

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log68

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

A NONLINEAR OPERATOR IN POTENTIAL THEORY R. KAUFMAN, Urbana

Abstract: A property of the first eigenvalue of the operator Δ leads to the solvability of a nonlinear equation whose main part is a singular linear equation.

Key words: First eigenvalue, Hölder-continuity, fixed point.

AMS: 35J05, 47H15, 46E15 Ref. Z.: 7.955.81

l. Let T be the nonlinear operator defined by $T(u) = (\Delta + c^2)u + p(u)$, where Δ is the Laplacean in the unit disk D: $x^2 + y^2 < 1$, p is continuous on $(-\infty, \infty)$, and p(u) = o(|u|), $\lim |p(u)| = +\infty$, as $|u| \to \infty$. The domain of the operator Δ is the space of all u, continuous on D. vanishing on ∂ D, whose Laplacean (in the sense of distributions) belongs to $L^2(D)$; Green's formula confirms that these functions u are Hölder-continuous. Moreover $-c^2$ is the smallest eigenvalue of this operator, and Δ is a closed, negative-definite operator.

Theorem. For each r>2 and each M, the set defined by the inequality $\|T(u)\|_{r} \le M$ is compact in the Banach space $C^1(D^-)$, and the range of T meets $L^r(D)$ in a closed subset of $L^r(D)$.

The range contains Lr(D) if and only if

 $p(+\infty) \cdot p(-\infty) < 0$.

This theorem was suggested by a remarkable paper of Ambrosetti and Prodi [1] in which a similar use is made of the <u>first eigenvalue</u> of the operator Δ .

2. The operator $\triangle + a^2$ is singular precisely when a>0 is a zero of some Bessel function J_k , and the eigenfunction for c^2 is $f_0 = J_0(cr)$; $f_0>0$ within D, and the normal derivative of f_0 is negative on ∂D . (See [2, p. 373].) (Tables show that $c\cong 2.40$ and the next zero is $\cong 3.83.$)

Green's formula, with zero boundary data,

$$f(z) = (2\pi)^{-1} \int \int (\Delta f)(z') G(z,z') dx' dy'$$

shows that if $\Delta f \in L^r$, $2 < r < \infty$, then $f \in C^1(D^-)$, and the first partial derivatives of f are Hölder-continuous in exponent 1 - 2/r; this is proved by means of Hölder's inequality and the potential-theoretic lemmas presented in [3, p. 1981. When 1 < r < 2 similar consideration yields Hölder-continuity of f.

To prove the first statement in the theorem we take a sequence u_n , in the domain of Δ , such that $\| T(u_n) \|_{\mathbf{r}} \leq M$. Supposing that $\mathbf{m}_n = \| u_n \|_{\infty}$ tends to infinity, we proceed to obtain a contradiction. We write $u_n = \mathbf{a}_n \mathbf{f}_0 + \mathbf{v}_n$, where \mathbf{v}_n is orthogonal to \mathbf{f}_0 in $\mathbf{L}^2(\mathbf{D})$, and \mathbf{a}_n is a real number. Since $\mathbf{p}(\mathbf{u}) = \mathbf{o}(\| \mathbf{u} \|)$ as $\| \mathbf{u} \|_{\infty} + \infty$, we see that $(\Delta + \mathbf{c}^2)\mathbf{v}_n = \mathbf{o}(\mathbf{m}_n)$ uniformly, and therefore

in L². By the discreteness of the spectrum of Δ , we see that $(\Delta + c^2)v_n$ and Δv_n are of the same magnitude in L², whence $v_n = o(m_n)$ uniformly. We now observe the identities

 $\Delta v_n = (\Delta + c^2)v_n - c^2v_n = T(u_n) - p(u_n) + c^2v_n$

and deduce that $\Delta \mathbf{v_n} = o(\mathbf{m_n})$ in $L^{\mathbf{r}}(\mathbf{D}^2)$. Therefore $\mathbf{v_n} = o(\mathbf{m_n})$ in the Banach space $C^1(\mathbf{D}^-)$, whence $\mathbf{v_n}(z) = o(\mathbf{m_n})$ (1 - |z|). We have also $\mathbf{a_n} \simeq \frac{1}{2} \mathbf{m_n}$, so that $\mathbf{u_n} = \mathbf{a_n} \mathbf{f_0} + \mathbf{v_n}$ has no zeroes for large n, in view of the inequality $\mathbf{f_0}(z) \ge \mathbf{a}(1 - |z|)$ valid for some $\mathbf{a} > 0$.

If, for example, $\mathbf{a_n} > 0$ and $\mathbf{p}(+\infty) = +\infty$, then $\mathbf{p}(\mathbf{u_n})$ tends everywhere to $+\infty$, while $\mathbf{p}(\mathbf{u_n}) \ge -C$. But $(\Delta + \mathbf{c^2})\mathbf{u_n}$ is orthogonal to $\mathbf{f_0}$, so $\int \int \mathbf{p}(\mathbf{u_n})\mathbf{f_0}(z)\mathrm{d}x\mathrm{d}y = 0$ = 0(1), while $\mathbf{f_0} > 0$. This contradiction shows that $\mathbf{m_n}$ must remain bounded.

Now, by steps similar to the above, we find that $a_n = O(1)$, so $\| \triangle v_n \|_r = O(1)$, and then the functions u_n are bounded, with uniformly Hölder-continuous partial derivatives, in exponent 1 - 2/r.

To prove the closure of the range of T in L^r , suppose $\lim T(u_n) = g$ in L^r ; we can then select a subsequence u_j , converging to u_0 in $C^1(D^-)$. Now $\Delta u_j = T(u_j) - c^2u_j - p(u_j)$ and Green's formula shows that $\Delta u_0 = g - c^2u_0 - p(u_0)$, or $T(u_0) = g$.

3. Suppose now that $p(u) \ge -C$ for all u; then $(T(u),f_0) \ge -C'$, so that the range of T contains λf_0 only

when $\lambda \leq \lambda_0$.

To complete the proof, we suppose that $p(+\infty) = +\infty$ and $p(-\infty) = -\infty$ and prove that T(u) = g is solvable for every g in $L^{\mathbf{r}}$, r > 2. First we solve a perturbed equation $T(u) + \varepsilon u = g$, for small $\varepsilon > 0$. We write this in the form

$$(\Delta + c^2 + \varepsilon)u = g - p(u)$$

and observe that $\Delta + c^2 + \epsilon$ admits a bounded completely continuous inverse in \mathbf{L}^2 , for small ϵ . Let us define

$$A_{\epsilon}(u) = (\Delta + c^2 + \epsilon)^{-1} (g - p(u)).$$

 $\mathbb{A}_{\mathcal{E}}$ is continuous because $g \in L^2$ and p(u) = o(|u|), and compact, because $(\Delta + c^2 + \epsilon)^{-1}$ is compact. On the ball $\|u\|_2 \leq N$, we have $\|\mathbb{A}_{\mathcal{E}}(u)\|_2 = o(N)$ so that $\mathbb{A}_{\mathcal{E}}$ is a compact mapping of some ball into itself and admits a fixpoint by Schauder's theorem, i.e. a solution of the perturbed equation. To obtain a solution to the original equation, we prove that the solutions of the equations $(\Delta + c^2 + \epsilon)u + p(u) = g$ remain bounded as $\epsilon \longrightarrow 0+$. We write $u = \mathbf{a}_{\mathcal{E}} \mathbf{f}_0 + \mathbf{v}_{\mathcal{E}}$, and suppose that $\|\mathbf{u}\|_{\infty}$ becomes unbounded. Then $\|\mathbf{v}_{\mathcal{E}}\|_2 = o(1) \|\mathbf{u}\|_{\infty}$, and we observe that

$$\Delta \mathbf{v}_{\epsilon} = \mathbf{g} - \mathbf{p}(\mathbf{u}) - \mathbf{c}^2 \mathbf{v}_{\epsilon} - \epsilon \mathbf{a}_{\epsilon} \mathbf{f}_{0}$$

Thus $\|\mathbf{v}_{\mathbf{E}}\|_{\infty} = o(1) \|\mathbf{u}\|_{\infty}$, and finally $\mathbf{v}_{\mathbf{E}} = o(1) \|\mathbf{u}\|_{\infty}$ in $C^{1}(D^{-})$. Hence u maintains the same sign, and $\mathbf{E}\mathbf{u} + \mathbf{p}(\mathbf{u})$ tends to $+\infty$ (or $-\infty$) remaining bounded below (above), so that the inner produce $(\mathbf{T}_{\mathbf{E}}\mathbf{u}, \mathbf{f}_{\mathbf{0}})$ becomes infinite. This completes the proof in the case $\mathbf{p}(+\infty) > 0$, $\mathbf{p}(-\infty) < 0$. In

the event that $p(+\infty) < 0$, $p(-\infty) > 0$ we employ the perturbed operator $T(u) - \epsilon u$.

4. An extension. The main theorem remains true impart for each r>1, but to verify this we must consider the inverse of the operator $\Delta + c^2$ on the appropriate subspace of L^r . It seems likely that an existence theorem remains true when r=1, provided p' is bounded; the analysis would be difficult since the solutions u are unbounded.

References

- [1] A. AMBROSETTI and G. PRODI: On the inversion of some differentiable mappings with singularities between Banach spaces, Annali di Mat. Pura ed Appl.(4)93(1972),231-246.
- [2] P.W. BERG and J.L. McGREGOR: Elementary Partial Differential Equations, San Francisco, 1966.
- [3] G. HELIWIG: Partial Differential Equations, New York, 1964.

University of Illinois at Urbana-Champaign Urbana, Illinois 61801 U.S.A.

(Oblatum 3.8. 1976)

