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The concept of collective ecompactness is a natural gene-
ralization of the notion of compactness for single mappings.
It was introduced by Anselone and Moore in [4] and then stu-
died in detail by various authors in [1] - [3],[5] - [9],
[11], [12]. A great deal of those papers is devoted to the
collective compactness of a family of linear operators in Ba-—
nach spaces because of its important applications in the theo-
ry of approximate solutions of operator equations. Neverthe-
less, the more general relations, concerning the concept of
collective compactness, were also studied. For instance,
Lloyd investigated in [11] the connections between collective
precompactness of a family of nonlinear mappings in topologi-
cal linear spaces and collective precompactness of the family

of derivatives of those mappings.
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The aim of our paper is to establish an analogy of the
well-known theorem of Palmer [13] (on complete continuity
of the derivative of a mapping in Banach spaces) for fami-
lies of mappings in topological linear spaces. That means,
we will find necessary and sufficient conditions for a fa~
mily of nonlineasr mappings under which the family of deriva-—
tives of those mappings will be collectively precompact.
Thus, some of our results complete partly the results of
Lloyd [11); namely, this concerns our Theorem 2.2 generali-
zing Theorem 3.11 of [11). Our main results are presented in

Theorems 2.4, 4.4, 4.5 and 5.1.

1. Notations and definitions. Throughout the paper, X
and Y will denote arbitrary locally convex topological 1li-
near spaces over the real field R ,q9 and 7" will deno-
te the collections of all neighbourhoods of O in X and
Y , respectively, U, and ¥, will denote the collections
of all open convex balanced neighbourhoods of 0 in X and
Y , respectively and X* and Y* will denote the topologi-
cal duals of X and Y. M will denote an arbitrary open
convex subset of X and B and B, will denote the col-
lections of all bounded subsets of X and M , respective-
ly. We will denote by & (X,Y) the space of all continuous
linear mappings from X into Y with the topology of uni-
form convergence on bounded subsets of X , and by Z the
base of neighbourhoods of 0 in &£ (X,Y) consisting of all

sets of the type (B,V) ={u € £(X,¥): u(B)c V} where
Be®R eand VeV.



Let ¥ be a family of mappings from M into Y . This
family is said to be weakly (resp., strongly) equicontinu-
ous [11] on M iff for each x €M and each bounded net
(x,: 1€ L)cM (i.e., L 1s a directed set and the set
ix,: A e L} is bounded), weak convergence Xx—=—X, 1mp=
lies f(x)—f(x) (resp., f(x)—> £(x,)) uniformly over
£ €% . The Pamily ¥ is said to be uniformly weakly
(resp., strongly) equicontinuous on NcM iff for sny boun—
ded nets (xaz Ael), (xa’: A € L)c N , weak convergen—
ce X, = X —=0 inplies £lx, ) = £lx’y)—0 (resp.,
f(xn) - flx’y)—0 ) uniformly over fe& & .

fhe family 9 1is said to be collectively precompact
[11] on M iff for each B € By , the set {r(x): xeB ,

f € ¥} is precompact in Y . (Recall that precompactness
is equivalent to relative compactness in complete spacess)
Similarly, the family 4% of derivatives £’ (see below) of
mappings from F 1is colleetively precompact on M iff for
each B € By , the set {£'(x): xeB, f € 3¢ 1s precom
pact in &L (X,Y) . The family %’ of derivatives is said
to be collectively jointly precompact [11] on M iff for
each B, € By and By, e B , the set {£*(x)h: xeBy,
heB,, f€ F 3 is precompact in Y .

We use the following concept of differentiability which
is due to Averbukh and Smolyanov [15],[161 (see also t1i1d.
A mapping f: M—>Y¥ is said to be GAteaux (resp., Fréchet)
differentiable at x&M , iff there exists uw € &£(X,Y) such
thet for each heX (resp., B € B ) and V e 7 , there
exists J” > O such that



£(x + th) - £(x) - ul(th)g tv

whenever |t|& o (resp., whenever heB and |t | < o);
such a mapping u is denoted by £'(x) . A mapping £: M—»
—>1 1is said to be G&teaux (resp., Préchet) differentiable
on NcM iff it is Gateaux (resp., Fréchet) differentiable
at every x € N. & mapping £: M—> Y is said to be uniform
differentiable on NcM iff it is Fréchet differentiable at
every xe N , and, given Be 3 and Ve 7 , the o> 0
in the definition above can be chosen independently of =x €
EN .

For a differentiable mapping f: M—> Y » the notation

@ plx,h,t) = £(x + th) = #(x) - £'(x)(th)

(xe M, he X, te R) will be used throughout this paper.

A family 3 of mappings from M into Y is said to
be G&teaux (resp., Fréchet) equidifferentiable at xe M , iff
each f €% 1s Giteaux (resp., Fréchet) differentisble at
X, and given he€X (resp., Be B ) and Ve 7 , the I~
>0 in the definition above can be chosen independently

of £ e . The equidifferentiability and the uniform equi-

differentiability of ¥ on NcM is defined in an evident

way.

Throughout the paper, for & given family 3 of mapp-
ings, the following notations are used for point sets and
families of mappings induced by 3 :

Fx) =4t(x): t Py, 3 ={t’: teF3?,

F(x) =42 (x): ? ¢ Ft, F(N) =4r(x): xeN,fe 77 ,
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and similar ones.

We remark that it must be distinguished between precompact-
ness of £’(x) (as a subset of &£ (X,Y)) and collective
precompactness of % 7(x) (as a family of mappings from X
into Y ); see [1] for detail discussion in that direction
(for instance, both concepts are equivalent for compact self-

adjoint operators in a Hilbert space).

2. Necessary conditiongs. Throughout this section, %
will denote & family of GBteaux differentiable mappings from

McX into Y .

Our first assertion (and its proof, too) is a slight
modification of ([11], Theorem 3.8).

Theorem 2.1. Let the family %’ be collectively pre-
compact on M . Then the family ¥ is weakly equicontinuous
on M uniformly on each bounded subset of M .

Proof. Suppose F 1is not uniformly weakly equiconti-
nuous on & set N € B, . Then there exist nets (x,
:Ae L), (x): AeLcN, (f,: A eLlc ¥ , a conti-
nuous linear functional e*e€ Y* and € > 0 such that

xa’-xa—-\o ( A € L) and that
(1) |<fa(xfn)-fa(xa),e"‘>\>s

for all A € L ., According to the well-known mean value theo=-

rem, for every A € L , there exists t, e (0,1) such that
y - ’ L
Kty (xh) =, (xp), e*> =) (xy+t,(x5-x,))
]
o (x5 = x,), eX* > .
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Set z, = f.;u (xJ_ +t, (x';. -x, )) and let Ve ? be such

that |(y,e*>| < % ¢ whenever yeV . Denoting by B the
balance hull of the set {x"a -x,: A€ L} , the set

%’ ((N + B)AM) 1is precompact in & (X,Y) and so we can
choose a subnet (z,: A € L') of (z,: A € L) such
that Zy, = %a,€ (B,V) for each A,,A,el’ . Similarly

as in the proof of (L11], Th. 3.8), we can now prove that
1< 2, 2%) =25 (x,), e¥>)12 e for each A€ L,
which contradicts (1).

The following theorem improves the result of (C1l1],
Th. 3.11).

Theorem 2,2. Let the family F' be collectively
Jointly precompact on M and let the set % (xo) be pre-
compact . in Y for some x € M . Then the family F is
collectively precompact on M . ‘

Proof. Suppose there exists N e TBM such that
% (N) is not precompact; that means there are nets
(£,: Aellcd , (x, : A€ LIc N and a neighbour-
hood V € ¥ such that

2) faﬁ(qu) - 1'3,2 (x"tz )EV
for all A;,2A,€L . Let We V, be such that 4 WcV .
According to the mean value theorem ([11], Th.1l.6),

T, (x,) =, (x)e & {f) (xo + tlx, - x)) (x, = xg):

:tef0,113

for each A € L , where ©0 denotes the closed convex



hull. Hence, for every A € L , there is {s; :t e [0,1]%c
c [0,1] end r, € W such that

= t - ’
(3) ) (xa) = £, (xo) +¢€2fo,43 ay, f.;\ (xo + t(xa xo))

-(xx— x,) +r, ,

t %
where eit'o,ﬂ a;, =1 andonly a finite number of &, (for

each fixed A ) is non-zero.

Denote by B the balance hull of {x, = X : AMe Lg;
it is Be B and x°+t(x$-x°)é(x°+B)nM €By for
all A€ L and te€(0,1] . Hence, denoting

y‘; = f.;v (xy *+ tlx, - x)) (xy = x) ,
the set -iy:;" :Ae L, tel0,11% is precompact, and ite
convex hull C is then precompact by the well-known theorem,

t t
too. T H L
00. The net (ﬁezw’”aaL ¥y, 2 € L) llesin C and so

t t . s
there exists some Cauchy subnet <tezkw ay ¥5 ‘A €L ).
Hence, there is A’ € L' such that

t t

a EW
t &t Ay Tag

(4) = et gt -
t €001 M1 My

for all ll,hzeL' whenever .2,1,.12 At .

By the assumption of our theorem, we can choose a Cauchy
subnet (£, (x,): X € L') of the net (f, (x): 2 e L)
amd hence, there is A e L" such that A” & A’ eand

(5) £y (xo) - faz (xo)e w
1
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for all A,,2,€L” , A;,A, & A” . It follows now
from (3},(4),(5) that. for all Ay Anel”

- = ( - (x )] =+ -
fﬂ.1(x.h,,) f“’z (xaz) [fa“' xo) f‘a’z - ] r&,,

- vk ezto,‘ll a§_4 y§_1 - tezco,ﬁ agvg y-;*z le¥
whenever 2,, -’»2 & s which contradicts (2).

The following theorem extends the well-known result
concerning a single mapping (see e.g. [14)), to the case of
& fanily of mappings. '

Theorem 2,3, Let F be weakly equicontinuous on M
(reap., uniformly weakly equicontinuous on each bounded
subset of M ). If F is collectively precompact on M
then it is strongly equicontinuous on M (resp., uniform=-
1y strongly equicontimous on each bounded subset of M ).

Proof. Suppose % is uniformly weakly equicontinu-
ous on each bounded subset of M and 4is not uniformly
strongly equicontinuous on some N € 351! ; then there are
nets (x,: de L), (x, : 1€ LleN , (£ :2 e L)c &
and V€7 such that x, -x,—=0 (MAe L) and

for every A € L . Moreover,
(7 Ctlxy) - tlxy ), e*>—s 0 (A e L)

holds for all £ € 3 and e¥e Y¥,

Choose arbitrary Cauchy subnets (fa’ (x&): Ae L)
and (fa(x’a : A e L) of nets (ta,(xal):.?uel.) and
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Gfa (x"z J: Ael) , respectively. Denoting by T the comple~-
tion of Y (such a complete Hsusdorff space that Y is

dense in ¥ and the topology of Y induced from ¥ 4s equi-
valent to the original one; 3 is also locally convex), the-

re are y ,y, € ¥ such that

(8) £y (x5 ) =3, , £, (x))— e (Ae L")

in the topology of 54 « Hence,

9) <« fl(xm) - fl(x"’t )R Y 5 ¢ To = T€* >
(2e L)

for every T* e ?* .

Since the restriction of an arbitrary &*e Y * is an.
element of Y* , it follows from (7) that

10) <, (xy) -2, &H)T*> >0  (ae1).

Thus, we obtain from (9) and (10) that < y, - Yor8*) =
=0 for every *e T* and so Yo - y; = Og = Oy « Whence

by (8),

fa(xa)-f,&(x"b)—)o (re L")

in the topology of k4 and hence in that of Y , too.

This contradicts (6) and so proves the "uniforn" patt
of our theorem; the "simple" part can be proved in a simi-
lar way.

Now, we are ready to present the main result of this

section:
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Thecrem 2.4. Let the family 5’ be collectively mre-
compact on M , the mapping f’(x) be mrecompact for every
£e& and xeM and let the set 3"(10) be precompact for
some x € M . Then the family & is collectively precompact
on M and uniformly strongly equicontinuous on each bounded
subset of M .

Proof. By ([113, Th. 3.10), the family &’ is collec-

tively jointly precompact on M ., Hence, the result follows
from Theorems 2.1, 2.2 and 2.3.

3. The property € . Throughout this section, ¥ will
be an arbitrary family of mappings from M into Y .

Definition 3.1. The family F possesses the property
C at some point x €M iff the following condition holds:
For every net (f, :A€l)c ¥ , asubnet (£, : A e L?)
can be chosen in such manner that, given arbitrary B € 33
and V € ¥ , there exist Tpy>0 such that x, + rgyBc ¥

and for every o, O < d£ryy , thereis 2,6 1’ such that
(11) fa‘,(xooh) -fzz(xo-bh) €edV

for each Ay, A el’ , A, A, & Ay ond each he€ JB .
It is evident that if § possesses the property C at
X, €M then the set ‘3’(:0) is precompact in Y . Two follo-
wing theorems will make the meaning of the property C more
clear.
Theorem 3.1. Let x,&€M eand suppose that every net
in 4 contains a subnet that is uniformly Cauchy on some
neighbourhood of X, » ice. there exists U ¢ 2 such that
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for every given V € 7 , an index Ay can be chosen such
that fp (x) - fa, (x)€V holds for all 2,,2, & Ay
and all xeEXx, + U . Then # possesses the property € at
X, o

Proof. Let the condition of Theorem 3.1 hold and let
(fp: A€ L)c F be an arbitrary net. Choose a subnet
(£, : 2€ L'} end U 6 U as described in the theorem
above and such thet x  + UcM . Let Be T3 and Ve 7
be arbitrary and choose rpy>0 8o that rpBCU . Given
any o7, 0<d & rgy , the formula (11) evidently holds for
81l hed"B and all 2;,A,€L’, A;,A, &4y, where
= dv.

Remark. The condition of Theorem 3.1 implies 3~ is
collectively precompact on some neighbourhood of x,

Proposition 3.1. Let 3  be Préchet equidifferentiable
at a point x €M . Then %’ possesses the property € at
x, 1if end only if both sets F(x ) and & ’(x)) sare pre-

c:mpact in ¥ and & (X,Y) , respectively.

Proof. 1) Suppose & is equidifferentiable and pos—
sesses the property € at x, . Precompactness of ?(xo)
in Y is a direct consequence of Definition 3.1 and so it
remains to prove precompactness of %' (xo) only.

Let (£ (x): A € L) be an arbitrary net, (f, :

: & &€ L) be the corresponding net in % and let (fa :
: A€ L’) be its subnet chosen according to Definition 3.1.
We will prove that the corresponding subnet (fi (x,): A €

€L') of (f.;_ (x,): A € L) is Cauchy in & (x,Y) .
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Let an arbitrary (B,V) € ¥ be given, let W e U

be such that 4 WcV ., There exists o"'o such that 0<

< Jo<Tpy (the number from Definition 3.1) and that
wf, (xgsh,t) € tW

whenever |t| £ J, heB and Qe L’. By the definition

of the property C again, there is ?Ld;e L’ such that

for every A;,A,el’ , A,;,4, & ﬂ'd';

it holds

and each heB ,

8, (xn - ) (x)n = %; [2y, (xg »0Gh) = £y (x % o)+

+* fa,_("o) - fm'1 (x,) + Cdfaﬂ(xo,h, dy) - wfn (x,h,

dg)1e %;[ W SWr JWr SWICT,

’ - P
whence fau‘(xo) fa.,_ (x,) € (B,V) follows.

2) Suppose ¥ is squidifferentiable at x, and the

sets ¥ (x,) and 5"(10) are precompact; we will prove
that 3 has the property C at X, o
For an arbitrary net (fﬂ. t Ae L)

in ¥ , there ex-
ists a subnet

(fa' : A€ L’) such that the corresponding

nets (f, (xo): A e L’) and (f.;t (x)): 2 e L’) are Cau-
chy nets.

Let Be 9 and Ve 7V be arbitrary and let vel,

be such thet 4 WcV . Choose rgy€(0,1) so that x,
+ rgyBc M and

+

Ofx(xo,h,t) € tv
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whenever | t| £rpy , heB and A€ L.
Given any d°, 0 < d&rpy , there is A, € L* such
that '

£y, (x) = fa, () € I

f;M (x,) - f_.iz (x,) € (B,W)

for every A;, A€ L', 23,4, & Ay . It follows now
that for all such ‘7"1’ .2.2 and all h € oB,

fa, Bo *+ B) =Ty, (x, +B) =1y (x, + &%) -

= fa, (x, + dK) =1y (x) - fa, (x,)] +
+[f9:4 x)) - fa"l('xo)] (k) + Qfa,,,(xc”k’ o) -
- wf:l. (xo,k,d')c4 SWc IV

2
(where k = }he B) holds.

Fréchet equidifferentiability of ¥ &t X and boun-
dedness of the set ¥’ (xo) in & (X,Y) imply equiconti-
mity of ¥ at x, if the space X is bornological (see
[1] and [15]). Hence, the following consequence of our pro-
position holds:

Corollary 3.1. Let X be bornoloricale. Let ¥ be
Fréchet equidifferentiable at x € M and possess the pro=

perty € at X, - Then F 1is equicontinuous at X, e
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4. WW. In the following theorem,
3 1is assumed to be a family of mappings from the clcsure

¥ of M in X imto Y . We suppose the space X 1s se-
mireflexive, which means that each bounded subset of X 1s
relatively weakly compact; 4 X 1is barrelled then gemire-
flexivity is equivalent to reflexivity of X .

Theorem 4.1. Let X be semireflexive, ¥ Dbe strongly
equicontinuous on M and let the set %’ (x) be precompact
for each x€M, where u, is dense in M . Then ¥ 1is col=
lectively precompact on ¥ .

Proof. Suppose there exist K ¢Ayg such that & (N)
is not precompact, i.e. there are nets (£q s Qe L)e &
and (xhzleL)cl and Ve ? such that

(12) r, ( ) -2, ( )&V
2, Fa, T Ta, e, »

for every Mg, ﬂ.z,eL .Let W eV, be such that 5 WcV .

Being bounded in X , the set 4x,: A e L3 is rela-
tively weakly compact. Being closed and convex, the set M
is weakly closed. Hence, there exists a subnet (x, :A € )
of (xa': A el) and xoeﬁ so that X, —= X, (A e L'),
which implies f(x&)—>f(x°) (A € 1') uniformly over
feF.

Choose A & L' so that

(13) f(xa_)ﬁf(xo) + W

for all A e L' ,AdEr A, andeall £ed . Since: F 1is
equicontinuous on M and M, is dense in M , there is

L]
xoe l(o so that
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(14} f(x;)cf(xo) + W

for every f € § . Finally, there exists a subnet (fa s
t Ael”) of (£, s 2 e L) such that

(15) fa“‘ (x'o) - fa, (x)) eV

for all Aj, A, € L. Tt follows now from (13),(14),(15) that
for all ﬁl’ avze L" » a'l’ a’z’ b ‘z'o 9

?, (x, ) =P, (x, )eV
Ayt 2y X2, ’

which contradicts (12).

Hereafter, we shall suppose ¥ 4s a family of mappings
that are defined on some neighbourhood M¥* of M in X end
are GAtesux differentiasble on M ; we can suppose that M+ =
=8+ U, where U €%, .

Applying Theorem 4.1 to the family &’ instead of ¥
and using Proposition 3.1, the following result can be obtai-
ned.

Gorollary 4.1. Let X be semireflexive and suppose g
is equidifferentiable and possesses the property € at each
point of some set M, dense in M. 1 7' 1is strongly e-
quicontinuous on M then it is collectively precompact on
M.

Theorem 4,2. Let X be semireflexive and let § be
strongly equicontimious on M* and uniformly equidifferen-
tiable on each bounded subset of M . Then 7' is strong-
ly equicontimious on .

Proof. Suppese the conditions of Theorem 4.2 hold but
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g is not strongly equicontinuous on M . Then there exist
nets (x,: A€ LlcM and gy 2 A€ Le? , xoei and

Z € ¥ such that x5 —> x/ (ae L), £x,: A € L% is
bounded and

£) (xo ) g £, (xp) + 2

for all A € L . Let 2 = (B,V) where Be ® and Ve 7 ;

then, for every A € L , there is h,€ B such that
) ’
(16) £, (x3)h, & £, (x)h, +7V.

The set {h, : A € L} is bounded, hence it is relati-
vely weakly compact and hence, there is a subnet (ha :

t: A€L') of (h,: Qe L) and h e X such that h, —~
~a B, (A e,

Denote Bo =B v -iho?s and let W € vo be such that
4 WeV . There exists d"e€ (0,1) so that J&BcUj (see the
definition of M* ) and that

17} wolx, ,h, ,t)etv, Wplx ,h, 4t) € tW

for each £ € ¥ , A € L' and 1tl< o .
Let ?LocL' be such that

(18) f(xz) - r(xo) e IV
f(xa' +d"hn) - f(xo +d'ha') e oW

for all A €L’ , A+ A, and all fe 3 . It follows now
from (17) and (18) that

£, (x, )b = ) (x)h, =% [£, (x, +dh,) - £, (x, + I B+
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*f, (x,) = £, (x,) + wfa, (xo,h& yo°) = a)fa (za' shy
e v

whenever A e L', A& A, . Thus, we have a contradiction
to (16).

Theorem 4.3, Let X be bornological. Let § be equi-
continuous on M and Fréchet equidifferentiable at some
point x e M . Then the family &’ (xo) is equicontinuous
on X.

Proof. Let arbitrary h,e X and ¥ e¢? be given,
let W ¢ ¥, be such that 2 WcV .

Select an arbitrary Be By and let e (0,1) be
such that x, + o'BcM and cof(xo,h,t)e t¥W whenever
|[t14£ 0, heB and £& 3 . There exists Ue % 80
that f£(x + Udc flx)) +VW for all fe€F . Let dy €
€ (0,J) be so that J,Bc U « Then, for every heB,
ltl ¢ &, and fe F , it follows that

£ (x)th = £(x, + th) - £(x)) - wf(xo,h,t)e ¥ - tWcV .

Put U, = O [ (x,)1”1(V) . We have just proved that
Uo absorbs B ; hence, since B was arbitrary, it foll-
ows Uo is a neighbourhood of O »

Equicontinuity of 3"(!0) at h, 1s proved.

Now, the main result of this section can be established:

Theorem 4.4. Let X be semireflexive. Suppose a fa=
mly 7 is strongly equicontinuous on MY, uniformly -equi-’
differentiable on each bounded subset of ¥ end possesses
the property C at each point of M, where M  1is a den-

se subset of ¥ . Then both families ¥ and &' are col-
- 23 -



lectively precompact on ¥ and the family #°(x) 1s col=
lectively prcdonpact on X for every xel .

Proof. Collective precompactness of & follows imme-
diately from Theorem 4.1 and Proposition 3.1, collective
precompactness of &’ follows from Corollary 4.1 and Theorem
4.2. The result concerning &’ (x) follows from collective
precompactness and equidifferentiability of 4 (see [11],
Th. 3.9).

Remark. It follows from Theorem 4.2 that under the as=
sumptions of Theorem 4.4, the family %’ is strongly equi-
continuous on M . If the space X is bornelogical, the fa=
mly &’(x) 1s equicontimious on X for every xel ac-
cording to Theorem 4.3.

We terminaie this section by the following slight modi-
fication of Theorem 2.4 to show the close relation between
our sufficient condition for colleetive precompactness of

' (Therem 4.4) and the necessary one. In fact, Theorem
4.5 below is nearly a converse to Theorem 4.4.

Let ¥ be as in Section 2. The assertions of the foll-
owing theorem immediately follow from Theorem 2.4 and Propo—
sition 3.l.

Theorem 4.5. Let § be Fréchet equidifferentiable on
a set M c M . Suppose the set % (xo) ig precompact in ¥
for some X € M , the family ¥’ is collectively precompa ct
on M and £’(x) is precompact on X for each f € F
eand x€M . Then the family F is collectively precompact
and strongly equicontinuous on M uniformly on each boun—
ded subset of M and possesses the property C at each
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point of M_ .

5. Some particular cgses. First, we examine the case
of M=X . In this case, Theorem 4.5 is precisely a conver-
se to Theorem 4.4 and hence, the following equivalence holds:

Theorem 5,1, Let X, ¥ be Hausdorff locally convex
spaces, X be semireflexive, and let 5 be a family of map—
pings from X into Y . Suppose the family F is uniformly
equidifferentiasble on each bounded convex subset of X . Then
4 is strongly equicontinuous and possesses the property C
on X if and only if the family F’ is collectively precom-
pact on X , all mappings £’(x) (PeF , xeM) are pre—
compact and the set F (xo) is precompact in Y for some
x,€ X .

Remark. It follows from the theorems of the preceding
section that in the theorem above, the statement ® 3’ is col=
lectively precompact™ can be equivalently replaced by " F’
is strongly equicontinuous".

In the second part of this section, we will investiga~
te the case of normed linear spaces. In such case, the fol=-
lowing property can be introduced:

Definition 5.1, Let X, Y be normed lirear spaces, F
be a family of mappings from McX into Y, x,€ M . The
family 7 4s said to possess the property Co at x, iff
the Pollowing condition holds: Given any sequence £fp}c 3,

g subsequence {fnk‘g can be chosen such that, for every

€ > 0 , there exists r¢> O such that any S,0< £
£T. being given, the inequality
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llfnk((xo + h) - fmk(xo +h)l g ed
holds for every heX , lh | =0 , and all sufficiemtly
large DNy, Dy o

Theorem 5.2. Let X, ¥, %, X, be as in the defini-
tion above. Suppose that for every sequence -i,fn} c &, the-
re exists a subsequence -&fnk! that is uniformly Cauchy on

each sufficiently small sphere with a centre at : P i.eo
a number r°>0 can be given such that for every © >0 and

r, Ocrer,, there is L such that

Il fnk(x) - fmk(x) £ ¢

for all xeM , llx - xon = r , whenever ny, M ZTNene Then
& possesses the property Co at X, o

Proof of this theorem is trivial and can be omitted. We
remark that in contrast to the condition of Theorem 3.1, the
condition o Theorem 5.2 does not imply collective precom=
pactness of 4 on a neighbourhood of X, o Moreover, in con—
trast to the property C , the property Co at X, does
not imply precompactness of ?(xo) in Y ; nevertheless,
the following assertion holds:

Legma 5.1. Let X, T, 3 ,x, be as above. If ¥ is
equicontinuous at X, and possesses the property Co at
that poimt, then the set Fx,) is precompact in Y »

Proof. Let éfn(xo)} be an arbitrary sequence of
points from ¥ (x)) and denote by '{fnk(xo)} its subse=—
quence defined by the property Co . We will prove that

-{fnk(xo)} is a Cauchy sequencee.
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Let ¢ >0 be an arbitrary number and choose r°>0

so that t + heM and

(19) letey) - 2x, + 02 | £ §

for all £ € % and heX whenever llhli,/:ro . Set d'=
= min(l,ro,rg) where 1'_g = 0 is the number defined by
2

the property C, . Now, it follows by the property €, that
there is n, = n%'d_, such that

(20) le (x. +h) -2 (x_ +n)l< J £

B ° e 0

Ple
vle

for all my, mZ1D, and heX , thll=Jd . Choosing an ar-
bitrary h,eX , Iln,l = &, it follows from (19) and (20)
that

I8, (x) = £ (xg) 1 £ 12 (x) = £, (xg + ) I

+ | fnk(xo + hO) - fmk(xo + ho) o+ fmk(xo + ho) -

- fmk(xo) £ ©
whenever my, B, 20, and this completes the proof.

Using the lemma above, the following assertion can be
proved in a similar way as Proposition 3.1l.

Proposition 5.1. Let X, ¥, %, x, be as above and let
7 be Fréchet equidifferentiable at x, . Then ¥ 4s equi-

continuous at X, and possesses the property Co at X,

if and only if the sets ¥ (xo) and ¥’(x,) are precom
pact in Y and &£ (X,Y), respectively.
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gm_],mj_d.. Under assumptions of‘Pgopoaition 5.1,
the family & possesses the property C'at x, if and on-
ly if if is equicontinuous at x, and posgsesses the proper-
ty C, at that point.

Corollary 5.2. Let X and Y be normed linear spa=
ces. Then Corollary 4.1 and Theorems 4.4, 4.5 and 5.1 will
remain true even if we replace everywhere C by Co .

Note that in the case when X and Y are Banach spa~
ces, M =X end =423 (i.e., F consists of a single
mapping), our Theorem 5.1 reduces to the well-known theorem
of Palmer f£13] on compactness of the derivative of @ mapp-
inge.

Evermtuslly, we will examine the case of Orlicz spaces
(gee e.g.[10] for definitions and notations used below). An
Orlicz space Lg is not reflexive in general , however, it
follows from ({101, Th. 14.4) that it is always Ey, -refle=
xive, where ¥ is the complementary function to & and
EY is the closure of the set of all bounded functions in
L’;. . Thus, all previous assertions will be valid also for
arbitrary Orlicz spaces if we write everywhere EY -weak
(resp., E!,.-strong)', equicontinuity instead of ordinary weak
(resp., strong) equicontinuity and others 1ike that.
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