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COGENERATION AND MINIMAL REALIZATION
(Preliminary communication)

Jit{ ADAMEK, Praha

Abstract: Given a triple algebra (Q,d) and & quotient
e of Q, en e is said to cogenerate the biggest quotient=-
algebra of (Q,d), contained in e, provided that such exists.
(This is dual to the generation of subalgebras.) A necessa-
ry and sufficient condition on a triple T is exhibited in
order that T admit cogeneration, i.e. that each quotient
object on each T -algebra cogenerate something. The condi-
tion is very simple; the functor T must preserve cointersec-—
tioms. For triples over sets this characterizes finitary al-
gebras, .
Cogeneration is closely related to minimal realizations
for triple machines. In terms of Arbib and lanes, an input
process X is proved to admit minimal realization iff X
preserves cointersections.

All the details are going to appear in 3 .

Xey words: Triple algebra, generation of subalgebras,
cogeneration of quotient algebras, preservation of cointer-
sections, triple machines, minimal realization.
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4) Cogeneratiom
A,1 We assume that a category I is given, equipped

with a factorization system (8 ,/). Thiis allows us to speak
about quotient objects of an object Q, as morphisms e: Q —Q
in € "up to isomorphism". The quotients of Q are mturally
ordered: elﬁ es iff ey = k.el for some k.

The least upper bounds are called cointersections; if they
always exist (even for classes of quotients), € is said to
be closed to cointersections., And a functor, respecting

and respecting these least upper bounds, is said to
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to preserve cointersections. (All this is dual to the
usual notion of big intersections of subobjects.)

We consider a (fixed) triple T = (T,w,%), which
will be supposed to preserve £ (i.e., e € & implies
Te € & ). A quotient algebra of a T -algebra (R.d) is a
T -homomorphism h: (Q,d) — (Q°,d") with h ¢ € .

4,2 Definition: A triple T is said to admit coge-
neration if for every T -algebra (Q,d) and every quotient
object e of Q there exists the biggest quotient algebra ¢
of (Q,d) with c£e. Then ¢ is said to be cogenerated by e.

Note. The cogeneration of quotient algebras is duél
to the generation of subalgebras. If X has (big) inter-
sections, the generation presents no problem: each subob-
Jject generates the intersection of all subalgebras, contai-
ning it. Fortunately, the intersection of T -algebras is
always a T -algebra (for the forgetful functor dcT—> X
creates limits). Now, assume that T preserves cointersec-—
tions. Then the cointersection of T -algebras is always a
T -algebra (fpr the forgetful functor ‘.'fCT——) X crea-.
tes all colimits, preserved by T). Thus, each quotient ob-
Ject cogenerates the cointersection of all quotient algeb-

ras, contained in it. This can be reversed as follows.

Main Theorem. Let & be closed to cointersections

and let T preserve & . Then T admits cogeneration iff

T preserves cointersections.

A,3 Corollary. A triple over the category of sets
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admits cogeneration iff it is isomorphic to the W-free
algebra triple for some variety W of finitary algebras.

Note. More on functors, preserving cointersections,
can be found in [2]. E.g., under additional, rather mild,
assumptions on ¥ , each functor which preserves coin-
tersections, generates a free triple. (Recall from [5] that
a free triple T » generated by an endofunctor X, is a
transformation t: X—> T such that for every triple T/ and
every transformation t’: X—> T’ there exists a unique tri-
ple morphism r: T — T with t° = r.t.) A corollary:
every triple which admits cogeneration, is a retract of a
free triple.

Another result in [2] concers endofunctors of the cate-
gory of vector spaces (over an arbitrary given field) from
which we get

Corollary. A triple over vector spaces admits cogene-
ration iff it is finitary, i.e. T preserves filteres coli-

mits.

B) Minimal realization

Bl Arbib and Manes investigate automata over free tri-
ples [4]. In.the same direction, automata over arbitrary
triples can be defined (cf. [4,61] and, for a more general
approach,[7]). Concerning the minimal realization problem,
this generalization of the Arbib-ianes approach tizrns oat
to be very convenient: the whole technique becomes much
simpler.

let X:  — X be a functor, generating a free tri-
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ple T . (Arbib and Manes call X an input process and they
denote TQ = x® Q.) Then pairs (Q,d"), where Q is an ob-
ject and Jd": XQ — Q is a morphism, naturally correspond
to T -algebras (Q,d); therefore, T -algebras will play
the role of (Q,d”) for triple machines.

B2 As in A) above, we have ¥ , (€,4) and T .
For fixed objects Y and I, a machine is tuple M =
= (Q,q,Y,3,I,%), where (Q,d) is a T -algebra and f3 :
:Q—>Y and @ : I—>Q are morphisms. T -homomorphisms,
commuting with both the ‘s and the <= ‘s, are called
simulations (from one machine to another).

Given a machine M, the morphism r =d.Tx : TI— Q
is called the run map of M, and the composition fy =
= f3.r: TI— Y is the behavior of M. The machine M is
reachable if r ¢ & .

A realization of a "béhavior", i.e. of a morphism f:
: TI—>Y, is any machine M with fy = f. This realization
is minimal if (i) it is reachable and (ii) for every reach-
able realization M’ there exists a unique simulation from
M’ to M. Every behavior has a reachable realization, e.g.
H(£) = (1, @,Y,2,1, 97) - here r = idpr. The problem of
minimal realization is: does every behavior have a minimal
realization? If this is so (for all I, Y and £) then T

is said to admit minimal realization.

B,3 TIheorem. A triple T , preserving € , admits
cogeneration iff it admits minimal realization.

Combining this theorem with the above result, we ob-
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tain, in the terminology of Arbib abd Hanes:
Corollgx. Iet € be closed to cointersection and
let X be an input process, preserving € ., Then X admits

minimal realization iff x®@ preserves cointersections.

B,4 A finite model, To capture also finite-state ma-
chines, we can broceed as in [2], starting with a class e
of epis. We do mt assume any factorization properties and
we think of & -morphisms as "finite quotients", A behavi-
Or is regular if it has a reachable realization (i.e., r e
€ € - recall that if € contains all isomorphisms, then
all behaviors f are regular, via M(f)). And T admits mi-
nimal realization if each regular (!) behavior has a mini-
mal realization. As above, it suffices that € is closed
to, and T preserves, cointersections. This can be reversed
if M(E)c @ :

Theorem, Iet € be a class of epis, closed to coin-

tersections, let T preserve € ., Then T admits minimal
realization iff T preserves cointersections.

Example. Let ¥ be the category of sets, or, the ca-
tegory of vector Spaces. Let € denote epis e: A—>1% with
X finite (resp., finite-dimensional). Then @ -cointersec-
tions are proved in [2] to be absolute colimits,

Corollary. Every triple over sets or over vector spa-

¢es admits finite minimal realization.
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