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Abstract: We prove that the twin prime problem is
undecidable in a first-order'arithmetic without induc-
tion, stronger than Robinson’s arithmetic.
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Introductiom. In this paper we prove that the twin
prime problem is undecidable in certain first-order arith-
metic Ar without induction.

Moreover, our Ar will be stronger than Robinson’s
arithmetic (but weaker than Peano one). We will present
& parametrical construction of a substructure of a fixed
non-standard model YL of Peano arithmetic, As parameters
we will have a submodel of Ar and a non-standard element
of U . The required models are obtained by an appropri-

ate choice of parameters.

§ O. Preliminaries

0.0.0. Let L be a first-order language with a bina-
Ty predicate « , Iet ¢ (x) be a formula of L. We deno-
te by (3 x) ¢ (x) the formula (Y V(A x)(y<ex & g (x)),
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where y is not a variable of ¢ . Let €L and & be
structures for L. By ¥ c ¥ (€ < ¥ ) we mean that
%L is a substructure of £ ( ¥4 is an elementary sub-
structure of & ). The language obtained from L by add-
ing all the names & of individuals a of % is denoted
by L(¥L). We expand €4 to a structure €& for L( L)
as follows: if g is the name of an individual a of €&
then €L assigns a to a. Let M be a nonempty subset of

€t (where ¥ = A is the universe of ¥ ). If there
is a substructure of ¥¢ with universe M then it is de-
~signated by €L /M.

The expression ‘4 c & ( €L < £ ) stands for 1)
Wa s (<$), 2),if ach anl beB, then ab.
(¢ is an (elementary) end-extension of L .) Writing
€ c dr we mean that U € & and A%B. (fH is a mro-
per end-extension of €L .) L < ¥ is defined analogous-
1y.

0.1.0. The language J of Peano arithmetic P is
{0°,+,¢,<) . Let A be the standard model of P. For
neN we denote by n the constant term 0° ", where °‘ is
applied n-times,

i,j,k,l,nf,n are variables for elements of N.

Remark. We work in the logic with equality.

0.1.1. Let s(i),'i = 1,...,5 be.symbols such that
8(1) is the binary predicate x| y, s(‘2) is the unary pre-
dicate Prm(x), 8(3) is the unary predicate Prm,(x), s(4)

is the binary function e(x,y), and s(5) is the binary func-
tion r(x,y).
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et @4, i =1,2,3,4,5 be the following formulas:
@, is the formula (3 z)(y = x.z), ¢, is the formula
ylx—>(y =1vy =x), o3 is Prn(x)& Prn (x + 2),
gy is (x>0&y>i&yz]x&y2+l,f x)v((x =0vy£1l)&z = 0),
Q5 18 (x>0& y>1 & (Fu)(u = elx,y) & x = y*.2)} v
vi(x=0vy<I1)& z = 0).

Remerk. By x,fy we mean 1 (x| y).

Let P designate also the theory obtained from P by
adding the functions X’ and the symbols s(i) defined -by
Pys 4 = 150005

0.1.2. Throughout the paper, %, Uy Uy 572
are non-standard models of P such that

n<m°<ao< ‘(/514‘06

and o0 is a fixed element of A - A;. We use McDowell-
Specker ‘s theorem. (See [11.)

If there is no danger of confusion, we write Frey <
etc. instead of +u,.a,<m etc.

Let ‘O4* be "integers over € ". <L* is an ordered
domain, If a, b are elements of A¥ y — & designates the
inverse element of a, a - b designates a + (-b), and lal
designates absolute value of a, If b | a, we denote by %‘
the element ¢ with a = b.c. For BEA, we put B ={-a; a ¢
€B} and B¥ =B uUB. If $S¢ and B x<y —>
—> (32)(240&x + 2z = y) then $*= <CL*/B is a subdo-

main of <L* .

§ 1. Arithmetic Ar and some models of it

1.0.0. Ar is a first-order theory with the language
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J. The nonlogical axioms of Ar are the following:

(a) x+0=x . x.0 = 0
X+y=y+x Xey = Y.X
x+(y+2z)=(x+y)+2z Xe(yez2) =(x.y).z
x+y = (x+y) ’ Xy =xy+ 2z

X.(y + 2) = Xy + Xoz
(b) 1) =(x x)
2) X<cy&ky<z—> X<z

3) x<yvx = yvyc<x

4) x<y’e> x<yvx =y
5) 0<xv0=x
6) O<x— (y)(y° = x)

7) x<ye>»(3z#4+0)(x+ 2z =y)
(6) xX<y&0<usv—» x + U<y + v&X U< Y.V
(@) (schema) {d,; neN - 1033,
where o is the formula (Vx)(Iy<x)(Iz<T)(x + yd + z).
1.0.1. Proposition. The following sentences are prov-
able in Ar:
(1) x+0 —> AyI(V2)(y<x&z<x—> 22y),
(ii) x<y—> x'<y’,
(iii) x" =y —>x=y,
(iv) x<y —> x%y.
- 1.0.2., Let Ar designate also the theory obtained from
Ar by adding the symbols s(i) defined by <3 , i =1,2,3,
1.1.0. Let M, be a model of Ar such that
@, €, =,
Let seAl,.

We define, for i = 0,1,
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¥,; [e] = fa X 8 *eeet 0@y + 8 ; keN -4027, 81yeee
*

cos,8, € M¥ >0, &) eM

1 R B o
there exists an e€A, - Nsuch that s® | 7 aj,...
wm*x
cc-’s , 1 &k})
Mli(s) = M.l.l:s]uM.
lemma. Let a¢ Mll, i = 0,1. Then ‘there is precisely
one keN and aj,...,8, ¢ M, 8 >0, a,€ M¥ such that

a.=a:.kak+ R 00&14'&0-

Proof is obvious.
Notation. For aeM;; [s1, i =0,1, we denote by v(a)
the standard rumber k and by 81s000,8, elements of Hl,

a> 0, and a  element of M:. such that a = « ak * eee
cos + « ay + a .

Lemms, M,;(8) is the universe of a substructure of
N/ 4 i=o0,1.

Proof. let a, beM ;. [s]. Obvously a‘e i,Cs].
Iet v(a)<v(b), For 021 <v(a) we have (g + b); =& + b,
for v(a)<i<v(b) we have (a + b); = b;. There is an e ¢
€ A, - N such that s® lm'r a;, i =1,...,v(a),

s® I 1 bj, 1 =1,...,v(b). Consequently, a + beM;[s1].

We also have (a.b) =&+7¢E:=-v'. &b, ; for i>1 we have

*®
o° | . k+%=4 8Py « Thus, a.beMy; [81. Similarly
for ae M; and bel . (8] etc.
1.1.1, We put ’)?‘Zli(e)
write mli for mli(S)’ i

/i (8), 1= 0,1, We
0,1,

1.1.2. Theorem. ILet n|s for every ne N, Then
M (&) &, i =0,1.
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Proof. We have %L, ¥ . Only the axioms (b6),
(b7) and the schema (d) are not general closures of open
formlas and, consequently it suffices to prove that mli
is & model of these axioms. Obviously %, ;¢ (b6). We
will prove L, ;k= (b7). Let a,beM;; L] and a<b. Thus
v(a)<v(b)., If v(a) = v(b), put j = max {i; a;¥ b; . If
b - aj‘.<0, the:n we have cx,'i(bj - aj) + eeo + (by - a)e
4- Y+ ooi—]"bj 1= 85 l|+...+'\b -8, |2 -
d=

- <Y+ x o Jomax {Ib ail ‘i = 0yeeey § = 1%< 0.

Thus bj - 85> O. On the other hand, if v(a)< v(b) then
obviously b - meM;; [ 81 . Thus 91,5 = (b7). It remains

to prove the schema (d). let ne N, n>0, aemli[s.] k =

= y(a). There are a eu eu- such that Qéa <n and
_ s
ao = n.a.o +8a.
a a
= k R 14 ~ .
Put b= o, = + see + 0o - +ag. There exists

e | WL Ay *
en ecA - N such that 8® |7 oy, & € Wana

Py
ee‘l 1 —”"1' " i= l’o-o,ko %naequently, beuli[B] .

Evidently & = n.,b + ?o' Hence mn = of"n.

1.2.0, let M & |¥L| , aeM. We say that a is decom-
posable in M if there are b, ce M such that & = b.c.

1.2.1. lemma. ILet a€M;;(s], w,ei-1,1%, via)z 2.

Then a is decomposable in M,;Le], i=0,1.

Proof. &, = 1. let d, eeA - N, e<d, aeul, o =
= "i s':l+° i =‘1,...,k, k=v(a). et x, =y, =1, X3 =
= 8% and ;417 85,9 - ¥;3.8° if 04i<k - 1 and o1 =

= q.‘d.
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; 2 S = Ak~
Obviously, 7:% e My, i =1,..0,k - 1, Thus, y = ®7, @&_1.1-
*eoot le My (s8], x = .s® + 1le M,;[s]. We have (x3) 4
(x.y)i =y * s® Fiag =& - yi_l.ee + yi_l.se =a; fori=
= 1,000k = 1 and (x.y)k =g® ¥g-1 = 8. Consequently, a =
= X.y. Analogously for a, = -1.

1.2.2. Lemma, Iet ae€M);(sl, bely, i = 0,1.
: * .
(1) If %t..=Db|a then Qzlr g[gj, J = Oyense
esoyv(a),
- Ik
(i1) Ifblsend Diwb|s, then %W, b|a.
Proof. (i) If a = b.c and c€My; Lal, then a; = b.ey,
i=0,1,...,v(a).
- A i * .
(ii) We have % © Ay, and hence = € M, i=1,...

eseyv(a). Since % 3 M;, the statement follows,

§ 2. The consistency of Ar with — (3 x)Prm(x) and
with (3 x)Prm(x) & = (.'5 x)Prn.‘,(x)

The models in question are ’lm o(8) with '”71 =
= @,
hd
2.0.0. Theorem. Aru{ -~ (3 x)Prm(x)2 is consistent.
Proof. ILet LeA, - M , s = Ll . We prove that @, =
mlo(a) (with @, = L)) is the required model., First,

8€ A  and for every standard n we have n | 8. Thus,
'”l'lo(s)l= Ar follows by 1.1.2.
let aeM, Lsl, v(a)z2, If a, = ¥ 1, then
@.Zlopﬁ Prm(a) follows from 1.,2.1. If &, = O then evi-
dently 3, = Prm(g). If a,¢40,+1,-1%, then la e
€M, and s \, " a (this follows from la| l s and

(11) of 1.2.2). Consequently, ae M; [ slend v(a) 22 implies
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’_J_)_’Llo\=_g<x —» 1 Pro(x).

Now, we will prove the consistency of Ar with

(3 x)Pra(x) & 71 (3 x)Prmy(x) .

2,1.0. As it is well known,

(i) P+Pru(p)&p|x.y—>p|xvP|Y¥,
(ii) P+ Prm(p)& pfz&2z | Pray—z|y.

2.1.1. ILet pe Mo - N be prime, Led - My and
s = r(Ll,p).

(For the definition of r see 0.l.1.)
lemma, If deM  and 4>1, then r(d,p) | s
Proof. We first prove that ce M  and p/[' ¢ implies
¢ | s. This follows from (ii) of 2.1.0 using c| Lt ana Lt =
= pe(L!,p).a.
We have r(d,p)<d, hence r(d,p)e M, and p*r(d,p).
Consequently, r(d,p)| s.
As a consequence we obtain immediately!
Gorollary. For every standard n, n| s.
2.1.2, Iet WM, = U,.
1, (8) 4= &r follows from 1.1.2 by Corollary from 2.1.1.

Theorem, (1) mlo(a)b(éx)l’rm(x),
(2) M ()= (I x)Proy(x).

Proof. (1) (a) ILet a = c(,kak + a e MlolsJ, a €M,
a8, € Mo, Prn(ao) and ao*"k' We prove that a is mot decompo-
sable in M, [sl. If a = x.y and X, yeM; [sl, then k2,
v(x) + v(y) = k and x .y, = 8,. Let Ix, |l =1, 17l = a5
If j<v(y) and a |35, i = 0,...,3, then a,| ¥ 41 follows
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from O = 8541 =m+§= 3+1 Zn*Vne Thus a | a, follows
from 8 = xv(x)'yv(y)’ which is a contradiction,

(b) If ee A, - N, then we have Prm %% (ecXa® + pl.
Proof. ookse + p is not decomposable im Mlo L8l by
(2). Let 1<b, beu ana » [ @40 «c%s® & b, Prys b|s® and
®|p and, consequently, b = p, Finally, p| s follows from
P|8®, which is & contradiction,
Clearly, a€M, [ 8] implies ocV(8)*1 e p>a, which
finished the proof of (1),
We will prove (2). Let acl, Lsl, v(a)z2, .
(8) If a =0, then - Prm ®%+0o (a) follows from s® m’”a'
for some ec€ 4, - N,
(b) I laol =1, then A1 Prmm"" (a) follows by 1.2.1.
(¢) If la |l >1, ang r(layl,p)+1, then - prm @10 (a).
Proof. =r (lagl,p) l 8 follows from r(layl,p)e M, by
using lemma in 2.1,1, Thus r(la,l,p) Wy a follows from
(ii) of 1,2,2.
(d) Let la l> 1, r(lagl,p) = 1. Iet t be such that la | =
= pt,
(a1) 1 8,>1, then'r(|a |,p)%1 and - Prm W10 (a +2)
follows from (c).
(a2) 1 &, = -2, then (a + 2), =0and 7 Prm @10 (& + 2)
follows from (a).
(a3) 1 a, = =3, then |(a + 2),1 = 1 and
1 Prm P10 (4 4+ 2) £6110ws from (b)), ,
(44) If a <-3, then | (a + 2y 1 > 1. Let r(la, + 2|,p) =1,

Then there exists a ¥ with lao +2)]= p’f. Thus |a°| -

-la, + 21=2=pt, (p¥t - 1), vhich is a contradiction,
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Thus r({a, + 2(,p)%1 and 7 Prm Blao (g + 2) follows
from (c).

Consequently, -1 Prm, P40 (a) follows from (a),(b),
(e),(a).

Let a€M, [ sl, v(a)2 2. Since B, =a<x —>
—> 1 Prm,(x), the proof is completed.

§ 3. The consistenc of Ar vith-(§ x)sz(x)

3.0.0. At first we are going to construct a model
ml' let e Ay - A, be prime, LeAj - Nand 8 = LI .
Put ' = £(3 .a; + a,; 8,>0, @€ 4, a & A7 and there is

an ec A, - N with a’l a ¥,
and
P *
ul =M (9 AO.
Lemma, If a€M’, then there is exactly ome & €A, and
* s
a e A7 such that a = [3..&1 +a, and a;>0.

Proof is obvious.

) Notation. For aeM’, we dencte a , &, the elements
of A’{ such that & >0, a & A’: and a = R.a, + a,.

lemma, M, is the universe of a substructure of U ;.

3.0.1. Put @, = o, /K.

Lemma, (0) €, € Wt c €,

1) M = ar,

(2) there is a ceM’ such that 9%, }="Prm,(c).

Proof: (0) obvious. (1) can be proved similarly as
Theorem 1.1.2. (2): First, we shall prove the following
statements: . .
(a) aeM’ and neN imply n]al and %’; 1¢N. (Obvious.)
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(b) If aeM’, beA, then b|a am b|a, follows from
b | @t a.

() If &, beM’, a.b = ﬁz.uf v and vsA’:, a), biea,
then a;b, + bja, = 0. (Indeed, we have f-aby + ab +

* b8, = P.u. Tus  B] aby + bja, amd ajby + bya, = 0
follows from a). | byl + bye la |< B .)

(d) Ife-= {Sz.u +v, aeM’, u, v>0 and u, v6A,, then a
is rot decomposable in M’, (Let x, ye M’ and X.y = a, Hence
vV = x.y, and, consequently sign(xo) = sign(yo).

If x,, y,& Ay, then x 3 + ¥1X, = 0 follows from (c).
Thus Xy, ¥y €4, implies aign(xo)* eignﬁyo), a contradic-
tion. _

We have (B.u = B.x;y, + X)o * ¥1Xoe If x; & A and
sign(x ) = 1, then, obviously, u¢ A,, a contradiction. We
shall prove that u ¢ 4, follows from x1¢ A, and sign(x°~) =
=-l. We have x3 « |75l < 3.3 , y1. Izl < ¥+ > . Thus

Polxg + yl)>xl.l yol +y;. 1 x,l , and consequently

* X
u>x,y; - (xl + yl) = (xl‘ %’. — xl) + (yl' _21' - ,1) >
" x !
Ttk k. (2lyg,2)lx) ena > 2, %’1>2 follows

from (a).) The statement (d) is proved,
let ecA - N, u = {323° + 6% -1, We prove

P:mzm‘l (u). Note that us is not decomposable in M (this
follows from (d) and s®e A)). If a>1, acd and

@?_’llhalu, then a | 3 .8® and a|8® - 1. @3 is prime,
thus & | 8® follows by using (ii) of 2.1.0, a contradiction.
We have Prm @1’1 (u). Case u + 2 can be proved like the ca-
se u, Clearly, ue Ao and u is the required element c.
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3.1.0. let %, s be as in 3.0.0. We have
W (8) = Ar.

Theorem, W (s) = (3 x)Prm,(x).

Proof. (a) Let a€M)y[sl, v(a) =k, ay_, =28 , =
s m i = oem Pt (a,) and a ,t’ 1a,. Then
Prm P11 (a),

We shall first prove that a is not decomposalble in

lln[s] e

Contrarywise, assume that a = x.y and x, yeM;; [ sl. Then

X,e¥, = &, and v(x) + v(y) = k. et | x | =1, lyo\ =a.
m, m* .
Thus a, ] ¥oe Let j<v(y) and aj l 1 ¥, 1i=0,1,...
o.v-,Jo l yj,.,ll = ‘mg:':a-’ xm+1yn\ follows from O =

! ank
o= 1 : B
nn.-m%}-c-'l XYy, and consequently &, ' 41+ Thus
ay
l ¥y i= o,...,v(y). We have &y = Xy (y)-Fy(y)*

Consequently, &, [ &, a contradiction.
Let be M,, b>1 and b Im"“ a. Then b l 8, and
mn,
b l a,. Thus b = a , a contradiction.

(b) Let ee A, - N, peM; - A  with Prm2m1 (p) (by
using (2) of 3.0.1). p*m'l 8% and p + 2 *m" s® fol-

lows from 8 er. Let c(k) = « 5e® + p, ke N and k=1,

Prm, 1 (e(x)) follows from a. Clearly, if aeM,;[sl,

then a< c¢(v(a) + 1), and hence the proof is completed.
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