

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log64

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,4 (1976)

CONCERNING SPECTRAL CHARACTERIZATIONS OF THE RADICAL IN BANACH ALGEBRAS

Jaroslav ZEMÁNEK, Praha

Abstract: An element r of a Banach algebra A belongs to the radical of A if and only if $|(1+q)r|_{6} = 0$ for all q quasi-nilpotent in A.

 $\underline{\text{Key words}}\colon$ Spectral radius, the radical of a Banach algebra.

AMS: 46H05 Ref. Z.: 7.976.11

We consider an arbitrary Banach algebra A over the complex field. For x in A, let 6(x) be the spectrum (taken in the unitization of A if A has no unit) and |x|6 the spectral radius of the element x. Denote by N the set of quasi-nilpotent elements in A, i.e. N = {x ∈ A: |x|6 = 0}, and by rad A the (Jacobson) radical of A. It is well-known that Norad A, but this inclusion can often be proper. A characterization of algebras in which N = rad A is given in [1] (the set N is to be invariant under sums or, which is equivalent, under products). Thus although the radical is not - in general - simply the set of all quasi-nilpotents, it can nevertheless be characterized in terms of the spectral radius.

One such characterization [2] is based on the observa-

tion that 6(a+r) = 6(a) for all $a \in A$, $r \in rad A$. We have shown in [2] that if, conversely, 6(a+r) = 6(a) for all $a \in A$ and some $r \in A$, then it must be $r \in rad A$. In fact, the following theorem has appeared first in [2] although it was implicitly contained already in [1].

Theorem 1. Let A be a Banach algebra. Suppose $r \in A$ is such that $|a + r|_{6} = 0$ for all $a \in N$. Then $r \in rad A$.

Another criterion has been known from early times of Banach algebras: if $r \in A$ is such that $|xr|_6 = 0$ for all $x \in A$, then $r \in rad A$. Now, Theorem 1 suggests that it should be possible to restrict the range of x's in this multiplicative criterion to some smaller subset of A being in some relation to the set N. We have remarked in [2] that it is not sufficient, for trivial reasons, to require the condition simply for all $x \in N$. However, it turns out that the appropriate restriction is to the elements of the form x = 1 + a with $a \in N$. Indeed, the following result is a consequence of Theorem 1.

Theorem 2. Let A be a Banach algebra. Suppose $r \in A$ is such that $|(1 + a)r|_6 = 0$ for all $a \in N$. Then $r \in rad A$.

<u>Proof.</u> We show that $|\mathbf{a} + \mathbf{r}|_6 = 0$ for all $\mathbf{a} \in \mathbb{N}$; then the conclusion will follow by Theorem 1. Hence take an $\mathbf{a} \in \mathbb{N}$. It is enough to prove that, say, -1 does not belong to $6(\mathbf{a} + \mathbf{r})$. But we have the decomposition

 $1 + a + r = (1 + a) \{1 + [1 - (1 + a)^{-1}a]r\}$ where the element

$$[1 - (1 + a)^{-1}alr$$

is quasi-nilpotent by assumption. It follows that the ele-

ment 1 + a + r, being represented as a product of two invertible elements, is invertible as well. This completes the proof.

We obtain similar corollaries as in [2]. Let us mention two of them.

Corollary 1. If R is a Banach space operator such that $|(1+Q)R|_{\overline{G}} = 0$ for all Q quasi-nilpotent, then R = 0.

Corollary 2. The closed operator algebra generated by all the quasi-nilpotent operators on a Banach space is semi-simple.

References

- [1] Z. SZODKOWSKI, W. WOJTYŃSKI, J. ZEMÁNEK: A note on quasinilpotent elements of a Banach algebra, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., to appear.
- [2] J. ZEMÁNEK: A note on the radical of a Banach algebra, to appear.

Matematický ústav ČSAV Žitná 25, 11567 Praha 1 Československo

(Oblatum 3.8. 1976)

i SL

..95

Service March