

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log65

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

K-ESSENTIAL SUBGROUPS OF ABELIAN GROUPS II

Jindřich BEČVÁŘ, Praha

Abstract: The purpose of this paper is to continue the investigation of K-essential subgroups of abelian groups begun in [1]. There is given a generalization of the groupscole and the intersections of K-essential subgroups of a group G are investigated with respect to the existence of the Smallest K-essential subgroup of G. The theorem 3.3 gives a description of the intersection of all the maximal K-essential subgroups (a generalization of the Frattinisubgroup). Finally, there is investigated the Galois-correspondence on the power-set of all subgroups of G defined by the relation "A is B-essential in G". Further, the notion of the pure-closure is generalized and the topologies of G defined by the filters of K-essential subgroups for various subgroups K of G are studied.

<u>Key words</u>: K-essential, maximal K-essential, essential subgroups; K-socles, socles, elementary groups; K-nongenerators, Frattini subgroups; \mathcal{M} -closure and pure closure operators; essential topologies.

AMS: 20K99, 20K45 Ref. Z.: 2.722.1

0. <u>Introduction</u>. This paper develops the theory of K-essential subgroups as it was introduced in [1]. All groups considered here are abelian. Concerning the terminology and notation we refer to [3],[4] and [1]. For convenience, we are going to introduce the following definition from [1].

<u>Definition</u>: Let G be a group and K a subgroup of G. A subgroup N of G is said to be K-essential in G if for every $g \in G \setminus K$ there is an integer n > 0 with $ng \in N \setminus K$.

Notice that the set of all K-essential subgroups of G is a filter (see 1.4 [1]).

Let $K \subset N$ be subgroups of a group G. Following Krivonos [5], a subgroup A of G is said to be N-K-high in G if A is maximal with respect to the property $A \cap N = K$.

Denote by $\overline{\mathbb{N}}$ the set of all square-free integers.

1. The K-socle and K-essential subgroups.

<u>Definition 1.1.</u> Let K be a subgroup of a group G. The set of all $g \in G$ such that there is $n \in \overline{\mathbb{N}}$ with $ng \in K$ we call K-socle of G and denote by G^K .

Obviously, G^K is a subgroup of G containing K. Further, G^0 is the socle of G. The group G^K /K is the socle of G^K /K, i.e. $(G^K)^0 = G^K$ /K. The subgroup G^K is generated by the family of all elements $g \in G$ that there is $p \in F$ with $pg \in K$.

Lemma 1.2. Let K be a subgroup of a group G. Then for each element $g \in G \setminus G^K$ there exists a K-essential subgroup N of G with $G^K \subset N$ and $g \notin N$.

<u>Proof.</u> Let $g \in G \setminus G^K$ and p be a prime such that $\sigma(g + K) < \infty$ implies $p^2 \mid \sigma(g + K)$. Now, $g \notin \langle G^K, pg \rangle$. For, if g = s + kpg, where $s \in G^K$ and k is an integer, then $(kp - 1)g \in G^K$. Consequently, there is $n \in \mathbb{N}$ such that $n(kp - 1)g \in K$. Hence $p^2 \mid n(kp - 1)$, a contradiction.

Let N be a subgroup of G maximal with respect to the properties: $\langle G^K, pg \rangle \subset N$, $g \notin N$. Then N is K-essential in G. For, if $x \in G \setminus K \cup N$ then $g \in \langle x, N \rangle$, i.e. g = rx + n, where $n \in N$ and r is an integer. Now, $prx = pg - pn \in N$. If $prx \in K$ then $rx \in G^K$ and $g \in N$, a contradiction. Hence $prx \in N \setminus K$.

<u>Lemma 1.3</u>. Let K and N be subgroups of a group G. Then

- (i) N is K-essential in G containing K iff N is essential in G containing G^{K} :
- (ii) If N is K-essential in G then N + K is an essential subgroup of G containing $\mathbf{G}^{\mathbf{K}}$.

<u>Proof.</u> (i) Let N be a K-essential subgroup of G containing K. If $g \in G$ then either $g \in K \subset N$ or there is $n \in N$ such that $ng \in N \setminus K$. Hence N is essential in G. Let $g \in G \setminus N$ and $pg \in K$ for a prime p. Now, there is $k \in N$ with $kg \in N \setminus K$; consequently (p,k) = 1. There are integers u,v such that up + vk = 1 and $g = upg + vkg \in N$, a contradiction. Hence $G^K \subset N$.

Let N be an essential subgroup of G containing G^K . Let $g \in G \setminus K$ and n be the least nonzero natural number with $ng \in N$. If $ng \in K$ then n = pr for a prime p and a natural number r. Now, $rg \in G^K \subset N$ and r < n, a contradiction. Hence $ng \in N \setminus K$.

(ii) It follows from (i).

Proposition 1.4. Let K be a subgroup of a group G. The following are equivalent:

- (i) $G^K = G$;
- (ii) G/K is an elementary group;
- (iii) If N is K-essential in G then N + K \approx G.

<u>Proof.</u> (i) \Longrightarrow (iii) If N is K-essential in G then $G^K \subset N + K$ by 1.3. Hence N + K = G by (i).

(iii) \Longrightarrow (i) If $g \in G \setminus G^K$ then there is a K-essential subgroup N of G such that $G^K \subset N$ and $g \notin N$ by 1.2. Hence

N + K = N + G, a contradiction.

(i) (ii) It is trivial.

Corollary 1.5. A group G has no proper essential subgroups iff G is elementary.

Proposition 1.6. Let K and N be subgroups of a group G. Then the following are equivalent:

- (i) K is N N∩K-high in G;
- (ii) N + K is K-essential in G;
- (iii) N + K is essential in G and $G^{K} \subset N + K$.

<u>Proof.</u> (i) \Longrightarrow (ii) If $g \in G \setminus K$ then $\langle g, K \rangle \cap N \supseteq N \cap K$, i.e. there are $n \in \mathbb{N}$, $k \in K$ and $m \in N \setminus K$ such that ng + k = m. Hence $ng \in (N + K) \setminus K$.

(ii) \Longrightarrow (i) If $g \in G \setminus K$ then there is $n \in \mathbb{N}$ such that $ng \in (\mathbb{N} + K) \setminus K$. Hence ng = m + k, where $m \in \mathbb{N} \setminus K$ and $k \in K$; consequently $\langle g, K \rangle \cap M \supseteq \mathbb{N} \cap K$.

(ii)⟨⇒⇒ (iii) By 1.3.

Corollary 1.7. Let K and N be subgroups of a group G. Then K is N-high in G iff $K \oplus N$ is an essential subgroup of G containing G^K .

2. Intersections of K-essential subgroups.

<u>Proposition 2.1.</u> Let K be a subgroup of a group G. Then the K-socle of G is the intersection of all K-essential subgroups of G containing K.

Proof. It follows immediately from 1.2 and 1.3.

Definition 2.2. Let K be a subgroup of a group G. Write $G_K = \bigoplus_{n \in \mathbb{F}_K} (G_p)^{Kp}$, where \mathbb{F}_K is the set of all primes p with $K_p \neq G_p$.

Theorem 2.3. Let K be a subgroup of a group G. Then the intersection of all K-essential subgroups of G is contained in the K-socle G^K of G and contains the group G_K .

<u>Proof.</u> The intersection of all K-essential subgroups of G is contained in G^K by 2.1.

Let N be a K-essential subgroup of G. If $p \in \mathbb{P}_K$ then there is $g \in G_p \setminus K$ and there exists $n \in \mathbb{N}$ with $ng \in \mathbb{N}_p \setminus K$. The element $ng + K \cap N$ of the group $\binom{N}{K \cap N}_p$ is nonzero, hence $\binom{K}{K \cap N}_p = 0$ by 2.2 [1] (it is not $N \subset K$). Consequently, if $x \in K_p$ then $x \in K \cap N$, i.e. $K_p \subset N$. Let $y \in (G_p)^p \setminus K_p$. Now, there is $m \in \mathbb{N}$ with $my \in N \setminus K$. Since $py \in K_p$, (p,m) = 1 and there are integers u,v such that 1 = up + vm. Hence $y = upy + vm \in N$. Consequently, $(G_p)^p \subset K$ for every $p \in \mathbb{P}_K$.

Corollary 2.4. If the intersection of all K-essential subgroups of a group G is zero then $G_{\underline{t}} \subset K$.

Theorem 2.5. Let K be a pure subgroup of a group G containing $G_{\hat{t}}$. Then the intersection of all the K-essential torsion-free subgroups is zero.

<u>Proof.</u> Suppose $K \neq G$, otherwise it is trivial. Let $g \in G$ be an element of infinite order and p prime. Let M be a subgroup of G maximal with respect to the properties: $pg \in M$, $g \notin M$, $M_t = 0$. Then M is G_t -essential in G. For, if $x \in G \setminus G_t \cup M$ then either $\langle x, M \rangle_t \neq 0$ or $g \in \langle x, M \rangle$. In the first case, nx + m = t; where $n \in \mathbb{N}$, $m \in M$ and $t \in G_t$; hence $\sigma(t) nx \in M \setminus G_t$. In the second case, g = nx + m, where $n \in \mathbb{N}$ and $m \in M$; hence $pnx = pg - pm \in M \setminus G_t$. Now, M is K-essential by 3.3 (iii) [11].

The investigation of the intersection of all K-essen-

tial subgroups of a group G is connected with the existencequestion of the least K-essential subgroup of the group G. If K is a subgroup of a group G then exactly one of the following two cases comes by 1.4 [1]:

- (i) There is the least K-essential subgroup N of G. A subgroup M of G is K-essential in G iff N \subset M.
- (ii) There is no minimal K-essential subgroup of the group G.

Theorem 2.6. Let K be a proper subgroup of a group G. The following are equivalent:

- (i) G is torsion;
- (ii) A subgroup N of G is K-essential in G iff N contains $\mathbf{G}_{\mathbf{K}}$;
 - (iii) G_K is the least K-essential subgroup of G_{\bullet}

 $\frac{\text{Proof.}}{\text{Proof.}} \quad \text{(i)} \Longrightarrow \text{(iii)} \quad \text{If G is torsion then G_K is K-}$ essential in G. For, if $g \in G \setminus K$ then there is $p \in \mathbb{P}_K$ such that we can write g = a + b, where $a \in G_p \setminus K_p$ and $b \in \bigoplus_{g \in P} G_q$.

Let n be the greatest integer such that $p^n a \in G_p \setminus K_p$, i.e. $p^n a \in (G_p)^{p}$. If $m = \sigma(b)$ then $mp^n g = mp^n a$. Now, $mp^n a \notin K_p$, since (m,p) = 1. Hence $mp^n g \in G_K \setminus K$. The rest follows from 2.3.

(iii) => (i) See 1.2 [1].

(ii) ← (iii) It follows from 1.4 [1].

For example, $\mathbb{Z}(p^{k+1})$ is the least $\mathbb{Z}(p^k)$ -essential subgroup of $\mathbb{Z}(p^{\infty})$; $\mathbb{Z}(p^{k+1})$ is the least $\mathbb{Z}(p^k)$ -essential subgroup of $\mathbb{Z}(p^n)$, where n > k.

Theorem 2.7. Let K be a torsion subgroup of a mixed

group G. Then the subgroup G_K is the intersection of all K-essential subgroups of G. Moreover, G_K is not K-essential in G, i.e. there is no least K-essential subgroup of G.

<u>Proof.</u> The intersection of all K-essential subgroups of G is torsion by 2.3. On the other hand, the torsion part of the intersection of all K-essential subgroups of G is $G_{\overline{K}}$ by 1.8 [1] and 2.6.

Proposition 2.8. Let N and K be subgroups of a group G.

- (i) If N is K-essential in G then $N\supset G_K^{\bullet}$ M, where M is an essential subgroup of some $(G_K^{\bullet}+K)$ -high subgroup of G. If K is torsion then the converse holds, too.
- (ii) N is G_t -essential in G and torsion-free iff N is essential in some G_t -high subgroup of G.

<u>Proof.</u> (i) If A is a $(G_K + K)$ -high subgroup of G then $M = A \cap N$ is essential in A. Now, $N \supset G_K \oplus M$ by 2.3.

Conversely, suppose that K is torsion and $N\supset G_K \oplus M$, where M is an essential subgroup of some (G_K+K) -high subgroup A of G. Let $g\in G\setminus K$. If $g\in G_t$ then there is $n\in N$ such that $ng\in G_K\setminus K$ by 2.6. If $g\notin G_t$ then there is $n\in N$ such that $ng\in A\oplus (G_K+K)$ and consequently, there is $n\in N$ with $nng\in M$.

(ii) It follows from (i).

The intersection of all G_{t} -high subgroups of a group G_{t} is zero by Prop. 9[5]. Now, the intersection of all the G_{t} -essential torsion-free subgroups is zero by 2.8 (ii). Compare with 2.5.

3. Intersections of maximal K-essential subgroups.

If K is a subgroup of a group G then the maximal subgroups of G that are K-essential in G are called maximal K-essential subgroups of G. The maximal K-essential subgroups of G are exactly maximal elements of the filter of all K-essential subgroups of G.

<u>Definition 3.1.</u> If K is a subgroup of a group G and p is a prime then we denote by K^p the subgroup of G generated by the subgroup pG and by the set of all $x \in G \setminus K$ with $px \in K$.

Lemma 3.2. If K is a subgroup of a group G and p is a prime then

- (i) $K^{\mathbf{p}}$ is the least K-essential subgroup of G containing pG;
 - (ii) pG is K-essential in G iff $K^p = pG$.

<u>Proof.</u> (i) If $g \in G \setminus K$ then either $pg \in pG \setminus K \subset K^P \setminus K$ or $pg \in K$, i.e. $g \in K^P \setminus K$. Consequently, K^P is K-essential in G. Suppose N is K-essential in G containing pG. If $x \notin K$ and $px \in K$ then there is $n \in \mathbb{N}$ with $nx \in \mathbb{N} \setminus K$. Now, (p,n) = 1 and there are integers u,v such that 1 = up + vn. Hence $x = upx + vnx \in \mathbb{N}$ and $K^P \subset \mathbb{N}$.

(ii) It follows from (i).

Theorem 3.3. If K is a subgroup of a group G then the group $\bigcap_{n\in\mathbb{P}} K^p$ is the intersection of all maximal K-essential subgroups of G.

<u>Proof.</u> If M is a maximal subgroup of G then $^{G}/M \cong \mathbb{Z}(p)$ for some prime p; hence pGc M. Moreover, if M is K-essential in G then K^{p} c M by 3.2. Let $x \notin K^{p}$ and N be a subgroup of G maximal with respect to the properties: K^{p} c N and $x \notin N$. If

 $g \in G \setminus N$ then $x \in \langle g, N \rangle$, i.e. x = kg + n, where $n \in N$ and k is an integer. Hence $kg \in \langle x, N \rangle$. Now, (p,k) = 1 and there are integers u,v such that 1 = up + vk. Consequently, $g = upg + vkg \in \langle x, N \rangle$, i.e. $G = \langle x, N \rangle$. Hence N is a maximal subgroup of G. Since $K^p \subset N$, N is K-essential in G. Consequently, K^p is the intersection of all maximal K-essential subgroups of G that contain pG.

Definition 3.4. Let G be a group and K a subgroup of G. An element g of G is said to be K-nongenerator of G if $G = \langle g,M \rangle$, and $\langle M \rangle$ being K-essential in G, imply $G = \langle M \rangle$.

Theorem 3.5. If K is a subgroup of a group G then the intersection of all maximal K-essential subgroups of G is the set of all K-nongenerators of G.

<u>Proof.</u> If $g \in G$ is not a K-nongenerator of G then there is a proper K-essential subgroup N of G such that $G = \langle g, N \rangle$. Denote by M a subgroup of G maximal with respect to the properties: $N \subset M$ and $g \notin M$. The subgroup M is a maximal K-essential subgroup of G and $g \notin M$. Conversely suppose that there is a maximal K-essential subgroup M of G with $g \notin M$. Hence $G = \langle M, g \rangle$ and $g \in M$ is not a K-nongenerator.

Put K = G. It follows from 3.3 that the Frattini subgroup of G is the intersection of all pG with p running over all primes p (see ex. 4, § 3[3]). By 3.5, the Frattini subgroup of G is the set of all nongenerators of G (see § 62 [61].

<u>Proposition 3.6.</u> Let K be a subgroup of a free group G. If K is of finite rank then the intersection of all maxi-

mal K-essential subgroups of G is zero.

Proof. Let g be a nonzero element of G. By 15.4 [31, we can write $G = \bigoplus_{i=1}^{\infty} \langle a_i \rangle \oplus G'$, $K = \bigoplus_{i=1}^{\infty} \langle m_i a_i \rangle$ and $g = \bigoplus_{i=1}^{\infty} r_i a_i$, where $n \in \mathbb{N}$, m_i are nonnegative integers and r_i are integers, $i = 1, \ldots, n$. Let j be an integer such that $1 \leq j \leq n$ and $r_j \neq 0$; let p be a prime such that $(p, r_j) = 1$ and $(p, m_i) = 1$ for every $i = 1, \ldots, n$. The group pG is K-essential in G. For, if $x \in G \setminus K$, where $x = \bigoplus_{i=1}^{\infty} s_i a_i + x'$, $s_i \in \mathbb{Z}$, $x' \in G'$, then $px \in pG$. If $px \in K$ then x' = 0 and $m_i \mid ps_i$ for each $i = 1, \ldots, n$. Now, $m_i \mid s_i$ for every $i = 1, \ldots, n$ and hence $x \in K$, a contradiction. Since $g \neq pG$, g is not contained in the intersection of all maximal K-essential subgroups of G by 3.2 and 3.3.

From 3.6, it follows that the pure-assumption of the subgroup K of G in 2.5 is not necessary.

4. \mathcal{H} -closures and essential topologies. Let G be a group. Let \mathcal{T} be the set of all subgroups T of G such that $^G/T$ is a torsion group, and \mathcal{F} be the set of all subgroups F of G such that $^G/F$ is torsion-free. Consequently, \mathcal{T} is the set of all $^G/F$ is torsion-free of G (see 3.3 [1]) and \mathcal{F} is the set of all pure subgroups of G containing $^G/F$. The set $^G/F$ is a filter (see 1.4 [1]) and the set $^G/F$ is closed under intersections and chain-unions.

For any two subgroups A and B of G define $A \otimes B$ if A is B-essential in G. For a nonempty family \mathcal{H} of subgroups of G put $\mathcal{H} \otimes = \{B; A \otimes B \mid \forall A \in \mathcal{H}\}, \ \Theta \mathcal{H} = \{A; A \otimes B \mid \forall B \in \mathcal{H}\}$.

Now, using 1.4, 1.5, 3.3[1], it follows that the set $\Theta \mathcal{H}$ is a filter. If $\mathcal{H} = \{G\}$ then $\Theta \mathcal{H}$ is the set of all subgroups of G. Otherwise $\Theta \mathcal{H}$ is a subfilter of the filter \mathcal{T} and $\Theta \mathcal{H} = \mathcal{T}$ iff $\mathcal{H} \subset \mathcal{F}$.

The set $\mathcal{H} \Theta$ is closed under intersections and chain-unions and it contains both the largest and the least elements. Denote this least element by $\mathcal{H}(\mathcal{H})$, or $\mathcal{H}(\mathbb{N})$, if $\mathcal{H} = \{\mathbb{N}\}$. $\mathcal{H}(\mathcal{H}) = \cap \mathcal{H} \Theta$. On the other hand $\mathcal{H} \subset \mathcal{T}$ implies $\mathcal{F} \subset \mathcal{H} \Theta$. If $\mathcal{H} = \{\mathbb{G}\}$ then $\mathcal{H} \Theta$ is the set of all subgroups of \mathbb{G} ; $\mathcal{H} = \mathcal{T}$ implies $\mathcal{H} \Theta = \mathcal{F}$.

Definition 4.1. Let G be a group, $\mathcal H$ be a nonempty family of subgroups of G and E be a subset of G. Then the intersection of all subgroups $K \in \mathcal H \odot$ with $E \subset K$ is called $\mathcal H$ -closure of E and denoted by $\mathcal H$ (E). The intersection of all pure subgroups of G containing the group $\langle E, G_t \rangle$ is denoted by $\langle E \rangle_k$.

Obviously, $\langle E \rangle_{*}$ is a pure subgroup of G for every subset E of G. If $N \in \mathcal{H}$, then $\mathcal{H}(N) = G$.

Theorem 4.2. Let G be a group, 21 be a nonempty family of subgroups of G and E be a subset of G. Then

- (i) The map $E \longmapsto \mathcal{H}$ (E) is an algebraic closure operator;
 - (ii) If $\mathcal{H} \notin \mathcal{T}$ then $\mathcal{H}(E) = G$;
 - (iii) If $\mathcal{H} \subset \mathcal{T}$ then $\langle E \rangle \subset \mathcal{H} \setminus_{k}$;
 - (iv) If $\mathcal{H} = \{G\}$ then $\mathcal{H}(E) = \langle E \rangle$;
 - (v) If $\mathcal{H} = \mathcal{T}$ then $\mathcal{H}(E) = \langle E \rangle_*$.

<u>Proof.</u> Since $\mathcal{H} \odot$ is closed under intersections and chain-unions, the operator \mathcal{H} (-) is an algebraic closure

operator by II.1.2 [2]. The rest follows from the remarks at the beginning of this section.

Theorem 4.3. Let $\mathcal H$ be a nonempty family of subgroups of a group G. If $\mathcal H\subset\mathcal T$ then $\mathcal K(\mathcal H)=\bigoplus_{\mathbf f\in R}G_{\mathbf p}$, where R is the set of all primes p with $G[p]\not\in\cap\mathcal H$. If $\mathcal H\not\subset\mathcal T$ then $\mathcal K(\mathcal H)=G$.

Proof. The group $K = \mathcal{K}(\mathcal{H})$ is the intersection of all subgroups L of G, such that each $N \in \mathcal{H}$ is L-essential in G. Let $\mathcal{H} \subset \mathcal{F}$. Denote by \mathbb{R} the set of all primes p with $G[p] \not\subset \mathcal{H}$ and $H = \bigoplus_{f \in \mathbb{R}} G_p$. If $K_p \neq G_p$ then $G[p] \subset (G_p)^p \subset \mathbb{R}$ of revery $N \in \mathcal{H}$ (by 2.3). Consequently, if $p \in \mathbb{R}$ then $K_p = G_p$ and hence $H \subset K$. For the rest it is sufficient to show that every $N \in \mathcal{H}$ is H-essential in G. Let $g \in G \setminus H$ and $N \in \mathcal{H}$. If g is of infinite order then there is $n \in \mathbb{N}$ with $n \in \mathbb{N} \setminus H$, since G is torsion. If g is of finite order then G(g) = G, where $G \in \mathbb{R} \setminus \mathbb{R}$ and $G \in \mathbb{R} \setminus \mathbb{R}$ is trivial.

Definition 4.4. Let \mathcal{H} be a nonempty family of subgroups of a group G. The topology of G, that is determined by the filter $\Theta \mathcal{H}$ as a base of open neighborhoods about O, is said to be the \mathcal{H} -topology of G, or K-topology of G, if $\mathcal{H} = \{K\}$. \mathcal{H} -topologies, with \mathcal{H} running over all monempty families of subgroups of G, are called the essential topologies of G.

Theorem 4.5. Let G be a group. Then

- (i) G-topology of G is discrete. If $\mathcal{H} \neq \{G\}$ then the \mathcal{H} -topology of G is nondiscrete;
 - (ii) If G is not torsion then G_t -topology of G is the

finest nondiscrete essentail topology of G. It is Hausdorff and it is identical with each \mathcal{H} -topology, where $\{G\} \neq \mathcal{H} \subset \mathcal{F}$;

- (iii) If $\mathcal H$ -topology of G is Hausdorff then ${\rm G_t} \subset {\mathbb K}$ for every ${\mathbb K} \in \mathcal H$;
- (iv) If K is a proper sungroup of G then $K_{\mbox{\scriptsize t}}$ -topology of G is finer than K-topology of G.

Proof. It follows from 3.3 [1], 2.4 and 2.5.

Corollary 4.6. Torsion groups are exactly the groups with no nondiscrete Hausdorff essential topology. Torsion-free groups are exactly the groups with Hausdorff O-topology.

Remark 4.7. Denote by $\mathcal A$ the class of all groups with Hausdorff K-topology, for any subgroup K. Then

- (i) A is closed under subgroups;
- (ii) Every free group of finite rank is contained in ${\mathcal A}$;
 - (iii) Every group from ${\mathcal A}$ is torsion-free.

<u>Proposition 4.8.</u> Let K and L be subgroups of a torsion group G. Then the K-topology of G is finer than the L-topology of G iff $G_K \subset G_{L^*}$

Proof. It follows from 2.6.

Corollary 4.9. The K-topology and the L-topology of a torsion group G are identical iff

(i)
$$K_p = G_p \text{ iff } L_p = G_p$$
,

(ii)
$$(G_p)^{K_p} = (G_p)^{L_p}$$
 for every prime p.

Proposition 4.10. Let k and m be nonnegative integers.

Then

- (i) The m $\mathbb Z$ -topology of the group $\mathbb Z$ is finer than the k $\mathbb Z$ -topology of $\mathbb Z$ iff $l \leq h_p^{\mathbb Z}(m)$ implies $l \leq h_p^{\mathbb Z}(k) \leq d \leq h_p^{\mathbb Z}(m)$;
- (ii) The $m\mathbb{Z}$ -topology and $k\mathbb{Z}$ -topology of the group \mathbb{Z} are identical iff m=k.

<u>Proof.</u> (i) If the mZ-topology is not finer than the kZ-topology then there is a subgroup mZ of Z, that is kZ-essential in Z and is not mZ-essential in Z. By 1.10 [1], there is a prime p such that $h_p^{\mathbb{Z}}(n) \ge h_p^{\mathbb{Z}}(m) \ge 1$ and either $h_p^{\mathbb{Z}}(k) = 0$ or $h_p^{\mathbb{Z}}(n) < h_p^{\mathbb{Z}}(k)$.

Conversely, if $h_{\overline{p}}^{\overline{Z}}(m) = i \ge 1$ and $h_{\overline{p}}^{\overline{Z}}(k) = 0$ then the subgroup $p^{i} \overline{Z}$ is $k \overline{Z}$ -essential in \overline{Z} and is not $m \overline{Z}$ -essential in \overline{Z} by 1.10 [1]. In case that $h_{\overline{p}}^{\overline{Z}}(m) = i \ge 1$ and $h_{\overline{p}}^{\overline{Z}}(k) > h_{\overline{p}}^{\overline{Z}}(m)$ holds the same.

(ii) It follows from (i).

References

- [1] BEČVÁŘ J.: K-essential subgroups of abelian groups I, Comment. Math. Univ. Carol. 17(1976), 481-492.
- [2] COHN P.M.: Universal algebra, Harper & Row 1965.
- [3] FUCSH L.: Infinite abelian groups I, Acad. Press 1970.
- [4] FUCHS L.: Infinite abelian groups II, Acad. Press 1973.
- [5] KRIVONOS F.V.: On N-vysokich podgruppach abelevoj gruppy, Vest. Mosk. Univ. 1(1975), 58-64.
- [6] KUROŠ A.G.: Teorija grupp, Moskva 1967.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 6.4. 1976)