

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017 | log51

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,3 (1976)

TWIN PRIME PROBLEM IN AN ARITHMETIC WITHOUT INDUCTION

J. MLČEK, Praha

Abstract: We prove that the twin prime problem is undecidable in a first-order arithmetic without induction, stronger than Robinson's arithmetic.

Key words: First-order arithmetic without induction, twin prime problem, undecidable.

AMS: 02H05, 02H15, 10N05 Ref. Z.: 2.666

<u>Introduction</u>. In this paper we prove that the twin prime problem is undecidable in certain first-order arithmetic Ar without induction.

Moreover, our Ar will be stronger than Robinson's arithmetic (but weaker than Peano one). We will present a parametrical construction of a substructure of a fixed non-standard model CL of Peano arithmetic. As parameters we will have a submodel of Ar and a non-standard element of CL . The required models are obtained by an appropriate choice of parameters.

§ O. Preliminaries

0.0.0. Let L be a first-order language with a binary predicate < . Let $\varphi(x)$ be a formula of L. We denote by $(\exists x) \varphi(x)$ the formula $(\forall y) (\exists x) (y < x & \varphi(x))$,

where y is not a variable of φ . Let $\mathcal U$ and $\mathcal U$ be structures for L. By $\mathcal U$ c $\mathcal U$ ($\mathcal U$ < $\mathcal U$) we mean that $\mathcal U$ is a substructure of $\mathcal U$ ($\mathcal U$ is an elementary substructure of $\mathcal U$). The language obtained from L by adding all the names a of individuals a of $\mathcal U$ is denoted by L($\mathcal U$). We expand $\mathcal U$ to a structure $\mathcal U$ for L($\mathcal U$) as follows: if $\mathbf a$ is the name of an individual a of $\mathcal U$ then $\mathcal U$ assigns a to $\mathbf a$. Let $\mathbf M$ be a nonempty subset of $\mathcal U$ (where $\mathcal U$ = $\mathbf A$ is the universe of $\mathcal U$). If there is a substructure of $\mathcal U$ with universe $\mathbf M$ then it is designated by $\mathcal U$ / $\mathbf M$.

The expression $\mathcal{U} \subset \mathcal{L}$ ($\mathcal{U} \leq \mathcal{L}$) stands for 1) $\mathcal{U} \subset \mathcal{L}$ ($\mathcal{U} \prec \mathcal{L}$), 2), if a $\in A$ and b $\in B$, then a $\overset{\mathcal{L}}{\sim}$ b. (\mathcal{L} is an (elementary) end-extension of \mathcal{U} .) Writing $\mathcal{U} \subset \mathcal{L}$ we mean that $\mathcal{U} \subseteq \mathcal{L}$ and $A \neq B$. (\mathcal{L} is a proper end-extension of \mathcal{U} .) $\mathcal{U} \prec \mathcal{L}$ is defined analogously.

0.1.0. The language J of Peano arithmetic P is $\langle 0',+,\cdot,< \rangle$. Let $\mathcal R$ be the standard model of P. For $n \in \mathbb N$ we denote by n the constant term 0', where 'is applied n-times.

i,j,k,l,m,n are variables for elements of N. Remark. We work in the logic with equality.

0.1.1. Let s(i), i = 1,...,5 be symbols such that s(1) is the binary predicate $x \mid y$, s(2) is the unary predicate Prm(x), s(3) is the unary predicate $Prm_2(x)$, s(4) is the binary function e(x,y), and s(5) is the binary function r(x,y).

Let φ_1 , i = 1,2,3,4,5 be the following formulas: φ_1 is the formula $(\exists z)(y = x.z)$, φ_2 is the formula $y \mid x \longrightarrow (y = \overline{1} \lor y = x)$, φ_3 is $Prm(x) \& Prm(x + \overline{2})$, φ_4 is $(x > 0 \& y > \overline{1} \& y^z \mid x \& y^{z+1} \nmid x) \lor ((x = 0 \lor y \le \overline{1}) \& z = 0)$, φ_5 is $(x > 0 \& y > \overline{1} \& (\exists \cdot u)(u = e(x,y) \& x = y^u.z)) \lor$ $\lor ((x = 0 \lor y \le \overline{1}) \& z = 0)$.

Remark. By $x \nmid y$ we mean $\neg (x \mid y)$.

Let P designate also the theory obtained from P by adding the functions $\mathbf{x}^{\mathbf{y}}$ and the symbols $\mathbf{s}(\mathbf{i})$ defined by $\mathbf{\varphi}_{\mathbf{i}}$, \mathbf{i} = 1,...,5.

0.1.2. Throughout the paper, ${\it W}_{\rm o}$, ${\it W}_{\rm o}$, ${\it W}_{\rm l}$, ${\it W}_{\rm l}$ are non-standard models of P such that

and ∞ is a fixed element of A - A₁. We use McDowell-Specker's theorem. (See [11.)

If there is no danger of confusion, we write +,.,< etc. instead of $+^{et}$, e^{t} etc.

Let \mathcal{U}^* be "integers over \mathcal{U} ". \mathcal{U}^* is an ordered domain. If a, b are elements of A^* , - a designates the inverse element of a. a - b designates a + (-b), and | a | designates absolute value of a. If b | a, we denote by $\frac{a}{b}$ the element c with a = b.c. For BSA, we put B = $\{-a\}$; a $\{a\}$ and B* = B $\{a\}$ B. If $\{b\}$ S $\{c\}$ and $\{c\}$ and $\{c\}$ by $\{c\}$ and $\{c\}$ consideration of $\{c\}$ con

§ 1. Arithmetic Ar and some models of it
1.0.0. Ar is a first-order theory with the language

J. The nonlogical axioms of Ar are the following:

- (b) 1) 7 (x x)
 - 2) $x < y & y < z \rightarrow x < z$
 - 3) $x < y \lor x = y \lor y < x$
 - 4) $x < y' \leftrightarrow x < y \lor x = y$
 - 5) 0< x v 0 = x
 - 6) $0 < x \rightarrow (\exists y)(y' = x)$
 - 7) $x < y \longleftrightarrow (\exists z \neq 0)(x + z = y)$
- (c) $x < y & 0 < u \le v \longrightarrow x + u < y + v & x \cdot u < y \cdot v$
- (d) (schema) $\{\delta_n; n \in \mathbb{N} \{0\}\}$,

where δ_n is the formula $(\forall x)(\exists y < x)(\exists z < \overline{n})(x + y \cdot \overline{n} + z)$.

- 1.0.1. Proposition. The following sentences are provable in Ar:
 - (i) $x \neq 0 \longrightarrow (\exists y)(\forall z)(y < x \& z < x \longrightarrow z \leq y)$,
 - (ii) $x < y \longrightarrow x' < y'$,
 - (iii) $x' = y' \rightarrow x = y$,
 - (iv) $x < y \longrightarrow x \neq y$.
- 1.0.2. Let Ar designate also the theory obtained from Ar by adding the symbols s(i) defined by y_i , i = 1,2,3.

1.1.0. Let Mn be a model of Ar such that

Let s & Ao.

We define, for i = 0,1,

 $\begin{aligned} & \text{M}_{\text{li}} \text{ [s] = } \{ \propto ^k a_k + \ldots + \propto a_1 + a_0; \ k \in \mathbb{N} - \{0\}, \ a_1, \ldots \\ & \dots, a_k \in \mathbb{M}_1^*, \ a_k > 0, \ a_0 \in \mathbb{M}_1^*, \\ & \text{there exists an } e \in A_0 - \mathbb{N} \text{ such that } s^e \Big|^{2M_1^*} a_1, \ldots \\ & \dots, s^e \Big|^{2M_1^*} a_k \}, \\ & \text{M}_{\text{li}}(s) = \mathbb{M}_{\text{li}} \text{ [s] } \cup \mathbb{M}_i. \end{aligned}$

<u>Lemma</u>. Let $a \in M_{1i}$, i = 0,1. Then there is precisely one $k \in \mathbb{N}$ and $a_1, \dots, a_k \in M_1^*$, $a_k > 0$, $a_0 \in M_1^*$ such that

$$a = \alpha^{k} a_{k} + ... + \alpha a_{1} + a_{0}.$$

Proof is obvious.

Notation. For $a \in M_{1i}$ [s], i = 0,1, we denote by v(a) the standard number k and by a_1, \dots, a_k elements of M_1^* , $a_k > 0$, and a_0 element of M_1^* such that $a = \infty^k a_k + \cdots$... $+ \propto a_1 + a_0$.

Lemma. $M_{1i}(s)$ is the universe of a substructure of i = 0,1.

Proof. Let a, be M_{1i} [s]. Obvously a'e M_{1i} [s]. Let $v(a) \le v(b)$. For $0 \le i \le v(a)$ we have $(a + b)_i = a_i + b_i$, for $v(a) < i \le v(b)$ we have $(a + b)_i = b_i$. There is an $e \in A_0$. N such that $s^e \mid \mathcal{M}_1^* \mid a_i$, $i = 1, \dots, v(a)$, $s^e \mid \mathcal{M}_1^* \mid b_i$, $i = 1, \dots, v(b)$. Consequently, $a + b \in M_{1i}$ [s]. We also have $(a \cdot b) = \sum_{k+k=i} a_k b_k$; for $i \ge l$ we have $s^e \mid \mathcal{M}_1^* \mid a_k b_k$. Thus, $a \cdot b \in M_{1i}$ [s]. Similarly for $a \in M_1$ and $b \in M_{1i}$ [s] etc.

l.1.1. We put $\mathcal{M}_{1i}(s) = \mathcal{U}/M_{1i}(s)$, i = 0,1. We write \mathcal{M}_{1i} for $\mathcal{M}_{1i}(s)$, i = 0,1.

1.1.2. Theorem. Let n | s for every n e N. Then $\mathfrak{M}_{1;}(s) \models Ar, i = 0,1.$

Proof. We have $\mathcal{M}_{1i} \subseteq \mathcal{U}$. Only the axioms (b6), (b7) and the schema (d) are not general closures of open formulas and, consequently it suffices to prove that \mathcal{M}_{1i} is a model of these axioms. Obviously $\mathcal{M}_{1i} \models (b6)$. We will prove $\mathcal{M}_{1i} \models (b7)$. Let $a, b \in M_{1i}$ [s] and a < b. Thus $v(a) \neq v(b)$. If v(a) = v(b), put $j = \max\{i; a_i \neq b_i\}$. If $b_j - a_j < 0$, then we have $o(b_j - a_j) + \cdots + (b_0 - a_0) \neq 0$. Thus o(b

Put $b = \infty^k \cdot \frac{a_k}{m} + \dots + \infty \cdot \frac{a_1}{m} + \tilde{a}_0$. There exists an $e \in A_0$ - N such that $s^e \mid \mathcal{M}_1^* a_i$, $\frac{a_i}{m} \in M_1^*$ and $s^{e-1} \mid \mathcal{M}_1^* \frac{a_i}{m}$, $i = 1, \dots, k$. Consequently, $b \in M_{1i} [s]$. Evidently $a = n \cdot b + \tilde{a}_0$. Hence $\mathcal{M}_{1i} \models \mathcal{O}_n$.

1.2.0. Let $M \subseteq | \mathcal{O}(1)$, a $\in M$. We say that a is decomposable in M if there are b, c $\in M$ such that a = b.c.

1.2.1. <u>Lemma</u>. Let $a \in M_{1i}[s]$, $a_0 \in \{-1,1\}$, $v(a) \ge 2$. Then a is decomposable in $M_{1i}[s]$, i = 0,1.

Proof. $a_0 = 1$. Let d, $e \in A_0 - N$, e < d, $\widehat{a_i} \in M_1^*$, $a_i = a_i \cdot s^{d+e}$, i = 1, ..., k, k = v(a). Let $x_0 = y_0 = 1$, $x_1 = a_i \cdot s^e$ and $y_{i+1} = a_{i+1} - y_i \cdot s^e$ if $0 \le i < k - 1$ and $y_{k-1} = a_k \cdot s^d$.

Obviously, $\frac{y_i}{s^e} \in M_1^*$, i = 1, ..., k - 1. Thus, $y = c^{k-1} \cdot y_{k-1}^* + ... + 1 \in M_{1i}[s]$, $x = c \cdot s^e + 1 \in M_{1i}[s]$. We have $(x \cdot y)_0 = 1$, $(x \cdot y)_i = y_i + s^e y_{i-1} = a_1 - y_{i-1} \cdot s^e + y_{i-1} \cdot s^e = a_i$ for i = 1, ..., k - 1 and $(x \cdot y)_k = s^e y_{k-1} = a_k$. Consequently, $a = x \cdot y$. Analogously for $a_0 = -1$.

1.2.2. Lemma. Let $a \in M_{1i}[s]$, $b \in M_i$, i = 0,1.

- (i) If $\underline{\mathfrak{W}}_{1i} \models \underline{b} \mid \underline{a}$ then $\underline{\mathfrak{W}}_{1}^{*} \underline{b} \mid \underline{a}_{j}$, j = 0,, v(a).
- (ii) If b | s and $\mathcal{M}_{i}^{*} = \underline{b} | \underline{a}_{0}$ then $\mathcal{M}_{1i} = \underline{b} | \underline{a}_{0}$.

 Proof. (i) If a = b.c and $c \in M_{1i} [s]$, then $\underline{a}_{i} = b.c_{i}$, i = 0,1,...,v(a).
- (ii) We have $\frac{s}{\delta} \in A_0$, and hence $\frac{a_i}{\delta r} \in M_1^*$, i = 1,, v(a). Since $\frac{a_0}{\delta r} \in M_1^*$, the statement follows.
 - § 2. The consistency of Ar with ¬ (Šx)Prm(x) and with (Šx)Prm(x) & ¬ (Šx)Prm₂(x)

The models in question are $\mathfrak{M}_{10}(s)$ with $\mathfrak{M}_{1}=$

2.0.0. Theorem. Ar ∪ {¬ (Ăx)Prm(x)} is consistent.

Proof. Let L∈A₀ - M₀, s = L! . We prove that $\mathfrak{M}_{10} = \mathfrak{M}_{10}(s)$ (with $\mathfrak{M}_1 = \mathfrak{M}_1$) is the required model. First,

s∈A₀ and for every standard n we have n | s. Thus, $\mathfrak{M}_{10}(s) \models \text{Ar follows by 1.1.2.}$

Let $\mathbf{a} \in \mathbb{M}_{10}$ [s], $\mathbf{v}(\mathbf{a}) \geq 2$. If $\mathbf{a}_0 = \pm 1$, then $\mathfrak{M}_{10} \models \neg$ Prm(a) follows from 1.2.1. If $\mathbf{a}_0 = 0$ then evidently $\mathfrak{M}_{10} \models \neg$ Prm(a). If $\mathbf{a}_0 \notin \{0,+1,-1\}$, then $|\mathbf{a}_0| \in \mathbb{M}_0$ and $|\mathbf{a}_0| \mid \mathfrak{M}_{10}$ a (this follows from $|\mathbf{a}_0| \mid \mathbf{s}$ and (ii) of 1.2.2). Consequently, $\mathbf{a} \in \mathbb{M}_{10}$ [s]and $\mathbf{v}(\mathbf{a}) \geq 2$ implies

 $\mathfrak{M}_{10} \models \underline{\mathbf{a}} < \mathbf{x} \rightarrow \neg \operatorname{Prm}(\mathbf{x}).$

Now, we will prove the consistency of Ar with

(\(\delta\)\)\Prm(\(\mathbf{x}\)\Prm_2(\(\mathbf{x}\)\).

2.1.0. As it is well known,

- (i) $P \vdash Prm(p) \& p \mid x \cdot y \longrightarrow p \mid x \vee p \mid y$,
- (ii) $P \vdash Prm(p) & p \nmid z & z \mid p^{X} \cdot y \longrightarrow z \setminus y$.

2.1.1. Let $p \in M_0 - N$ be prime, $L \in A_0 - M_0$ and s = r(L!, p).

(For the definition of r see 0.1.1.)

Lemma. If de Mo and d>1, then r(d,p) | s.

Proof. We first prove that $c \in M_0$ and $p \nmid c$ implies $c \mid s$. This follows from (ii) of 2.1.0 using $c \mid L!$ and $L! = p^{e(L!,p)}$.s.

We have r(d,p) < d, hence $r(d,p) \in \mathbb{Z}_0$ and $p \nmid r(d,p)$. Consequently, $r(d,p) \mid s$.

As a consequence we obtain immediately!

Corollary. For every standard n, n | s.

2.1.2. Let M1 = W11.

 $\mathcal{M}_{10}(s) \models \text{Ar follows from 1.1.2 by Corollary from 2.1.1.}$

Theorem. (1) $\mathfrak{M}_{10}(s) \models (\mathring{\exists} x) \text{Prm}(x),$

(2) $\mathfrak{M}_{10}(s) \models \neg (\check{\exists} x) \operatorname{Prm}_{2}(x)$.

Proof. (1) (a) Let $a = \infty^k a_k + a_0 \in M_{10}$ [s], $a_k \in M_1$, $a_0 \in M_0$, Prm(a_0) and $a_0 \nmid a_k$. We prove that a is not decomposable in M_{10} [s]. If $a = x \cdot y$ and x, $y \in M_{10}$ [s], then $k \ge 2$, v(x) + v(y) = k and $x_0 \cdot y_0 = a_0$. Let $|x_0| = 1$, $|y_0| = a_0$. If j < v(y) and $a_0 \mid y_1$, $i = 0, \ldots, j$, then $a_0 \mid y_{j+1}$ follows

from $0 = a_{j+1} = \sum_{m+m=j+1} x_{m} \cdot y_{n}$. Thus $a_{0} \mid a_{k}$ follows from $a_{k} = x_{v(x)} \cdot y_{v(y)}$, which is a contradiction.

(b) If e∈A₀ - N, then we have Prm ²⁰¹10 (∝ks^e + p).

Proof. ∝ks^e + p is not decomposable in M₁₀[s] by

(a). Let l<b, b∈M₀ and b | ²⁰¹10 ∝ks^e + p. Thus b | s^e and b | p and, consequently, b = p. Finally, p | s follows from p | s^e, which is a contradiction.

Clearly, a $\in M_{lo}[s]$ implies $\infty^{v(a)+l} s^e + p > a$, which finished the proof of (1).

We will prove (2). Let $a \in M_{lo}[s]$, $v(a) \ge 2$.

- (a) If $a_0 = 0$, then $\neg Prm \mathcal{M}_{40}$ (a) follows from $s^e \mid \mathcal{M}_{10}$ a for some $e \in A_0 N$.
- (b) If $|a_0| = 1$, then $\neg Prm^{201}_{10}$ (a) follows by 1.2.1.
- (c) If $|a_0| > 1$, and $r(|a_0|,p) \neq 1$, then $\neg Prm \ \mathcal{M}_{10}$ (a). Proof. $r(|a_0|,p) \mid s$ follows from $r(|a_0|,p) \in M_0$ by using lemma in 2.1.1. Thus $r(|a_0|,p) \mid \mathcal{M}_{10}$ a follows from (ii) of 1.2.2.
- (d) Let $|a_0| > 1$, $r(|a_0|,p) = 1$. Let t be such that $|a_0| = p^t$.
- (d1) If $a_0 > 1$, then $r(|a_0|,p) \neq 1$ and $\neg Property$ Property (a + 2) follows from (c).
- (d2) If $a_0 = -2$, then $(a + 2)_0 = 0$ and 7 Prm $\mathcal{O}(a + 2)$ follows from (a).
- (d3) If $a_0 = -3$, then $|(a + 2)_0| = 1$ and $r_0 = 1$ Prm $m_{0} = 1$ (a + 2) follows from (b).
- (d4) If $a_0 < -3$, then $|(a + 2)_0| > 1$. Let $r(|a_0 + 2|, p) = 1$. Then there exists a \tilde{t} with $|a_0 + 2| = p^{\tilde{t}}$. Thus $|a_0| |a_0 + 2| = 2 = p^{\tilde{t}} \cdot (p^{t-\tilde{t}} 1)$, which is a contradiction.

Thus $r(|a_0 + 2|, p) \neq 1$ and $\neg Prm$ 20110 (a + 2) follows from (c).

Consequently, 7 Prm₂ 2010 (a) follows from (a),(b), (c),(d).

Let $a \in M_{10}$ [s], $v(a) \ge 2$. Since $\mathfrak{M}_{10} \models \underline{a} < x \longrightarrow \neg \text{ Prm}_{2}(x)$, the proof is completed.

§ 3. The consistency of Ar with (Ax)Prm2(x)

3.0.0. At first we are going to construct a model \mathcal{M}_1 . Let $\beta \in A_1 - A_0$ be prime, $L \in A_0 - N$ and s = Li. Put $M' = \{ \beta : a_1 + a_0; a_1 > 0, a_1 \in A_1, a_0 \in A_0^* \text{ and there is an } e \in A_1 - N \text{ with } s^e \mid a_1 \}$, and

$$M_1 = M \cup A_0$$

Lemma. If $a \in M'$, then there is exactly one $a_1 \in A_1$ and $a_2 \in A_2^*$ such that $a = \beta \cdot a_1 + a_2$ and $a_1 > 0$.

Proof is obvious.

Notation. For $a \in M'$, we denote a_0 , a_1 the elements of A_1^* such that $a_1 > 0$, $a_0 \in A_0^*$ and $a = (3 \cdot a_1 + a_0)$.

<u>Lemma</u>. M_1 is the universe of a substructure of \mathcal{U}_1 . 3.0.1. Put $\mathcal{W}_1 = \mathcal{U}_1 / M_1$.

Iemma. (0) eto c m, c et,

- (1) M = Ar,
- (2) there is a $c \in M'$ such that $\underline{\mathcal{M}}_1 \models Prm_2(\underline{c})$.

Proof: (0) obvious. (1) can be proved similarly as Theorem 1.1.2. (2): First, we shall prove the following statements:

(a) $a \in M'$ and $n \in N$ imply $n \mid a_1$ and $\frac{a}{m} \mid k \in N$. (Obvious.)

- (b) If $a \in M'$, $b \in A_0$, then $b \mid a_1$ and $b \mid a_0$ follows from $b \mid \mathcal{W}_1$ a.
- (c) If a, b \in M', a \cdot b = β^2 · u + v and v \in A*, a \cdot b \cdot c Ao, then a \cdot b \cdot b \cdot a \cdot c = 0. (Indeed, we have $\beta \cdot a_1b_1 + a_1b_0 + b_1a_0 = \beta \cdot u$. Thus $\beta \cdot a_1b_0 + b_1a_0$ and a \cdot b \cdot c = 0 follows from a \cdot b \cdot c | b \cdot c | c \cdot c \cdot c | c
- (d) If $a = \beta^2 \cdot u + v$, $a \in M'$, u, v > 0 and u, $v \in A_0$, then a is not decomposable in M'. (Let x, $y \in M'$ and $x \cdot y = a$. Hence $v = x_0 y_0$ and, consequently $sign(x_0) = sign(y_0)$.

If x_1 , $y_1 \in A_0$, then $x_1 y_0 + y_1 x_0 = 0$ follows from (c). Thus x_1 , $y_1 \in A_0$ implies $sign(x_0) \neq sign(y_0)$, a contradiction.

We have $\beta \cdot u = \beta \cdot x_1 y_1 + x_1 y_0 + y_1 x_0$. If $x_1 \notin A_0$ and $\operatorname{sign}(x_0) = 1$, then, obviously, $u \notin A_0$, a contradiction. We shall prove that $u \notin A_0$ follows from $x_1 \notin A_0$ and $\operatorname{sign}(x_0) = -1$. We have $x_1 \cdot |y_0| < x_1 \cdot \beta$, $y_1 \cdot |x_0| < y_1 \cdot \beta$. Thus $\beta \cdot (x_1 + y_1) > x_1 \cdot |y_0| + y_1 \cdot |x_0|$, and consequently $u > x_1 y_1 - (x_1 + y_1) = (x_1 \cdot \frac{q_2 q}{2} - x_1) + (y_1 \cdot \frac{x_1}{2} - y_1) > x_1 + y_1 \notin A_0$. $(2 \mid y_1, 2 \mid x_1 \text{ and } \frac{x_1}{2} > 2, \frac{q_2 q}{2} > 2 \text{ follows from (a).) The statement (d) is proved.$

Let $e \in A_0 - N$, $u = \beta^2 s^e + s^e - 1$. We prove \mathcal{M}_1 (u). Note that us is not decomposable in M (this follows from (d) and $s^e \in A_0$). If a > 1, $a \in A_0$ and $\mathcal{M}_1 \models a \mid u$, then $a \mid \beta \cdot s^e$ and $a \mid s^e - 1$. β is prime, thus $a \mid s^e$ follows by using (ii) of 2.1.0, a contradiction. We have $\Pr \mathcal{M}_1$ (u). Case u + 2 can be proved like the case u. Clearly, $u \in A_0$ and u is the required element c.

3.1.0. Let \mathfrak{M}_1 , s be as in 3.0.0. We have $\mathfrak{M}_{11}(s) \models Ar$.

Theorem. $\mathfrak{M}_{11}(s) \models (\exists x) Prm_2(x)$.

Proof. (a) Let $a \in M_{11}$ [s], v(a) = k, $a_{k-1} = a_{k-2} = \dots = a_1 = 0$, Prm \mathcal{M}_1 (a₀) and $a_0 \neq \mathcal{M}_1$ a_k . Then Prm \mathcal{M}_{11} (a).

We shall first prove that a is not decomposable in $\mathbf{M}_{1\,1}\,\mathbf{[\,s\,l\,}$.

Contrarywise, assume that $a = x \cdot y$ and $x, y \in M_{11}[s]$. Then $x_0 \cdot y_0 = a_0$ and v(x) + v(y) = k. Let $|x_0| = 1$, $|y_0| = a_0$. Thus $a_0 \mid \mathcal{M}_1^* \mid y_0$. Let j < v(y) and $a_0 \mid \mathcal{M}_1^* \mid y_i$, $i = 0,1,\ldots$, $j \cdot |y_{j+1}| = |\sum_{m+m=j} x_{m+1}y_m|$ follows from $0 = \sum_{m+m=j+1} x_m y_n$, and consequently $a_0 \mid \mathcal{M}_1^* \mid y_{j+1}$. Thus $a_0 \mid \mathcal{M}_1^* \mid y_i$, $i = 0,\ldots,v(y)$. We have $a_k = x_{v(x)} \cdot y_{v(y)}$. Consequently, $a_0 \mid \mathcal{M}_1$ ak, a contradiction.

Let $b \in M_1$, b > 1 and $b \mid \mathcal{M}_{11}$ a. Then $b \mid \mathcal{M}_{1}$ a_k and $b \mid \mathcal{M}_{1}$ a_o . Thus $b = a_o$, a contradiction.

(b) Let $e \in A_0 - N$, $p \in M_1 - A_0$ with $Prm_2 \longrightarrow M_1$ (p) (by using (2) of 3.0.1). $p \not \longrightarrow M_1$ s^e and $p + 2 \not \longrightarrow M_1$ s^e follows from $s^e \in A_0$. Let $c(k) = \alpha k s^e + p$, $k \in N$ and $k \ge 1$. $Prm_2 \longrightarrow M_1$ (c(k)) follows from a. Clearly, if $a \in M_{11}[s]$, then a < c(v(a) + 1), and hence the proof is completed.

References

- [1] J.L. BELL and A.B. SLOMSON: Models and ultraproducts, NHPC 1969.
- [2] A. MOSKOWSKI: Sentences undecidable in formalized arithmetic, NHPC 1952.

[31 J.R. SHOENFIELD: Mathematic Logic, Addison-Wesley 1967.

Matematický ústav Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 6.4. 1976)