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1. Preliminaries and introduction. A binery relation N

on a lattice L is called a normality relation on L, if it
satisfies the following conditions of Dean and Kruse (see
Beran [1]):
(DKO) aNa for each a¢ L.
(DK1) aNb=> a 4b,
(DK2) (aNb and cNd) =3 a~cNbAd.
(DK3) (aNb and aNc)=—) abvec.
(DK4) (aNb and cNd)— av cNavev(bad).
(K5) fa<b and (aNave or cNave)i =) av(bac) = ba(ave),
We shall call a binary relétion on L satisfying the condi-
tions (DKO) - (IK3) a generalized normality relation,

As one can easily see, normality amd generalized norma-

lity relations on a lattice are unsymmetric generalizatioms
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of lattice congruences and lattice tolerances (see e.g.
Zelinka and Chajda [2]). The purpose of this paper is to
determine a few properties of the lattice N(L) of all norme-
lity relations and of the lattice GN(L) of all genmeralized
normality relations on a finite lattice L. It will be shown
that in a class of finite distributive lattices, a lattice
of this class is directly decomposable if and only if there
are two non-trivial generalized normality relations GK and
GM on L such that GKvGM = 1 and GKAGM = O in the lattice
GN(L).

The conditiom (DK5) is a restricted modularity comdi-
tion, and hence it is valid in each modular lattice.

As a genersl reference in lattice theory we have used
the monograph [4] of G. Szész. The few terms of graph theory
of this paper can be found in the book [3] of F. Harary.

2, Joins and meets of relations. At first we give a

characterization of°*normality relations in terms of sublat-
tices of a finite modular lattice.

let L be a finite lattice. We denote by A = «(Atl te??
@ family of convex sublattices of L, where T is a set of in-
dices, and by O, and 1, the least and greatest elements of
At, respectively. Further, we assume that for each xe L the-
re is a sublattice Ay € A  such that x = 0,.

Theorem 1. Let L be a finite modular lattice. Each fa-
mily A of convex sublattices of L determine a normality

relation on L and conversely, each N determines such a fami-

ly if and only if for any two indices s,ueT there exist



indices p,re T such that

(i) 0gaQ, = 0p and 1,A luélp,

(ii) Ogv 0, = O, and osvouV(ls’\lu)é]r‘

Proof. 1°: et LA be a family with properties given
in the theorem. We define a binary antisymmetric relation
on L given by A as follows:

O Rxe=> xed e A .

We show that R is a normality relation on L.

&Ra for each ac L, as for each ae L there was a sub-
lattice A, € & such that Oy = a, and so (DKO) holds. (DK1)
follows directly from the definition of R.

(DK2): Let aRb and cRd. According to the definition
a=0; and ¢ = 0, for some indices u,se T. Further, aAc =
= 05/\(1u =0_ and O éb/\déls/\lué]p for some pe T, and

p p
thus the definition of R implies O_RbAd.

(DK3): Let aRb and aRc, i.e. i,b,cs.&t for some te T,
As A, is a sublattice of L, bveeAd,, and so aRbvc. The
proof of (DK4) is similar to that of (DK2), end (DK5) holds,
as L is modular.

2°: Let N be a given normality relation on L. We shall
show that N generates a family & of convex sublattices of
L having the same properties as A in the theorem. let
Fy =iy| xNy, ye L} for each x€L, and we denote ¥ =
={F | xeL}.

As xNx holds for each x €L, there is, according to (IK1),
for each xe L a set F e ¥ such that x is the least ele-
ment of F . As F, is finite, there exists an element w =

= Viy\ye F % , and according to (DK3), xNw. For each
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velxwle L it holds VNv. By applying (DK2) to xNw and vNv,
we obtain xNy, Hence F, =Lx,w] , which is a convex sublat-
tice of L,

Let xNy and zNv, According to (DK2), xa zNyA v, and on
the other hand FX/\Y € F . as XNZNyA vV, then yav £1) 0
and so (i) holds. (ii) follows similarly from (DK4), and
(DK5) holds, as I is modular. This completes the proof,

The following corollary follows immediately from the
proof above,

Corollary., Let L be a finite lattice. Each family A
of convex sublattices of L determines a generalized normali-
ty relation GN on L and conversely, GN determines such a fa-
mily if and only if for any two indices 8,ueT there .exi.ste
an index pe T such that (i) of Theorem 1 holds.

In the following we look for meets and joins of two ge-
neralized normality relations (normality relations), The as-
sertion of the following lemma is obviously valid.

Lemma 1, ILet L be a finite lattice and GN and GR two
generalized normality relations on L. The relation X, where
akb e {aéﬂb and aGRb} is a generalized normality relatiom
on L and K = GNA GR,

Analogous lemma holds also for normality relatioms.

If GM is a generalized normality relation on a finite
lattice L we denote the corresponding family of intervals of
Lby A (GM), an interval of A (GM) with the least element
xe L by AGMx and the greatest element of AGMx by lGllx’ The
following theorem gives the most simple join of two genera-
lized normality relations,
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Theorem 2, Let GM and GN be two generalized normality
relations on & finite distributive lattice L. The fanily
A (GH), where Aoyy = [x’]‘GMxV Lang ) » determines a genera-~
lized normality relation on L and GH = GMy GN if amd only if
(i) L= Lyx LyxeeoxL , where L; is a chain, i = Lyeoe,m,
or
(ii) L can be divided into two convex sublattices L* apng
I** such that L*n L** contains only one element, which is
0 of L* and 1 of L** » L*¥* is a chain ana L* satisPies
the econdition (i) above.

Proof. 1%: Ilet satisfy (i) of the theorem; it ias
sufficient to show the validity of (DK2) - the conditions
(IKO), (DK1) and (DK3) hold obviously,

Let aGHb and ¢GHd; we shall show that dA bz (lGHaV lGHa_.)A

"(lGMcV Lone) lomancV lGNaAc’ At first, by applying the
distributivity, (lGMaV Igng) A (1Gllcv Ioye) = uGMeA Loye) v
v o™ Loxe) v (gua A Tawe) v (lggan 1), where Toua

" Laye & Igyg e and lgna A TaNe = IgNa no» 88 GM and GN are
generalized normality relations on L. In the following we

consider the term lGMaA IGNe and show that it is equal to
or less than lGNaAcV lGuMd the proof is similap for
Lome ™ Lana -

As L = Lixeeox Lsas= (al,az,...,&n), ¢ = (cl""’cm)’
loge = (xl,...,xn) and 1oy = (yl,...,ym), where 855C4 X,
¥i€ Li. As aGMJI.GMa and cGNlGNc, we obtain (al,...,ai,...
...,an)Gl((al,..-,ai_l,xi,ai+1,...,an) and (cl,ooo,ci,--c
""cn)GN(cl"“’ci-l’yi’°i+1""'°n)’ Furthermore, as L

is a chain, a;£c¢; or ey & 85, and we assume that
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&; £¢5,1.e0 ajAc; = 8;, and x;A ¥3£x; holds always. But
then (’l""’an)GM(al""'ai-l’xi'ai-a-l”"’am) implies
(8gseees@s 1585AC485 0,00 ©y8p ) OM(8) 500058y g,X; 5 4 X3AY4,
8i47s0-+58; ). According to the properties (DKO) and (DK2)
of GM, we can now form the meet of both sides with (el,...
""ci-l’yi’ciu"“'°m)' and we obtain (alf\cl,...,an/\
/\cn)GM(alA Cypeees® AT 33X3A Y3985+ 54750 8p A C, ) as
€3£ ¥;. So, in general, for each i, (alA Cyseserdy A
A cn)GT(alA C1roeesBi A CH 19X A T 085,94 C5un 000,80 A0 ),
where GT s OM or GN, i = 1,...,m. Let z be the join of all
elements (al/\ CysecesBy A C5-19%3 NV 3s 8547 Ci4qa°ee
sess8pAc ) which are in the relation GN with (a3~ Cyseee
sees@pAc.) for some value of i, and let the corresponding
Join be w in the case of GM; these joins exist aecording to
(DK3). As GM and GN are generalized normality relations and
aAncGly and aA eGNz, w4 lGlﬂm\c and z.élGNm, and tri;ial-
1y, wvz = (A FyseeasXpAYy) = loye A 1gNes Where wvz <
L—lecv lGch' As mentioned above, we can similarly see
that loye” loNa % lauance” ToNanc

As each term of the join gy Tome) ¥ (Qgpa ™ Lone! v
v(lGMaA lGNc)V (IGMcAlGNa) is less or equal to
IGMMGV lGNaAc’ the join satisfies this relation as well,
Hence (1, v loms) A (Qgye™ lone) % Ioranc Y 1oNane®

The proof for the lattice L satisfying (ii) is a repe-
tition of the proof above, and hence we will omit it. For
completing the proof of neéessity we must show that GH =
= GMVGN. Let GK= GM,GN, and so for each xe L, xGKlGMx and

xGKlGNx‘ According to (DK3), xGK(lev 1GNx)' whence GKZ GH,
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and thus GH = GM+v GN,

2°: Let GH be the Jjoin of relations GM and GN on L,
and Agp = [x,lmkv 1oyl ¢ let us remove from the Hasse
diagram of L all the points and the lines incident to those
points, which are meet-reducible in L. Remove further the
chain CO eontaining the zero element of L, if such a chain
exists., If the diagram graph thus obtained is empty, L was
the chain C,, and the theorem holds. If not, let us consi-
der the graph D obtained. If it is a tree, where the degree
of point 1 only can be 3 or greater, then there is nothing
to prove: the chains of this tree are the factors Ii""'Ih
in (i), as the elements of a finite distributive lattice can
be uniquely represented as meets of meet-irreducibles.

Assume that D is a tree and there is a point az+1 with
the degree at least 3, Then there are in D two points x and
y which are meet-irredueible in L. Let us consider the sub-
lattice of elements {xAy,x,y,a,z} of L, where z€ D, and
a<q< z holds for no qe L (e.g. a—< z); such an element z

exists in L as D is a tree amd a % 1 (see Fig. 1(a)). We de-

fine
z 2 \TQ
. \ x
v T " NV oo " Q 7
xny XAy uAy
(a) (b) (e)
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& generalized normality relation GM as follows: RGMs «—
< r=8or 3Jqel such that r = IAQ and 8<£zAqQ; ob-
viously GM is a generalized normality relation on L. We
define another relation FN analogously: tGNu<¢=> t = u or
3 peL such that t = pAx and u<zAp. One can easily
see that [x/\y,lGuwv IGNWJ = [xAy,a], but it holds
for each GK2GM,GN that xGKz and yCGKz, whemnce xA YGKZ, as
well, But z4¢ [xAy,a], which is a contradiction. So in
the tree D only the point 1 can have degree 3 or greater.
Assume that D is unconnected graph. Let x be the point
of D such that x+#1, but all the points hyyeee hnx which

are joined by a line to x in D are less than x in L. As the
‘chain Co has been removed, there are in L also elements

that are less than x. On the other hand, as x#1, there is
aleo a meet-reducible element & in L satisfying x—a, and
let the shortest meet-representation of a in terms of meet-
irreducibles contain an element z ¢ L.&s the chain C, has been
removed, there is in L an element Y such that yvx = a, or
there are two non-comparable elements u,y<x such that x =

= uvy (see Figures 1(b) and 1(c)).

In the case of Figure 1(b) we define two generalized
normality relations GM and GN as in the case above. There
are not two non-compaz:able elements b= x and ¢y such that
bve = 2z and baec = XAy, as in the other case bAa = x, be-
cause bAc = xAy, a>x, a2y and c>y, Hence 3 ¢ [xny,
lGlleyV lGNx Ay] » and we get the desired contradiction,

In the case of Figure 1(e), the relations GM and GN
can be defined as follows: rGMs &> r = 8 or J pe L such
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that uAp = r and aAp=8, and tGNv&= t = v or 3Jfe L
such that fAy = t and £fA a>v. The assumption in the case
of Figure 1(c) says that there are not two nan-comparable
elements b2u and c2y such that bve = a and bAec = uAy,

as in the other case bvx = a or evx = a, Hence a¢ LuAny,

lGlluAyV 1GNw\y] . So D must be a connected tree, where only
the point 1 can have the degree 3 or greater. This comple-
tes the proof.

The following lemma gives a join construction for gene-
ralized normality relations in the general case.

Lemma 2. Let GM and GN be two generalized normality
relations on a finite lattice L. Then the family .4 (GH) =
=-i[a,1va IonaY Ug J | ae Lt , where Ua = ?({(lGleIGNxV
v Ux)/\(lev longv Uy) | Sa is the set of all pairs x,ye L
for which xAy = a}, generates a generalized normality re-
lation GH on L and GH = GMVGN,

Proof. As U,,, contains at least the term (lguaV 1gRg v
VU A (LgyeV 1gneVv Up)y then bAde [an ¢ lomanc Y Tomasce v
VU, el and (DK2) holds for aGHb and cGHd. The other condi-
tions hold obviously.

Let GP be a generalized normality relation on L such
that GP=GM,GN. Then xGPlGllx and xGI-‘l-Gmx for each x€ L, and
80 xGP(1lg, v IGNx)’ as well, According to the property (DK2)
and to the finiteness of L, also xGPU,. Hence xGP(1gy. v
V IgngY Uy) for each xe L, and thus GP>GH. Consequently,

GH = GMvGN, and the lemma follows.

The following lemma gives a construction for the join
of normality relations analogous to the results in Theorem
2,
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Iemma 3. ZIet M and N be two normality relations on a
finite distributive lattice L. The family A (H) = {La,ln‘v

Viggv Wl | aeLF, where W, = Y { age, ¥ Iy A (g, v
Vlﬂxz)A"’A(]Ian 111:51)‘ Sy, is the set of all sequences
X)seseyXy Tor which a = VX,V ...vxn,n?-2§ » generates
a normality relation H on L and H = NvM, if L = Ly L, x
Xeeex L, where I; is a chain for each value of i = lyces
ceeyM,

Proof. Let us consider first the condition (DK4), Let
8Hb and cHd; we must show that avev(bAd)<ave Vi (Qgv

Y1y WA (Y v IgevVWelie L ave,ly eV INeveY Vg o J »

By applying the distributivity we see that (Lo v Iyev ¥ )N

A (v gV V) =4 Qv Iyg)A (v gJd3v 4§ W Al v
Vi) £ Ve ALy v V3 v W AW.3 £ W, according to
the definition of ,'ave' As av eéll(avev INave’ the assertion
follows by combining these two observations.

(DKO), (DK1) and (DK3) hold obviously, and sowe shall
consider the condition (DK2) only. Let aHb and cHd. The re-
lationsﬂ satisfies (DK2), if bAdé(lﬁav eV Vo) A (lu‘ v
Vigev¥W,)e [a/\c,lh“v jareY Warc 1+ A8 above, we consi-
der the term {(Ly,v 1z IA(L, v Iyed Fvd Won(y, v g3V
viW A (v ygd % v iwa W.1= (Lyev Lyg VW) A (Lo v Igev
VV¥.). Similarly as in the proof of Theorem 1, we can show
that

(1) (g Iy A Qe v 1y ) £ IganeY Wanc®

As anc = (x4 c)v(le\c)v...v(xn:\e) for eéach sequence
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X13Xgjyese, X, With the property X)V eee VX, = a, 'Me >

2 (lllxlAcV Ile/\c’ A""‘(lllxn,\evluﬁz\e) E-f(lgxlv J'le) A
Ay v L) 3 Ad (lhzv 1xx2”\“u." )3 Aceendg (luxnv
vluxn)/\ eV y)? = {(lhlv INXI)A ceeA (lllxnv len) [N
A(llev lﬂe)' By forming the join of all terms 'f(lllxlv ]Exl)"
A.../\(lhnv l“xn)i'/\ (1ye v 1y, ), where X)Veeovx =a,

we obtain the term LA (lllcv 1,0), and as each member of

the join was less or equal to 'aAe' then

(2) WaneZ Wa Ay v Ige)e
Similarly we see that
3) Voo VoA (Lo 1),

Consider finally the term WgAW,o Let a = X)V eeoVX and
€ =¥V eeeV¥y, then aAc = (1A y;)v (XA y7) v eee
V(xgAyy) v (xqAa75)v (XA Fp)V eeav (xpA¥5) v (xqA 13) v
VeeoV (xn/\yn). According to the definition of Voie =

2 (Inxl"ylv 1y "yl)A (llszy v 1“‘2"71)/\ e A(lknA?.v
Vlllkn'\y ). On the other hand,

(1“‘1"3’1 iayayy 7 g v g )1 2 vl,,y)
Qg rr, Wy, = Gy e, A gy, v 2y )

(lh‘(\ylv lﬂﬁ"yl) > (llxnv Illxn) A-(lwlv J'Nyl)’

(]I‘n"’nv 1"‘&":)2 (lh.nv Ian)A (]"nv 1,"),

and by forming the meets of both sides and by ordering the
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terms in the right side, we see that Wore> (1“‘1’\"1 v

Vlnyz)/\ see /\(lwn\/ lﬂyn)o‘

By forming the join over all pairs (Xy5000,%)) and (yl,...
...,ym), where x,V eee VX, = @ and yiV ...Vy, = ¢, we see
that

(4) L
By combining now the results (1),(2),(3) and (4) obtained
above, we see that (Lgev 1y v W) A(lncv Iyov W) £ (lllaAeV

V lxane Y ¥apo)e Obviously ane é(lnv AT (L v e v
Vv W,), and the assertion follows. So H satisfies also (DK2),

and hence H is a normality relatiom on L.

Let K be a normality relation on L such that K=N,M,
According to (DK3), XK (1 v ]'llx) for each xe L, and accord-
ing to (DK4) and (DK3), xK(xv 'x) for each x€ L. By apply-
ing (DK3) once again, we see that K (1 v 1y VW) for each
x€ L, and hence K=H, Thus H = Nv M, and the lemma follows.

Now we can prove a theorem on the distributivity of
the lattice GN(L),

Theorem 3. The lattice GN(L) of all generalized nor-

mality relations on a finite lattice is distributive if and
only if L is distributive and GH = GNvGM is determined by

the family A (GH) =4 Ex,lG“xv loue) |xer?,
Proof. Let L be a finite distributive lattice satis-

fying the condition of the theorem, and GK,GN and GM three
generalized normality relations on L. It is sufficient to

show that GKA (GNvGM) £ (GK AGN)~ (GK AGM) » from which the
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distributivity of GN(L) follows. Let & {GKA (GN~v GM)% b
<= aGKb and a(GNv GM)b., Furthermore, a(GNv GM)b=> b e
el 2, 1gneY lgua ) » @nd s0 b = B A (lgnaY laye) = (DA lgnal vV
viba Ioyg) - Trivially, a(GKAGN)(bv Ione) and a(GKA GM) (bv
V1gy,), which imply according to (DK3) that a § (GKAGHM) v
~ (BKAGN)3 b. Thus GK A (GNv GM) = (GKAGN) v (GK AGH).

In the converse part we shall first show that L is ne-
cessarily distributive, If L is non-distributive, it con-
tains as a sublattice at least one of the lattices L’ and

L® of Figure 2. Consider first the cese of sublattice L’

& As L is finite, we can
b c construet five norma-
a lity relations such
, : that the only nomtri-
L g

vial interval in

the family A generat-
ing the relations is [0,q], [0,a], [0,b] » L0,e] or [0,e];

we denote the corresponding relatiors by G [0,q1 ,G [0,a],
GCfo,b1, GLO,e]l and G[O,e1., Clearly these relations form
a non-distributive sublattice of the lattice GN(L) as Uy<q.
Similarly we see that the lattice GN(L) of a lattice L con-
taining L" as sublattice, contains a non-distributive subla-
ttice. Hence L is distributive. ' )

If the join GH = GNvGM cannot be generated by the fa-
mily A (GH) =4[ %, 1oy V 1oy 1 | X€L 7, we obtain the ca-
ses of the proof of Theorem 2 given in Figure 1. In the cases
of Figure 1(a) and 1(b), we define GK as follows: sGKu <=
&8 =uor Jtel such that tA(xAy) =8 and tAz=u.
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As L is distributive, GK is a generalized normality rela-
tion on L; GN and GM are defined similarly as in the proof
of Theorem 2. So (xAY){GKA (GNvGM)} z. Acecording to the
definition of GK, for each d> xAy, ‘KGd =[d,d] , and hen-
ce Uw = XAy for (GKAGM) v (GKAGN). On the other hand,
the proof of Theorem 2 shows that there are not in L two
non-ccmparable elements bZ x and ¢ =y such that bve =z
and bAc = XAy, whence the relation (xAy) { (GKAGM) v

v (GKAGN) ¥ z does not hold. The proof is similar in the
case of Figure 1(c). This comple tes the proof.

3. On direct decompositions. At first we prove a

theorem on direct decompositions by means of generalized
normality relations.

Theorem 4, Let L be a finite lattice such that L =
= Lyx Lz'x...xlh", where L{ is a chain. L has a direct de-
composiiiom if and only if there are two nontrivial gene-
ralized normality relations GM, GK ¢ GN(L) such that
GEAGK = O and GMVGK = 1 in GN(L),

Proof. 1°: Let L = L% L,. We define two relations as
follows: aGMb¢=—> a = (x1,%5,), b = (xl,yz) and x,£y,;
R ==>¢ = (2,,2,), d = (wy,2,) and gy%4wy. It is an exer-
cise to show that GM and GK are generalized normality rela-
tions on L; we shall only ahov'that GM and GK are comple-
ments in GN(L). let t<wu in L, where u = (uy,u,) and t =
= (t9,t5). Then (ul,uz)Gl(ul,tz.) and (al,uz)Gx(tl,uz). Fur-
thermore, (t;,u;)v (uy,t,) = (uyv ty,u,v t3) = (t;,t,), and
80 the relations above imply a(GKwGM)t. Hence GMv GK < 1.
If h(GMAGK)f, then according to the definition of GM,
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h; =f; inh = (hy,h,) and £ = (fl,fz). Similarly GK imp-
lies that hy, = f,, whence (h,,h,) = (£,,£,) =h = £, Thus
GKAGM = 0,

2°: Iet GMAGK = 0 and GMvGK = 1 in GN(L). We shall
show that L =[0,15,,3 =< [ 0,15y0ds Each join-irreducible
element of L belongs to one of the sets [O,IGKOJ ’[0'161(0] e
Indeed, assume that x is join-irreducible amd x L Oy1qx01 »
[0,1G“0] . Then x € [O’IGKOV]'GMO] , 88 GMv CK = 1, So
xA (LggoV oo’ = (xAlggy) Vv (XA lgys), from which it fol-
lows that x is join-reducible, or 101(0 =0, or 1Guo =0,
and x € [ 0,101, or xel 0Oy1ggp 1 » Tespectively; a contra-
diction in each case. Furthermore, GMAGK = 0, and so
L 0,440 IntC Oy1lggpl = 403 . As L is finite and distribu-
tive, for each z€ L, z is the join of suitable join-irredu-
cibles, i.e. z = (Vjlage);) v ( Vépg) ), where (qgg); is
a join-irreducible of [ O'IGKOJ and (pgu) ;@ join-irredu-
. z I
cible of [ 0,101 . Clearly “Vj(qne); = qgg € [0,15y ]

Z = 2 z 2z

and Vj(pGu)j = pgy ¢ [0'1Gu03 o We map z onto (qay,Pgy) e«
Acecording to the uniqueness of the joinrepresentation by
means of join-irreducibles in a distributive lattice, the
mapping is a lattice morphism, If z has the figures

(QGg»Pgy) and (qgll(',p(znld), then the uniqueness of the joinre-

presentation implies that p?m = pé‘]i and qéx = qzé‘K. Similar-
1y we see that each element of [0,15,07 = [ 0,1,,] has an
imege in L, and hence L =10,13,31% (0,151« This comple-
tes the proof.

As in the case of the preceding theorem GN(L) is dis-

tributive,one can prove the following generalization by an
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analogous way.

Corollary. Let L be a finite lattice, L = Lixeee
«eex Ly, where Liyeee,l; are chains. L has a direct decom-
position with n factors if and only if there are n nontri-
vial generalized normality relations Gl(;l_,Gllz,...,GIln such
that leAGllj = 0 for each paﬁ k,j, k¥Jj, and GlllvGIlz v
Veeov QM =1 in GN(L).

The following theorem gives the corresponding result
in the case of normality relations.

Theorem 5, Let L be a finite lattice such that L =
= Iy %... Ly, where Ly,ees,L are chaina. L has a direct
decomposition if amd only if there are two nontrivial norma-
lity relations K,Me N(L) sueh that KAM = 0 and KvM = 1 in
N(L).

Proof. 1°: Let L = L;xL,. We define K and ¥ similarly
as the generalized normality relations of Theorem 4: akb=>
= a= (a),8,), b= (al,bz) &nd a,£ b,; cMde==¢ =
= (°1’°2)’ a= (dl’d?) and clé 4. We shall show that (DK4)
holds for K; the proof is similar for M, Let aKb and fKh.
Then avy = (ayv f1,8,vL,) and hAb = (agA £3s05Ah,).
Further, avfv (hAbd) = (ayv fyviaga 1'1), av I,vib, A
ARy)) = (a;v 1,8,V £,V (byAh,)). The first components
of avf and avfy (hA D) are the same and ,Visa,ve, v
v (byAh,), whence (avf)K(avfwv(hAb)). The other condi-
tions hold obviously, and hence K and M are normality re-
lations. The latter part of 1° is a repetition of 1° in
the proof of Theorem 4, and hence we omit it.

2°: We shall show that the construction of the proof
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2° of Theorem 4 holds. We must only show that each join=-ir-
rednci?]e element x of L belongs to [0,ln1 or to [O,:_l"ﬁ] 3
in fact, we show that IKOVII(O = 1 in L. Let us consider the
normality relation Kv M. Apwo = [O,J.Kov Lyv¥ 1, and as
the only join-expression for 0 is 0 = 0vO, U, = (JKOV
V1) A (lga v Iyo), we see that Ao = [0s1gpv Lyl « Fur-
thermore, as KvM = 1 in N(L), then ‘xvuo = L, and hence
lgov 1y = 1 in L. The rest is a repetition of the proof 2°
in Theorem 4.

As we have not shown the distributivity of N(L), the co-
rollary of Theorem 4 need not hold in the case of normality

relations,
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