#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1976
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017 | log54

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,3 (1976)

AN ITERATION METHOD FOR NONLINEAR SECOND ORDER EVOLUTION
EQUATIONS

Konrad GRaGER, Berlin

Abstract: In this paper we consider initial value

problems of the type

u’’ + Au” + Bu = 0, u(0) = a, u’(0) = b,
where A and B are in general nonlinear operators in Hil-
bert spaces satisfying certain monotonicity and continui-
ty conditions. We show that it is posssible to solve such
problems using an iteration method which requires at each
step the solution of a linear initial value problem. Un-
der somewhat more restrictive assumptions on A and B we
deal also with the determination of periodic solutiors of
second order evolution equatioms by iteration.

Key words: Second order evolution equations, itera-
tion, initial value problems, periodic solutions.
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Let X be a Hilbert space and let X* be its dual.
Furthermore, let A be a maximal monotone subset of XxX*
anmd Ae (X—>~X#*) a strongly monotone Lipschitz continuous
operator. In [4], Gajewski and Gr¥ger introduced an itera-
tion method for the solution of problems of the form

Au + Aua0, ueD(A),

The results contained in this paper were first presented by
the author at the Summer School on "Nonlinear Analysis and
Mechanics", September 1974, Stard Lesnd near Poprad, Slo-
vakia.
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and they applied this method to some first oder evolution
equations in Hilbert space. The purpose of this paper is
to show how the iteratiom method can be applied to non-
lire ar second order evolution equations in Hilbert space.
We shall treat both initial value problems and the prob-

lem of determination of periodic solutions.

1. The iteration method. In this section we shall
recall briefly the main result of Gajewski-Grdger [41].
Let X be a real Hilbert space and let X¥ be its dual. The
value of fe X* at ue X will be denoted by < f,u> . We de-

fine the norm on the Cartesian product Xx X* by
2 2 3
I Cu,£2 1l XXk = (lullg+ Nzl * )2 Y[u,£] € X=X*,

Let L be the duality map of X, i.e., the mapping from X to
X* determined by

<m,ud> = lulld= lml3, Vauex

Since X is a Hilbert space, L is linear.

We assume that we are given operators A and A such
that

(1) A c XxX* is a meximal monotone set:

Ae(X—> X*) is strongly monotone and Lipschitzian,
(2) i.e.,(Au-Av,u-v);m"u-v“i,,

n>0, fAu - Av lyy #Miu -vly Vu,VveX.

As usual (see e.g. Brezis [1]1 ), we regard A as & multi-
valued mapping from X to X* , We define
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Au=4f|feXx* [u,fle A? YueX, D(A) =

={ulueX, Nukf?.
It is well known (cf. Browder [2]) that the problem

(3) Au + Aus0, ued(A),

has a unique solution u provided that (1) and (2) are sa-
tisfied. In [4], Gajewski and Gr¥3ger proved the following
result which shows that the solution of (3) can be obtain-
ed by an itération method.
Theorem 1. Let the assumptions (1) and (2) be satis-

fied. Furthermare, let O< r<§- « Then the operator
Q. (X% X* —» XxX*) defined by

Q(Lu,f]) = [ v,rg J<==> rg + Lv = Lu - rdu, g€ A v,
is contractive with the comtraction constant

2.2 1
k,=(l-2mr+¥r°)2 ,Iff+Au=0, feAu, and if
(Cu;,£;]) is determined by
" { *fy o+ Ing = Iny - rhuy g, £y e A,
i=1,2,404, u € X arbitrary,

then [ui,fiJ —> [ u,f] in XxX*; more precisely

4
(5) (llnl-u“§+ll r(i’i-f)l\i*)z'é Ilul-uolx.

Remark 1, The operator Qr in Theorem 1 is well defin-
ed. This follows easily from the fact that r A + L is a
one-to-one mapping from D(A) onto X¥* .,

Remark 2, If assumption (2) is satisfied and
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o<r< 3—32 , then U, =T - rI"IA (I idertity map of X)

is contractive in X with the contraction constant kr =

= (1 - 2mr + Mer)% . The fixed point u of U, is the
unique solution of Au = O (see e.g. Browder-Petryshyn
[31). Theorem 1 may be considered as a generalization of
this result to problems of type (3).

Remark 3. If A is a potential operator, then the
upper bound for r and the c‘onti‘action constant kr in Theo-
rem 1 may be replaced by ﬁ and q, = max (1 - mr, Mr - 1),
respectively (cf. Gajewski-Grdger [4], Remark 2).

2. Second order evolution equations

2.1, Preliminaries. Let U, V and H be Hilbert spa-
ces such that U and V are continuously and densely imbed-
ded into H, Moreover, let UnV be a dense subset of U and
of V. For the sake of simplicity we assume that UnV is.
separable. We shall identify H with its dual space H¥,
Then the following inclusion relations hold:

UnVcUcHe U¥c (UnV)¥ ,

UnVcVecHe Ve (UAV)¥* ;

here U¥ , V* and (UAV)¥* denote the dual spaces of U, V
and Un V, respectively. If E is one of the spaces UnV,
U, V, H, then the value of zeE* at x€E will be denot-
ed by (z,x). The norms on U, V, H and V* we shall denote
by M-8, K-N,1-1 eand W-Hl, respectively. _
Let S = [0,T1c R' be a finite interval. If E is a
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Benach space, we denote by L2(S;E) the space of square in-
tegrable functions defined on S with values in E, provi-
ded with the usual norm

3

Jul =((lut)h2at)® .
12 (s;H) ‘; £

By Ck(S;E) we denote the space of E-valued functions on S
which have continuous derivatives up to the order k. In-
stead of C°(S;E) we write C(S;E).

If ue L2(S;H), ‘we denote by u’ and u" the first am
the second derivative of u in the sense of distributions
over 10,TC with values in (UAV)* ,

Iet X = 12(S;V), Y = I12(S;U) and accordingly
X* = LZ(S;V”‘), X*= L2(S;U*‘ ). As in the preceding sec-
tion we denote by L the duality map of X. The duality map
of Y will be denoted by K. Let

(6) W=4u|ueY, u'c X, u" + Kue X*3

and
4
(D Nully = (hulg + Ml E +hum + kl2,)7 v ouew

It is easy to see that W, provided with the norm Il “‘.,,
(and the corresponding scalar product), is a Hilbert sna-
ce.

Lemma 1, Iet
(8) D={ujueC®(s;U), u'e CO(s;V), u" + Kue C¥(s;V*)3,

Then D is dense 'in W.
eT

Proof. Iet 1>e >0, 7 =
2(1 -¢)

L
Sg =[-9,T+7], ueW and
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ug (t) =ul(l -elt + ¢ g-) VteSeg .
Then u, € L2(Ss 3U), u;eLz(S8 iV), ud + Ko ug € LZ(SE iV¥),
where K denotes the duality map of LZ(SE ;U). It is easy
to see that the functions ug (restricted to S) are conver-
ging to u in W if €& —> O, Therefore, to prove the lemma
it is sufficient to show that functioms of type ug may be
approximate¢ in W by functions from D.
| Let ® be an infinitely differentiable function on

R with compact support such that @ (-t) = @ (t) and

fm?’ (t)at = 1. Let

@nt) = nE (nt), n = 1,2,... .
If n is large enough we can define o by u,, = @Pp¥Ue -

By standard arguments (see e.g. [L7], Lemma 1.12, Chap. IV)

we obtain “enED and u  —> U in W, This proves the lemm.
Proposition 1. The space W defined by (6) and (7) is
L]
ccntinuously imbedded into Z = Cl(S;H)n C(S;U), provided
with the norm '

1
2

l\ullz =£nexps (lu’ ()| 250 ut)ll % YuezZ.

Proof. Let J be the duality map of U. Then
(XKu) (t) = Ju(t) YueY, VtesS.

Obviously, if u, ve D (D defined by (8)) and t,t & S, then

t
_ft-i((u" + Ku)(s),v (8)) + ((v" + Kv)(s),u’(s))} ds
. A

(9) = (u’(t),v () - (u'(to),v'(to))
+ (Ju(t),v(t)) = (Julty),v(t D).
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et geC%(3), @(0) = ¢’(0) = g7(1) = 0, @(T) = 1, ang
let ue D, v = @ u. We apply (3) to u, v and u, u - v, res-

pectively. This yields
t 4
j; 4" + Ku)(s),v"(s)) + ((v" + Kv)(s),u"(s))? ds

= (W (t),v (1)) + (Ju(t),v(t))

and
T ’ 4
J A0 + k) e),u’(s) - v(s)) + ((u - v" + Ku - Xv)(s),
T
u’(s))$ ds
== (u(t),u’(t) - v(t)) - (Ju(t),u(t) - v(t)).

By subtraction and some elementary calculations we obtain

lu’Ce) 12 + M we) iy 2

]

& £ ((u" + Xu)(s),v"(s)) + ((v" + Kv)(s),u’(s))} ds

2 fT((u" + Ku)(s),u’(s))ds

j £ (29 (8) (u" + Ku)(s) +@ (8)u’(s), u’(s)) +
S

T

* (Juls),@"(s)u(s))Bas - 2 [ ((u" + Ku)(s),u’(s))ds.
t

Consequently,

a0 w12+ w2 e Hal2,

where C is a constant not depending on t and on u.
Let now ue W be arbitrary. Because of Lemma 1 we can
choose a sequence (un), ue D, converging in W to u.

Using (10) we obtain

(11) \lun-umllzéclun-uml\w.
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From (11) follows that ue & and
\\ulzfclul‘w R

This completes the proof.
Corollary 1. The formula (9) is valid for arbitrary

u, v€W. As a special case we obtain
f: ((u" + Ku)(s),u’(s))ds

12) =3 ('@ 2+ 0w W Z - luonl?-
- wOW?® V¥ ouew.

Remark 4. The "energy equation“- (12) is closely re-
lated to a similar result obtained by Lions-Strauss 1101
(Lemma 2.1). Our proaf may be regarded as a modification
of the proof given by lLions-Strauss.

Iemma 2. Let U be continuously imbedded into V. If
weW such that u(0) = u(T), u’(0) = u’(T), then

(13) Ilulliéc(lhx'li-* ﬂu"+Ku||}2(,‘), c = const .

Proof. By the assumption of Lemma 2 we have
YcXe1?(S;H) c X*¥c Y* . Let u e D such that uy—> u in
W. Then

Nw 13 = [, (o + Kuy - up)(s),u,(e))as

fd g + T (e)) + Lyg(e) | 2} as

() (T) 0y, (7)) + (u,(0),u,(0))

£Vup + Kupbyy Huyl g+ ““&;'iz(s_m

- 582 -



- (ug(T),u,(T)) + (u’(0),w,(0))
£oeg(lug + Kug Ry Bug iy + w12
= (ug (1), w, (T)) + (u;(0),u (0)), ¢y = const .
Passing to the limit we find
|u||%écl( Hur + kull gy lully + 1 u’l }2()
é-]z‘-, c‘i flur + Kull;‘;* + %’- |\u||§. +cq lu”l z.

This proves the lemma,

In what follows we assume as in Section 1 that we are
given an operator A€ (X —> X*) which satisfies the condi-
tion (2).

2,2, Initial value problems. We consider the problem

(14) w" + au’ + XKu = 0, ue W, u(0) = a, u’(0) = b,
where ae U and be H are given initial values. Let
(15) A=4Cu’,u" +kul | uew, u(0) =a, u’(0) =b3.
Then (14) can be written as

Av+ Ava0, veD(A).

Lemma 3. The set A c XxX™ defined by (15) is ma-
ximal monotone.

Proof. Let Eu‘;,ug +Ku;le A, j=1,2, and let

u = u; - u,. Using (12) we obtain
o {u" + Ku,u’) =% lum 12+ 10w M 2)2 o,

i.e., A 1is monotone. In order to prove the maximality of
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A it is sufficient to show that A + L is surjective
(see e.g. Browder [21). By definition of A the mapping
A + L is surjective if and only if the initial value pro-

blem
(16) u" + Ku + In” = £, ueW, u(0) =a, u’(0) = b,

is solvable for every f€ X* . The solvability of (16) fol-
lows from a general existence theorem of Lions-Strauss [10].
Thus the lemma is proved.

Theorem 2. Let assumption (2) be satisfied. Then the
problem (14) has a unique solution u for every a€ U and

be H. If O<r<§—:21-l and if (ui) is determined Ly

o) { r(uf + Kuy) + Iny = Iny_, - rAug_;, we W,

u; (0) = &, u{(0) = b, i = 1,2,..., uj€X arbitrary,

then

(18) (l(u{-u'ﬂ§+ Ireuy + Kuy - u" -Ku)||}2{*)é

1
Y %‘ * P
frog lu-wly

and
L5
T . ’
(19) “ui-uﬁzé\/_r—_—-l——_——llul—uoux,

o

4
where k, = (1 - 2mr + wrd)z

Proof. W#ith the exception of (19) the assertions of
the theorem follow immediately from Theorem 1 and Lemma 3.

Using (12) with u; - u instead of u we find



Luf ) =u' ) [ 2+ 0wy () - uce) il 2

=2 fat((ug - u" + Ku; - ku)(s),ui(s) - u’(s))as

1IN

%-("u{ - u'|l)2(+ llr(u; - u" + Ku; - Ku)ll‘;‘(*).

Together with (18) this implies the assertion (19).
Remark 5. The iteration method (17) requires at each
step the solution of a linear initial value problen.

2.3. Periodic solutions. In this section we assume.

that U is continuously imbedded into V. We consider the

problem
(20) u" + Au” + Ku = 0, uew, u(0) = u(T), u’(0) = u’(1).
Let

(21) A

{Lu’u" + Kul | ueWw, u(0) = u(T), u’(0) =
u (T .

Then (20) can be written as

Av + Av30, veD(A).
Iemma 4. The set Ac XxX™ defined by (21) is ma-
ximal monotone.
Proof. The monotonicity of A follows immediately
from (12). To prove the maximality of /A we stall show

that A + L is surjective, i.e., that the problem
(22) w" +Ku+ In"=£, ueW, u(0) = u(T), u’(0) = u’(1),

is solvable for every fe X*,
Let (Hn) be a sequence of finite dimensional subspa-

ces of U such that % H is dense in U. Identifying
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1%(S;H,) with its dual we define K € (12(s;H,) —>
— 12(5;H,)), I e (1(s;H,) — I7(S;H,)) and £, €
e P (S;H,) by

(Ku,v> = <Ku,v> Vve 2 (s;H,),
(Lu,v> = {In,v> v ve1?(s;H)),
TICDERERD VY veI?(S;H).
The problem
up + Ky + T = £, wpe PSR,
(23) uy e 12(S;Hy),

w, (0) = wy (1), uy (0) = wi(T),
has a unique solution w, (see e.g.17], Theorem 1.3, Chap.
VII). Multiplying (23) by u, yields

Cup + Ky + Tug,us ¥ = uf + Koy + Ing,ug 2
= <mfuly = Al ld = <z,uld> = <(2up>

Hence
> A
From the assumption that U is continuously imbedded into

V it follows that X*c Y¥ , Therefore, multiplying (23)
by w, we obtain

{ugy ‘iY== B2 ly N2
up + Kupy + Top,vw, 9 L?-(s;H)+ Wty
=<2 > é\\flx, “"n‘x .
Consequently,

o U 0 .
sfx;p w lly =
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Let (n;) be a sequence such that

W, —~uiny,
i

u.‘;i—- u’ in X,

By standard arguments one can prove that u is a solution
of (22). This completes the proof of Lemma 4,

Remark 6. The solvability of (22) can be proved al-
80 by "elliptic regularization" (see Lions [8], Char. 4,
§ 7, where a special case is treated).

We are now able to apply Theorem 1 to the problem (20).

Theorem 3. Iet the éseumption (2) be satisfied. Then
the problem (20) has a unique solution. If O<r<§2m— and

if the sequence (u.) is determined by
i

POaf +Kup) ¢ T = Il ) - o), wew,
(24) u; (0) = vy (T), ui(0) = w (1), i =1,2,,..,

uje X arbitrary,
then

- 1
(25) (Iu{-u"li-ﬁ ﬂr(u{-ﬁ-Kui-u"-Ku)li*)"é

i
r S
froe Mul-ujly
and

(26) b o - nlz.éclé, ¢ = const ,

224
wherekr=(1-2mr+ur)’~ "

Proof. The assertion (25) follows from Theorem 1 and
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Lemma 4. The assertion (26) follows from (25), (13) and
Propes ition 1.

Eemark 7. The iteration method (24) requires at each
step the solution of a linear problem.

2.4, Further initial value problems. We consider
the problem -
(27) u" + Au’ + Bu = 0, u’€ X, u(0) = a, u’(0) = b,

where aeV and b€ H are given initial values anl B is a
Iipschitz continuous mapping from X to X*; more precise-

ly, let

(28) nm-anx,.éMBl\u-vl\x Yu, VveX.

Definition (cf.[7], Def. 1l.1,Chap. V). A mapping
Ce(X—>X*) is said to be a Volterra operator if for
every teS
a(s) = v(s) a.e. on LO,t1==>(Cu)(s) = (Cv)(s) a.e. on
Lo,tl.

Tn what follows we shall assume that A and B are

Volterra,operators. We defire Re (X—> X) by
+
(29) (Rv)(t) = a + Jo v(s)as Y veX.

Obviously, the problem (27) can be written as
(30) v’ + (A + BR)y = 0, ve X, v(0) = b,

In gneral A + BRe (X—> X* ) is not strongly monotone.
Therefore, it is impossible to apply Theorem 1 to (30)
directly. It turns out to be useful to introduce the fol-

lowing narms on X and X*, respectively:
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1
lully = (j;" e™u(s) Il 2a8) 2 Yuex,
A .

4
2

Belyes [0 e 2(s) | Zas) Veex®;

A
here A denotes a positive parameter. Using these norms
we shall write X, and Xx instead of X and X* . The pai-

ring between XA”" and X, is given by
<ty = [, ™20 ,u(e))as.

The duality maps of X, and X are equal,

Lemma 5. Iet A anmd B be Volterra operators which sa-
tisfy the conditions (2) and (28), respectively. Further-
more, let R be defined by (29), Then for u, ve X we have

<Au-Av,u-v)$; mllu—vﬂil 3

lAw - avl &Ml - vl
xa xh ’

“Bu-Bvllx;éMEﬂu-vllx .

2
T
|1Ru-Rv"X& évm llu-vﬂxa -

The assertionsof lLemma 5 are proved in [7] (Chap. VII, § 1).
Corollary 2. Iet the assumptions of Lemma 5 be satis—
fied. Then

2
Z m, “u-v“xJL

{(A + BR)u - (A + BR)v,u - v ’

Vu VYvex

and

la +BRIU - (4 + BR)"‘x;éM.a la - vﬂxA

Vu, YveX,
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where m, =m-ll3'\/z-?x-and M, =M+ll5\/-22x-.

Leuma 6. The set Ac X, x XI defined by

A=4Lv,v']| veX, , v’e X: , v(0) = bt
is maximel monotone.
Proof., Let T.vj,vé leN, j=1,2, and v = vy = Vo
Then

(v'v )y, '{.‘S e~2 8(v’(s),v(s))ds

3._(; | v(e) | %28 + %a"m lv(m | 2z 0.
Hence, A is monotone. The problem
v'+Iv=2, veX, , v(0) =D,

is solvable for every fe x;" (see e.g. lions-Magenes [91).
Consequently, /A + L is surjective and /\ maximal monotone.

Corollary 2 and Lemma 6 show that we are allowed to

2
T
apply Theorem 1 to our problem if we choose A > M_BZ_;E_ .
Theorem 4. let A€ (X—» X*) and Be (X—> X*) be
Volterra operators which satisfy the conditions (2) and
(28), respectively. Then the problem (27) has a unique so-
lution u for every a€V and beH. Let

3>%§,m& =m-MB-\/’%,M& =H+M31/22x and

0< r<% . If the sequence (u;) is determined by
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ruf + Inf = Ing ) - rlAug_ ) + Bu,), weX,
(31)4 v3(0) = a, uj(0) = b, i =1,2,..., u,,u e X

arbitrary,

then
1
)2 &

’ ey 2 » 2
(Nuf = u llxa + ﬂr(u:'i‘_-u")ﬂx

o

1-%a

" ui - uo' n,x& F]

1
= 2.2y7
where ko = a - 2m&r +8r)% < 1,
Remark 8. The relation (31) may be replaced by
. _ .

rvi + vy =Iey , -r(A+ BR)v; 5, vi€X,

v;(0) = b, i =1,2,..., Vo€ X arbitrary.

Thus, at each step of the iteration we have to solve only
a first order limear initial value problem. Once v is
known we obtain w = Rvi by a simple integration.,

Remark 9. Combining the iteratiom method and the
Galerkin method one obtains a so called projection-itera-
tion method. In the case of first order evolution equa-
tions this method was investigated by Gajewski-Grdger [5],
[61. In the case of the problems considered in Sectiom 2

the convergence of the cofi'esponding projection-iteration

methods can be proved nearly in the same way.
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