oc™®* < o+ .

This assertion follows trivially from regularity of
et .

I.4. Lemma. If X is & T-compact and AcX then Y =
=¢L, (A) is also a T -compact.

Proof. Let C be a chain of non-empty closed sets in
Y such that |C| = © . For each Fe C let us fix c(F)eF.
We put M =fc(F): FeC3. Then |M| 4 |Cl& =~ and McY.
Hence c£ (M)cc £, (Y) = Y. As c(F)e MnF, the family C*

={Pncl M: FeC? is a chain of non-empty closed sets in
c£ (M) and, hence, in X. As lCc’|l 2(C| 2 = we can con-

clude that NC“ % @ . But NC°cNC. Thus NC + J .
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I.5. lemma. Iet X be & t-compact, 8* < x+, = =
Z ¥, and suppose that for every O < O0* a free sequen~
ce ?e={x::oo<e+§e.’r",'c,(3(.) is given in such
a8 way that if 8'< 6" < 6% , then §,, < €5 - Then
there exists a free sequence §,, ={xg: t <zt in
X such that §o. < §, forall 8 < 6% ,

Proof, For all 6 < 6* and o < =+ we put
F2= (cl,,_,{xg tx 43 < wi)\{xz:oc cB<zt3.
We shall define a transfinite sequence 7 ={y°°: x<z+}
in X. Let & < o* . Assume that for every cc < & a
point y_e€ X is already defined in such a way that y.
€eL,(§,). In view of the lemma I.3, there exists oc* <
< =% such that {y,: ¢ < X ¥c cli{xdiw < ac*?
ad & £ ¥ < o+ . The smallest oc* , for which the
two conditions above are satisfied will be denoted by
@ (X). Clearly & < @ (&)< =+. We put a’=-{l‘:(g) :
26 < 6%3 ana 3, = nNT . By I.4, B0 5, is a z-
compact. By I.2, each !‘g(;) is closed in Pc‘;, o l?:(';z):
= ¢ then cl,z{xg T (X)) s < et} =
-{.xg i 9(X)< B< 2+3  is a discrete ¥ -compact (by
I.4) apace.of cardinality o+ - which is & contradiction.
Hence rq"&)* @ for every 6 < O* , Thus C is a chain of
non-empty closed sets in the T -compact r;(g) « It follows
that Qg + g ., We choose y, to be any point of Q&v .
Then o € cl, (§,). Let 7 =4y, : « < z+3c X be
defined in accordance with the rule described. If o <
£@< =t then @ ()< @ (3) and e l‘c:(m c !‘c‘;(«_) 5

Hence c€{y, : ¢ « < 2*+? c ok Fc:(“) «  On the
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other hand, {yp: f3 < <} c cﬁ{xg: B<w&)i.as €,
is a free sequence in X, we have: c£ { x;’_, t:B< g@()in
n ckl‘c;(a_)= @. Hence cL 4y, 3 < Incliy,:
tcé (3<atf=f - ie. m is a free sequence in X.

Let us show that 7 < § for each 6 < 6%.1If
<4<t thenyﬂe@rscf'cgm) and o £ @(x)&
£ «@(3) . Hence E;fecp,cPc:&c)cP: and foyp: £ 3 <
<e+3cFo= (cﬁc{xg:ccé(s< z+3)N\ -i.xg tc 4 B<zTti,
for each oc < =¥ . By I.1, this means that 7 < §g5 -
Thus §a* = 7  is the required free sequence in X, Lemma
I.5 is proved.

I.6. Definition. For a cardinal = , €, is the
class of all spaces X satisfying the following condition:
if Y is a discrete subspace of X and | Y| =Z =% then the-
re exists ZcY such that ) Z| = v+ and Z is closed in X.

I.7. Proposition. If Y (F,X) £ T for every closed
set F in X then X € €, .

Proof. let Y be a discrete subspace of X such that
Y| =+, Then the set F = ¢c£(Y)\Y is closed in X. Hen-
ce there exists a family ¢~ of open sets in X such that
lyle v and N9y = F. From YnF = @ it follows that
Y= U4 X\ UNY:Uey} . .rslplee<etelYl,
there exists U¥ e 7 such that |Yn (X\U¥) |z 2+ .
Clearly, every subset of the set Y n (X \ U¥) is clo-
sed in X, Thus any ZcYN(X\WU*) such that |12Z\|= =+ is
what we look for.

I.8. Corollary. If X is a space with countable deve-

lopment (i.e. a Moore space) then X e %2 for every T4,
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I.9, Corollary., If X is hereditarily Lindeld8f then
Xe 2, foreach T = %, .

I.10. Proposition. Let X be a T~-compact and XcY.
Then either t(y,M) < =z (see [41) for each yeY and each
Mc X such that ye c€ M, or there exists in X a frec se-
quence of the length =%t .

Proof. Assume that AcX, y¥e€ Y and y*e c £ (A) \
NeL, (A) (here and in what follows the both closures are
taken with respect to Y). Put A* = ¢ £ (A)n X. Obvious-
ly, y*<¢ cl,’, (A%), Let 7* be a family of open sets in Y
such that |31 &« = and N9 2 4¥* . We shall prove
that (Ny)n A*+ @ . For each % ¢ >  we fix an
open set Vi, in Y such that y*e Vpuccl(Vy)e U . Put
=4l (V)i Ueypi. as lgp'lclyl 2 ¢ , we can
write: y'={F : o <2 3. Obviously En A*% g and
el (B,n A*)a3* . We are going to prove that c2 (N4 Fo
Tt £ %A A*)sfy.* for each B < = . Suppose that
this is true for every 3 < (3* | for some f3* < = .
Then C =1 N{E, : « £RB3AA*:3< 3*% is a chain of

non-empty closed sets in the space A¥ , each of which con-

o

tains y* in its closure. Let Oy* be an arbitrary neigh-
borhood of y* in Y. Clearly every element of C intersects
the set Fpy N cl (0y*) . Thus C° =4 N{F, :x & B3in
AP ncl (0y*) A A*: B < B*3 is a chain cf
non-empty closed sets in A* , By I.4, A* is a 7 -compact.
Hence, in viewof (C'lc Ip*l 2 =, NC'%+ @£ .

We have: NC'= N{E_:x £ 3%} A A* 4 ot (0y*) .
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As the space Y is regular and 04* is any neighborhood
of y*, it follows that c£ (N{F :oc <« B*3n A¥)agy* .
The transfinite induction is complete. Put @ = = into
the last formula. We obtain: N{F, :x £ ¥ #n A¥% g .
Hence Ny A A¥ + 7 . Now we can apply the funda-
mental lemma 4 from [3] to Y,y* and A* . It follows that
there exists in Y a free sequence § of the length =7t
such that § c A* ., But A*c X. Hence § e & (X).
I.11. Proposition. Iet X be a T -compact, T = ¥,
end X = U{X_:ec <3 , where X, € €, for every
o < % . Then there exists no free sequence in X of the
length =%+ .
Proof. Let us assume that § ={X . : x<<z*§eF (X).
For each o« £ v  we shall define e &, (X) un-
der the following restrictions: 1) if ’< «” = = then
Now < Toge , 8082 if c <, 7 € F(X) and
M & M then Il nX ol 2 @ for each oc‘< oc .
We put 7, = § ., Let B* £ ¢  and assume that
Ne € F. (X)) is Qefined for every o< < B* in such
a way that the conditioms 1) and 2) are satisfied for all
these oc . If 3* is a limit ordinal we choose N px to be
any 7' e %, (X)) such that 7' <7, for all < < 3%
(see I.5). Suppose now that (3* has an immediate prede-
cessor o™ . If there exists no 7 € F, (X)  such that
M < Yook andloznx“‘\:»z"-, then we choose
Tp* to be any m' e F, (X) such that n'< N x (see
I.5). Let us assume now that there exists 7 € %, (X) such
that 1 < 7 _, eand l»rlnx‘{*\= @t . We fix such 9 .
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The set 7 n X,  is discrete, lg NX_ =% ana
Xew € € . Hence there exists a set Zcy N X 4
closed in X 4, such that | Z|= 2+ . Obviously there ex-
iste m'e F, (X)  such that 9’ = Z and elements in 2’
are ordered in the same way as they are ordered in 7 - By
Is5, there exists 7" ¢ F, (X) such that 2" < 7' .
Then 0" A Xy = f  and if 5" < 5" , then 2" n
NX % = 0. Indeed 7" < " implies that 9" < 7’
from which it follows that n"c cf (% )\7'c X \ Xoete -
We put Mpw= 7" . Clearly the conditions 1) and 2) are
satisfied for all oc < 3% . Thus a tremnsfinite sequence
i :1c 2zt c F.(X) satisfying the conditions 1)
and 2) exists. let us fix it. Consider N e - From 2) it fol-

"

lows that |9, nX_l< ¢ for every o < = . Hence
19 n X1 £ =, But Ne=mMen X implies that
1m0 X 1=lg,l= 2+ . The contradiction we arrived at

means that &_(X) = g,

Now we are ready to formulate and prove one of our main
results,

I.12. Theorem. If X is a T-compact, = = ¥, and

X=ULX : ot < &3} s Where X_ e ‘€.  for every «< <
< T ,then t(X) « = , In particular, if X is a compact
and each X is developable then t(X) < = .
Proof. We just apply I.11 and I1.10 where Y = X,
I.13. Definition. A space X is called T -bounded if

for every ACX, such that |4l < » , c£(A) is compact.

I.14. Theorem. ILet X be & 7 -bounded comple tely regu-
lar space, T Z #, andX=U{.X°‘: < < 3 where
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X, € . Pfor every o =< . Then X is compact and
t(X) £ = .

Proof. In view of I.12 we only have to prove that X
is compact. let us fix a compact extension Y of the space
X. let ye Y. From I.10 it follows that t(y,X) &« = . Hence
yecd (A) for some Ac X such that |Al <« T . As X is T -
bounded, ¢ £ (A)n X is compact. Hence c£ (A)nX is closed in
Y. This implies that c £ (A) = ¢ £ (A)nX. Thus ye c£ (A)e X,
j.e. X = Y. We conclude that X is compact.

1.15. Notations. S, is the class of all spaces X
such that X = U{X_ :oc < ®} where X, , € €, for eve-
ry <« < @ , By 'M"e we denote the class of @ll X such that
X=U{Xyg: x < &} where X, is metrizable for every
« < .We put M¥ =U{M,:meN*3 .

Straight from I.12 we get

I.16, Theorem. If X is a k-space, T = #, and X €
€ S, then t(X) & =« .

I.17. Observation. If X is a space of point countab-
le type and X € .M.#o , then X is first countable at a
dense set of points,

This follows trivially from the fact that every compact
is of second categorye.

The following assertion provides us with additional
strong information on the structure of compacts belonging
to .M.‘o .

I.18. Theorem. If X is a 7 -compact, T = %, and
e M #y then the following conditiors are pairwise

equivalent: a) c(X) < T ; b) d(X) = T ; c) for every
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YcX such that c£(Y) = X, a(Y) < + 3 Q) Fwr (X)) & w g
e) there exists Yc X such that cl(Y) =X and w(Y) 2 = .
Proof. It is well known that e) —> 4) =>c) =>b) =
=>a). It remains to show that a) =—>e), Iet X = U 1y;:
tie¥* 3 where each Y; is metrizable. Assume that
e(X) £ @ ,Put =4UCcX : U is open in X, U #+ & and
U n Y, is dense in 9 for some ie N3 .
As X is of second category, 9 is a gr-base of X, There
exists a maximal disjoint subfamily 7* of the family 7 -
Then ¢ £ (Ug*) = X. We have: lg*| 4 ¢ (X) 2 « . For
each U & * we choose ie N' such that U n Y is den-
se in Y and put Z, = Un Y; . A8 YU is open in X,
c(U)ee@) < ¢ , As Zy is dense in U , c(Zgy)ee(U)s
£ ® . As Zy is metrizable, it follows that wiZg ) =
=clZy)<c = . Weput 2= U{Z%:’uegﬂ-*}.ufy* is
disjoint, U n Z = Z, . Hence 2, 1is open in Z for every
Ueg*.let By be a base of Zy such that | By | =
=w(Zy )& ~, Then B = U4By: Ue p*3. isa base
of the space Z angd I Blsv.v=2, Hence w(z) < =
Obviously, c¢£ (2) = ¢.£ ( Ug* = x,

§ 2. The case of two summands

II.1. Example. Let % = ¥, We fix a discrete space
Ay such that LA, | = = , Denote by A%, the compact ex-
tension of A, by one point: AR =4,0f§,. 3. Ten AX is
the union of two discrete subspaces. Hence AY e M, .On
the other hang, A: is not first countable at the point

§. if ¢ > %, - Thus not every compact belonging to
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M4 is metrizable.

In this paragraph we study the compact elements of
M, in greater detail.

II.2. Lemma. Ilet = =z ¥, , X is ¥ -compact, X = X, v
ux2 and assume that the following conditions are satis-
fied for i = 1,2: a) if AcX; and |Al <« = then the
closure of A in X; has a network ¢; such that ly;l<2;
b) y(X;) < = . Then for every Ac Xy such that Al £
and for each zeck (A)nX,, 7 (z,cL(A)) < < .

Proof. We put A4; = c£ (A)n X; and fix zeA,. It fol-
lows from a) that there exists a family 7 of sets in 4,
such that lgrl< =, Uy o Ay 4x3 and c£(P)D 3z
for every P € o~ . We put 7, ={cZ(A)\ c£(P): Pe o~ ¢ .
Then\&':])t_-lg*léfc end (NF)n X cizd, as
v (z,4,) &€ ¥ (z,X) < ¢, there exists a femily 7, of
open sets in c£ (A) such that 19, € = and (NF,)n
NX, = 42%. et ¥ = 3"*:, v 7, . Then obviously || 4 «
and N9 =423 . As all elements of y are open sets in
el (A), it follows that y (z,cL(A)) < |F| £ » | But
cZ(a) is T -compact. Hence 7 (z,cL (A< y(z,cl(AN) < =.

II.3. Proposition. ILet X be an %, -compact and X =
= Xv X, where X;,
conditions: 1) X; € %#c 3 2) if AcX; and |Al £ ¥,

then the closure of A in X; has a countable network;

for each i =1,2, satisfy the following

3) y(X;) £ %, . Then, for every AcX, cL£(4) =
= seqcl(seqel (A)) (and hence X is sequential).

Proof. By Theorem I.12, t(X) £ %, . We fix AcX and
xech (A). There exists Bc 4 such that |B\| <« &, and
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xeck (B), We put By =BnX;, i = 1,2, Then either x €

€ c,?,(Bl) or xec £(B,). It is sufficient to consider the
case when xec £ (Bl). There are two possibilities: I) x e
€ Xy, and II) x3X,. If I) holds, we apply the lemma II.2
with A = B) and conclude that 7 (X,cl (By)) £ %, . Hen-
ce xc seqc.l (Bl)c seqcf (A). It remains to consider the
case II): x¢x2. Then xeX;. We put C = cl (By) and ¢ =
=C nxz. It is necessary to distinguish the two following
subcases: III) cl(cl) $ x and IIZ) cl (Cl) 3 x. Let
c£(C;) $ x. Then there exists a neighborhood Ox of x in

X such that ¢£(C;)nc£(0x) = 8. Then F = c¢£ (0x)NC is
&n o -compact and Fn X, = 0. Hence Fc X;. From xc F and
v(F) £ 3 (X;) « %, it follows then that A (x,F) £+,
We have: BJ = Oxn BjcF md xe c£(B). Hence there exists
a sequence in B converging to x. As Bjc BCA, we conclu-
de: xe seqe£ (A) - and the proof in the case IIl) is comp-
lete. Suppose now that II;) holds: c£ (C) > x. As t(X) =
£ ¥, , there exists a countable set Ci“c C1 such that
xecl (C;). Then we have: Cfc X,, lef) 2 &, and x €X,,
xeck ((!]’fl ). Hence we can apply the lemma II.2 (where Xy
plays the role of X5 and X, plays the role of X;). It fol-
lows that x (x,c£ (C]*)) £ %, . Thus x¢ seqc.2 (cF).
From Bjc X; end IB)| € %, it follows by lemma II.2 that
c£(B;) is first countable at all the points of the set
¢£(B))n X, = C,. Hence cte Cycseqel (B;), so that x €

€ seqc £ (CJ’_" )c seqc .l (seqc £ (By))c seqe £ (seqe £ (A)).
Proposition II.3 is proved.

Remark. The spaces xl and 12 above need not be se-
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quential. -

II.4. Progoait::wn. Let X = Xlu xz, where all the
conditions from II.3 are satisfied. In addition, let us
assume that for each Ac X; such that Al £ ¥, the clo-
sure of A in X; is a Fréchet-Urysohn space, i = 1,2, Then
X is also a Fréchet-Urysohn space.

Proof. By Theorem I.12, t(X) £ ¥, . Hence it suf-
fices to show that c.£ (A) = seqc£ (A) for every countalle
AcX. Assume that xe c¢£ (A)\ seqel (A), let xeX,. As X;
is Fréchet-Urysohn, seqel (AnX,)D el (AnX; )N X;. From
x $ seqel (A)>o seqcl (Anxl) it follows now that x $
$ cL(ANX,). Thus xe c£ (AnX,). We have: AnKc X; and
A%, | £ &, . From lemma II.2 we conclude now that

% (x,c (AN xa)) < & ., Hence xe seqcf (An 22)c seqc £ (4)
- in contradiction with x€c£ (A)\ seqc£ (A). Proposition
I1I.4 is proved.

II.5., Proposition. Let ¥ = +, . Assume that X is
a ¥-compact and X = Xyv X, where, for each i=1,2, the
following conditions are satisfied: 1) X; e ¢, ;2) if A;c
€X; and [A;] € =  then the weight of the closure of
A; in X, does not exceed T ; 3) if Yjc X; then either
there exists a discrete subspace Zi; Ii such that | Zil =
= 2t (i.e. 8(¥;) > =) or the density d(¥;) of ¥; is
not greater than <z .

Then for any AcX such that |Al = 2~ , w(c£(A)) £
£ T .

Proof. Put Ay = AnXj, X} =cL(A) eamd X = X5 0
nx{, i=1,2. By 2), w(¥;) & = . We have: c.L (A;) =
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=cl (i) = X'f - i.e. il is dense in X;’ As XI is regu-
lar it follows that, for every compact & c xi’

21(8,X) = 7 X )4w®) 2 ., we put X =X\T .
Let us show that d(g) < ¥ (density of X{ does not ex-
ceed © ).

Assume the contrary. Clearly, chx\xl. Then, by 3)
and 1), there exists a closed in X; discrete set Dyjc X§
such that |D;| = =+ Put §; =cp (D3)\D;. Then
is closed in X and hence d; is a 2 -compact. We obser-
ve that D;c XI and II is closed in X. Hence &, c x; As
D; is closed in Xi, it follows that § N Xi f. Thus

Q c I-. Hence w($.)< v(ll) . We can conclude now
that §. is & compact. It follows that %(éi,x;) & T.
There exists a family 9= of open sets in X; such that
Ng;=@; maly,lez. From ®; n D; = 8 we obtain
now that D; = U4{D;\U: % ¢ .3 . Ve have: I3 | £« =
and | D;| =tt>a , Thus fDi\QL'l= v+ for some
U, e o . As DiNU; = 2D\ U, , the set L\NU, is
closed in c£D; and hence D; \ 'lL,y is closed in X, But,
as X is 't:-compact, there exists no closed discrete set in
X of cardinality =+ Th; contradiction we arrived at
implies that a(Xj) £ = . Clearly, if i = 1 then Xc X,
and if i = 2 then Xjc X,. In awy case it follows from 2)
and d(Xj) « T that wXj) € © ., Thus c£(A) = xluxzu
uxlux; where w(zi) €T ,wX)e v ,i=1,2, Te
space c.£ (A) is =~compact, as X is « -compact. From the
theorem on the addition of weights proved in [71 (see al-

80 [81) it follows now that w(c. A)) 2 = .
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We can now formulate amd prove the main results of
this paragraph.

II.6. Theorem. If X is an -, -compact and X = xlu
U X, where Xl and x2 are spaces with uniform base then
&) X is Fréchet-Urysohn, and b) for each countable Ac X,
w(cl(A)) 2 %, -

Proof. The assertion follows immediately from II.S.

II.7. Corollary. If X is a separahle ., -compact
and X = xlu Xz where X; and Iz are spaces with uniform ba-
se then w(X) < w, (and hence X is a compact).

II.8. Theorem, Let X be a compact and X = xlu !2 whe-
re X; and Xz are spaces with uniform base. Then a) X is
Fréchet-Urysohn, and b) for every AcX, w(cl (A))<|A| . In
other words, X is an exact compact in the sense of [6].,

Proof. One shoul only observe that the conditions of
II1.5 are satisfied by X, X; and X, for all = = %, -

II.9. Example, Franklin’s compact (see [8], or [1])
is the union of two separable locally metrizable developab-
le spaces while it is not Fréchet-Urysohn. It does not sa-
tisfy b) in II.8 as well., Hence II.6, II.7 and II.8 are not
extendable to the class of all developable spaces.

Observe that the case when X, and X, are metrizable is
covered by II.6, II.7 and II.8., But in this case the asser-
tiorn II.7 can be considerably strengthened.

II.10. Theorem. If X is & < -compact and X = v X,
where Xl and 12 are metrizable then the following condi-
tions are equivalent: 1) ¢(X) £ © and 2) w(X) £ © .

Proof. This follows from I.18 and II.5.
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IT.1l. Corollary. If X is a compact and X = Xi (3]

U X, where X; and X, are metrizable then c(A) = w(A) for
every Ac X (and X is Fréchet-Urysohn by II.8).

II.12, Example. The same Franklin’s compact (see
II.9) is the union of three discrete spaces while it is
separatle and not metrizable and not Fréchet-Urysohn.
Hence none of the results II.6, II.7, II.8 and I1.10 can
be generalized to the case of the union of three metriz-
able spaces. That is the real reason why we had to con-
sider the case of two summan&s separately. We shall treat
the peculiarities of the case when a compact is the union
of finitely many metrizable spaces in our next paper. We
would like to conclude with the following problem, motiva-
ted by II.8 and II.1lO0.

II.13. Problem. Is it true that every compact which
can be represented as the union of two metrizable subspa-
ces is an Eberlein compact?

I also want to formulate here the following problem
which was posed in my talk at the Prague Symposium, 1976
and was recently solved by A. Ostaszewski (in the affir-
mative),

IT.14. Problem. Let X be a compact such that X
€ A#“o . Is it true then that X is sequential?
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