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Abstract: The "tensor product® of two partially or-
dered sets has been definedpin the literature as thlg set
of all Galois connectioms between them. Investigations of
this construct have usually yielded ple asant results only
when the p.o. sets under consideration were complete. The
apgroach of the title is used to clarify the reasons for
this phenomenon, provide simple proofs of many of the re-
sults for complete p.o. sets, and show that in the catego-
Ty of all (bounded) partially ordered sets, most of the
usual properties of a "tensor product” are lacking.
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. It is well-known fact (see, for example, MacLane [4,
P. 931 that for p.o. (partially ordered) sets A and B, the
meps from A to B which are the first half of a Galois con-
nection are precisely those order-preserving maps from A
to the dual of B which are left adjoint functors between
the two p.o. sets, qua categories, The structure of the
set of all Galois connections between two P.0. sets, order-

ed pointwise, and its connection with bimorphisms, especi-
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ally for complete p.o. sets, was investigated by Shmuely
[71. It ‘is the purpose of this note to put Shmuely ‘s re-
sults in a somewhat different perspective by using the
approach indicated in the title, and to sl':ow exactly the
extent to which the results for the special case of comp-
lete p.o. sets can be extended to arbitrary (bounded) p.o.

sets,

The main point seems to be that in the category of
all bounded p.o. sets and left adjoint maps, the formation
of hom sets, which are ordered guite naturally by the
"pointwise” order, is close to being an internal hom func-
tor, but in ways which will be made more explict, is rat-
her badly behaved, while the restriction of this construc-
tion to the full subcategory of all complete p.o. sets
ard complete-join-preserving maps provides a functional
(in the sense of Banaschewski-Nelson [2]) intermal hom
functor for which there is a dualizer (the two-element
chain) and hence for which there is a tensor multiplica=-
tion which also provides universal bimorphisms. In sharp
contrast, we will see that the larger category does not

have universal bimorphisms.

§ 1. Preliminaries. Recall that for p.o. sets A and
B, a functor from A to B, as categories, is Jjust an order
preserving map A—> B, and an order-preserving £f: A— B
is left adjoint iff there exists a (right) adjoint func-
tor £¥ : B> A such that f£(a)cb iff azr¥ (b) for all
aeA, beB, Note that the adjoint, ¥ , is unique, that
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f.f# £ and £%* re¥ are the identity maps on A and B res-
pectively, and a< £¥f(a), ££% (b) 2 b for a1l a€A, beB,

The dual Ad of a p.o. set has the same underlying

set as A, and a<b in Al iff b4a in A,

We will consider the category PA of all bounded p.o.
sets (i.e. thos p.o. sets with a largest element, 1, and
& smallest element, 0) and all left adjoint maps between
them. Note that every md: phism in PA preserves all exist-
ing joins (since these are coproducts in A, as a category)
and so in particular maps O (which is the Jjoin of the emp-
ty set) to 0. Moreover if A is comple te then it is an im-
mediate consequence of the special adjoint functor theo-
rem that every order-preserving map f£: A—> B which pre-’
serves all joins is a left adjoint map; in fact, for be B,
t*(b) = V {aes |£(a)£b3 . Consequently the category
CJSL of all complete p.o. sets and comple te-join-preserv-
ing maps (i.e. comple te join semilattices and their homo-
morphisms) is a full subcategory of PA,

For a left adjoint £: A—> B in PA, let £: A—> B
(where 3, B are the MacNeille completions of A and B) be
defined by

F(x) = V $2(a) | aea, acx?

and define g: ﬁ—-»ﬁ by
gy) = AN{t¥ (b)) veB, bzy3.

Since the MacNeille comple tion of & p.o, set is a join-

and meet-dense extemsion (see Banaschewski-Brums [1]) it
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follows that for xeﬁ, Y& ﬁ,
B(x) 4y iff £(a)4b for all a€A, be B with adx, y£b
iff a<2¥ (b) for all a€A, beB with asx,
¥<4b ’
iff x<g(y).

Consequently fisa left-adjoint map, with adjoint g. Again
because & is a Jjoin-dense extension of A, it follows that
? is the only left-adjoint extension of f; consequently
every morphism f: A—> B has a unique extension to a mor-
pPhism £: 8— B. Since the dual of B is the completion of
the dual of B, this yields Theorem 1.2 of Shmuely L71.

In particular, each morphism A—> B in PA where
B € CASL has a unique extension to a morphism i— B. How-

ever, this does not provide a reflection from PA into CISL,

since the restriction to A of a morphism L2—Bin CJsI,
although it will preserve all joins existing in A, need not
be a left-adjoint map. An easy example of such a situatiom
is the following. Let A, B eand C be the p.o. sets pictured
in Figure 1. B is clearly an essential extension of A in
the category of all p.o. sets and order-preserving maps,
which is join- and meet-dense, and hence (see [11), B is
the MacNeille completion of A. The map £: B—> C which maps
e and everything below it to 0, and everything else identi-
cally, is a left adjoint map. However if g: C— A were the
right adjoint of fi(i: A—» B the inclusion map) then fi(a)=
=0 = fi(b) would imply a&g(0) and b2g(0) and so without

loss of generality ¢ g(0), which would imply fi(e) <0, a
contradiction.
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§ 2. The hom functors. For 4, BePA, let H(A,B)
be the set of all morphisms A—> B with the pointwise par-
tial order. H(A,B) has as smallest element the constant
map with value O, and as largest element the map which ta-
kes 0 to 0 and everything else to 1, and so H(A,B)e PA.
In fact H( » ) provides a functor PA°Px PA —> PJ , the ca-
tegory of all bounded P.0. sets and maps preserving all
existing joins; for f: A°~—s A, g: B—> B’ in PA, H(f,g.):
: H(A,B) —> H(A",B”) is given by H(f,h)(h) = ghf.

Note that if A and B are complete then H(A,B), being
closed under §ointwise Joins, is also complete, and so for
any £: A°—» A, g: B—> B’ in PA, H(f,g) is a left adjoint
map, Thus H( , ), restricted to CJSL, provides an internal
hom functor on the smaller categary.

For each Ae PA and ac A, the map (%t A—> 2 (2 the
two-element chain) such that “g(x) = 0 iff x£a, has a
right adjoint ((4.&# (0) = a, (“a# (1) = 1) and moreover an
easy caleulation shows that the correspondence a amnd “a
provides an isomorphism of A9 with A* = H(A,2),

Now for each left adjoint map £f: A— B, t* is a
left adjoint map ) S Ad; in view of the fact that 499 =
= A this gives an isomorphism H(4,B)—>H(B,4%), Further-
more for beB, (o4, )(x) = 0 iff xe2¥ (b) ire £(x) 2b
iff @ (£(x)) = 0 and so “e#(p) = &pf. In view of the
aboe remarks it follows that the map H(A,B)— H(B* A% )
given by farwy £* where £*(h) = hf is an isomorphism,
Consequently the functor H( »2) = ( )* provides a self-
duality of PA,
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One comment in passing: a simple calculation shows
that for all Ae PA, H(A,n + 1) (where n + 1 is the n + 1-
element chain 0<1/n<2/n<...<1) is isomorphic to the
dual of the set of all n~tuples (al,...,%)e A? with 8, £
£a,%...%48, and with the pointwise partial ordering.
For such an n-tuple (81,0005a )€ A", the map £f: A—>n + 1
corresponding to it is given by f(a) = j/n if j is the

largest number with a< a; if such exists, f(a) = 1 other-

wise,

Since every order-preserving map from a chain into a
P.0. set B which maps O to O is left adjoint, the above
discussion implies that for p.o. sets A and B, and a;£a, £
£..0fa) in A, blébzé...ébn in B, the map f: A—B
‘such that f(a) = bj if j is the largest number with &éaj
if such exists, f(a) = 1 otherwise, is a left adjoint map,
Lemma 1: For all A, B€PA and aeA, the map e,pla):
: H(A,B)—> B given by e,g(@)(£) = £(a) is a left adjoint
map. ) 3
Proaf: For beB, let (b): A—> B be given by
¥ (b)(0) = 0, ¥ (b)(x) = b if O<x<a, v (b)(x) =1 if
x4a. The discussion in the preceding paragraph shows that
¥ (b)e H(4,B). Moreover 7w : B—> H(A,B) is clearly order-
preserving, and for fe H(A;B), e,pla)(£) &b iff f(a)&b
iff £ £ 4 (b); consequently ¥ is right adjoint to e,p(a)
and this establishes the proof.
In the special case that A is complete, e,p 5 since it
clearly preserves all joins, is a left adjoint map. Also

for all a, ey,: A—> A** g ap isomorphism, and hence a
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left adjoint map,
Progositi:on 1: For A the six-element p.o. set in Fi-
gure 1, e,y is not a left adjoint map.
Proof: Iet £, g: A—s 3 be given by £(0) = 0, f(a) =
£(b) = f(c) =% , £(a) = £(1) = 1, and g(0) = g(a) =
g(b) = g(d) =0, g(e) = g(1) = Y2 . Then £ and g are

left adjoint maps, and g<f. Now let ¢ : H(4,3)—> 3 be
the map defined by

0. if h<g
¢)=J 1%  ifhigand het
1 otherwise.

Then ¢ e H(H(4,3),3).
Also, for all he H(A,3), if ¢ (h) = O then h(a) 2
.£gla) =9, if ¢ (h) = 72 then h(a)2f(a) = 12 , and
consequently e,3(a) £ ¢ . Similarly ey3(b) £ ¢ . How-
ever, if en3 had an adjoint then we would have a< °A3* (¢)
and béeA3# (¢$) and consequently either eA3(c) £¢ or
ep3(@) £ & . But ey3(c)(g) = gle) = 12>0 = p(g), and
ep3(d)(f) = 1> 12 = ¢ (£) end so this would give a contra-
diction. Consequently €3 does not have a right adjoint.
For all A, B, CePA and ¢ e H(A,H(B,C)) there is a
map & : B—> H(4,C) given by & (b)(a) = & (a)(b); the
fact that for each be B, $ (b) €H(A,C) follows from Lemma
1 and the fact that & (b) = epc(b)d . If B is complete
then $ y since it clearly preserves all joins, is a left
adjoint map, and thus there is an order-embedding SABC:
: H(A,H(B,C)) — H(B,H(A4,C)). In general $ is not a left
adjoint map; for example if ¢ e H(H(A,3), H(A,3)) is
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the identity map, A as in Figure 1, then (’5 t A —
—> H(H(A,3),3) is €3 which by Proposition 1 is mot &
left adjoint map.
‘ If A and B are both complete this evidently gives &
natural isomorphism between H(A,H(B,C)) and H(B,H(A,C));
also for all A and B, S;p>: H(A,B*)— H(B,A*) is an iso-
morphism.

On the other hand, even if both B and C are complete,
H(A,H(B,C)) and H(B,H(4,C)) need not be isomorphic (natu-

rally or otherwise).

Proposition 2: For A the six-element p.o. set in Fi-
fure 1, H(A,H(3 3)) % H(3, H(4,3))

Proof: Since 3 is complete, the map SA33:
: H(A,H(3,3)—> H(A,3)) is an order embedding.
Both these p.o. sets are finite; we will establish the
claim by showing that they have different cardinalities.

First of all, the elements of H(3,3) are in one-one
correspondence with the pairs (x,y)e 3% 3 with x£&y; these
can easily be listed an then one sees that H(3,3) is the -
six-element lattice diagrammed in Figure 2.

Now the left adjoint maps h: H(3,3)—> A are all tho-
se maps which preserve all joins in H(3,3), i.e. all order-
preserving maps h: H(3,3)—> A with h(0) = 0, and h(s)vh(t)=
= h(u). Now for x, ye A, xvy exists iff x&y, y<£x, or
4x,5% = $¢,d% . Consequently an order-preserving map h:

: H(3,3)—> A with h(0) = 0 is a left adjoint iff either
h(s) = h(u), h(t) = h(u), or 4h(s),h(t)3 = f¢,d% and
h(u) = 1.
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If ih(s),h(t)? = €¢,d3 then h(1)=h(u) =1 so
h(1) = 1; also h(r)£ h(s) and h(r)< h(t) and so h(r) e
€ {0,a,b% . On the other hand, each map h: H(3,3)— A
with 4h(s),h(t)3 = €¢,d? ,h(w) = h(1) = 1, h(0) = O and
h(r) e £0,a,b% is a left adjoint map. There are 6 such
maps.

The remaining left-adjoint maps H(3,3) — A fall into
three types; those with h(s) = h(t) = h(u), those with
h(s) = h(u)# h(t) and those with h(t) = h(u)4$h(s), and
moz;eover there is no overlap among these types. There are
as many maps of the first type as there are order-preser-
ving maps of the three-element chain into A, i.e, as many
as there are triples (31,32,33)5 A3 with a; £ azl-a3; these
can easily be counted, and there are 44 -of them.

There are as many maps of the second kindi as there are
; . 1 2
order-preserving maps of the four element chain {0, 33 »1%

into A which do not identify -;— and -% s i.e. as many as

there are quadruples (al,az,a3,a4)e A% with a1£a;fa348,.
These are also easily counted; there are 41 of them,

There are as many maps of the third type as there are
of the second, and hence | H(H(3,3)A)] =6 + 44 + 41 = 132,

Now, tocount the elements of H(H(4,3),3): Since A and
3 are self-dual, H(A,3) X H(3,A) and hence H(4,3) is iso-
morphic to the set of all pairs (x,y)eA2 with x¢y and
with the point-wise ordering. It is easy to list these
pairs, there are 19 of them, H(3,A) is diagrammed in Figu-

re 4. Again, the elements of H(H(A,3),3) are in one-one
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correspondence with the ordered pairs (x,y)e H(3,A)2 with
x<y; using Figure 4, these can easily be counted. There
are 138 altogether.

This establishes the point.

§ 3. Bimorphisms and tensor products. For A, BePA,
we define A®B = H(A,B*)* , (Shmuely L7] defines A@B to
be H(A,Bd)d, which is of course naturally isomorphic to
H(A,B*)%* ), Note that there is a mtural isomorphism
A®B —B®A given by SABZ* .

A set map f: Ax B—>C is a bimorphism for A, B, Ce PA,
iff f(a,-): B—>C and f(-,b)¢ A—> C are left-adjoint maps
for all a€e A, beB.

Note that every bimorphism f: Ax B—> C has a unique
extension to a bimorphism f: ix8 — 6; this is Theorem 2.2
of Shmuely [ 71 but can easily be seen as follows: let £:

: xB— C be defined by F(a,b) = V { £(x,y)| xe4, yeB,

x<a, y4b ¥ . Then for each aeﬁ,

f(a,-) = V £f(x,-) | xea, x2a?

V4§ f(x,-)"| xed, x2a 3

where far xeA, f(x,-)" is the extension of f(x,-) to a
left adjoint map B — G. Since f(x,-)" preserves all joirs
for each xeA, it follows that f(a,-) also preserves all
joins amrd hence is a left-adjoint mep. Similarly f(-,b) is
left-adjoint for all be B, The uniqueness of ¥ follows from
the fact that A and B are join-dense in % ana 8 respecti-

vely.
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Proposition 3: For all A, Be& PA, the map T :
: AxB—> A®B given by % (a,b) (¢) = ¢ (a) (b) is a
bimorphism,

Proof: Since the map AxB — BxA given by (a,b)as

~>(b,a) is a p.o. set isomorphism, md S,p ¥ : H(B,A% )*—»
—> H(A,B*)* jg an isomorphism, it is enough to show that
T (a,-) is a left adjoint map from B to H(A,B*)* for all
acAi.,

First of all, for each acA, beB, = (a,b) =
= egy(ble,p+ (a) and so by Lemma 1, =(a,b) is a left ad-
joint map, i.e., % (a,b)eH(A,B*)*,

Now, let ae A, and define y : H(A,B*)*— B by

w(h) = (0¥ (0)(a)) ¥ (0).

Then for g, he H(A,B*)* | g<nh ife h* (0) 2 g¥ (0) ire
n¥ (0)(a) £ g#* (0)(a) izf (2% (0)(a))* (0)= (n# (0) (a))* (0)
and so ¥ is order-preserving.
Moreover for be B, h ¢H(A,B *)*
b £ y(h) iff be(h¥(0)(a))* (0)
iff h#(0)(a)(b) = 0
iff @ (a,b)(n¥ (0)) = 0
iff w(a,b)ch
and thus < (a,-) is a left adjoint map, with right adjoint
¥ .
Corollary (Shmuely L71): If A, BePA are non-trivial
(i.e. have at least two elements) and H(A,B*) is complete

then A and B are complete; if in addition H(A,B* )¥ is

completely distributive, then so are A and B,
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Proof: If b, ceB and bfc then the map $: A—>B*
with ®(0) =0, ¢ (x) = @« for x%0 is a left adjoint
map, and for all O%acA, $ (a)(®) =0, ¢(a)le) = 1.

Thus for all a&A with a$0, = (a,-) is one-one and hence
its right adjoint is a p.o. set retraction of H(A,B*)*
onto A. Since retracts of complete p.o. sets are complete
(Banaschewski - Bruns [1]) this established the first point.

Now a retract of a ecomplete, completely distributive
p.o.set by a map which preserves all joins is itself comp-
lete and completely distributive since these two conditions
exactly characterize the injectives in CJSL (see Crown [31).
If H(A,B*)* is complete ani completely distributive then
since the retraction H(A,B*)* —» A, being a right adjoint,
preserves all meets, it follows by the dual of Crown’s re-
sult that A is also complete and completely ‘distributive.

Now, the results in § 1 establish the facts that
H( , ), restricted to CJSL, provides an internal hom func-
tor for which there is & dualizer, and hence (see Bana-
scheski-Nelson [2]) for complete A and B, < : AxB —

—> A®B is a universal bimorphism on AxB in CJSL, and
the functor given by (4,B)~»»A@B is a tensor multiplica-
tion relative to H. The fact that CJSL has universal bi-
morphisms is also contained in Shmuely [7, Lemma 1.71 and
Mowatt [6); the fact that (A,B)~>A®B provides a temsor
multiplication for the internal hom functor is due to Wa-
terman L8],

Furthermore, for A, Be CISL, A@B ¥ H(4@B,2)% =
= BiN(a,B,2)d where BiM(4,B,2) is the set of all bimorph-
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isms A= B —> 2 with the pointwise partial order, and this
yields Theorem 1.3 of Shmuely L[71.

However, even if A and B are complete, = : AxB —>
—> A®B is in general not a universal bimorphism in PA;
in fact the situation is even worse than that. We will see
below that there is no universal bimorphism in PA on 3= 3.

For each ordinal n, let An be the p.o. set in Figure
3. That is, the underlying set of A, is (nx 2)u 10,13,
and the order is given by

(i,§)< (k,h) iff i<k
and 0<(i,j)<1 for all (i,j)le nx2,

Lemme 2: For infinite n, i_f £: B—> A, is a left ad-
joint map and (0,0), (0,1)€ imf then f££¥ is the identity
mep on A and hence £ meps _onto A .

Proof: Since ££¥ £ = £ it follows that for all xe imf,
22 (3) = x, and so in particular ££#(0) = 0, £r%(0,0) =
= (0,0), ££#(0,1) = (0,1).

Assume for some A < n, that ££¥# (i,j) = (i,j) for all
i<sa , 3€4£0,13 (A>0). Then ££%* (1,0)= ££%#(i,j) >
2(i,j) for all i<A , je€0,1% and hence either
2% (2,00 2(2,0) or £2# (1,02 (2 ,1). But (A,0) 2
2 ££¥ (2,0) and so ££#(2,0)2 (A,1) would imply (A,0)2
2 (A,1), a contradiction. Consequently f£¥ (A,0)=(a,0)
and so £2¥ (2,0) = (1,0). By symmetry ££# (4,1) = (2 ,1).

Thus ££%# (i,j) = (4,§) for all (i,j)enef0,1%. Sin-
ce 2% (1) z2£¥(i,j) for a1l (i,j)enx£0,13, this imp-
lies that ££%(1) = 1 and this yields the result.

Proposition 3: There is no universal bimorphism on
3%3 in PA,
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Proof: Suppose ¢ : 3x 3—> B were a universal bimor-
phism in PA, Take n> | B|, and let £: 3x 3 — Ay be given
by £(0,x) = £(x,0) = 0 for all x& 3, £(12 ,12) = 0,
£(1/2,1) = (0,0), £(1,%2) = (0,1) and £(1,1) = (1,0). Then
for each xe3, f£(-,x) and f£(x,-) map O to O and preserve
order and so are left adjoint maps. Thus f is a bimorphism
and hence there exists a left adjoint g: B—¥ A with g¢ =
= £, by the universality of ¢ . But then (0,1) end (1,0)€
€ im g and so by Lemma 2, g maps onto A, which is impossible
by the choice of n.

Another immediate consequence of the above lemma, using
an analogous argument to the one in the proof of Propositionm

3, is that the category PA does not have coproducts, in fact
21 2 does not exist in PA, Since PA is self-dual this also

shows thatit does not have products, which explains to some
extent what is wrong with this categorye.

Of course, for any family of bounded p.o. sets, the set
theoretic product of this family, with the pointwise order-
ing, is again a bounded p.o. set, and moreover the projection
maps are easily seen to be left adjoint. We use the symbol
" T " to denote such products, keeping in mind that these

are not (categorical) products in PA,
Lemma (Shmuely [7]): If A is_complete then for all Bje
€ PA, A® T B; & T A®B;.

Proof: Since for any A;ePA (ieI), (TTa)* S TTAR,
it is equivalent to prove H(A,TB;) & T H(A,B;). But since
A is complete, it follows that for each fe H(A,T Py),
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prjf: A—-—»BJ- (prj: T B, —> Bj the jth projection) is a
left adjoint map, and that the correspondence

f A (prif)iel is the desired isomorphism.

Proposition 4 (Shmuely [7]): If A and B are complete
and completely distributive, so is A®B.

Proof: A is complete and completely distributive iff
it is a retradt, in CJSL, of a power set (see Crown [31]).
Since the formation of tensor products is functorial in
CJSL, the fact that A and B are complete and comple tely dis-
tributive impliés that A@B is retract in CJSL of 2'@ 29
for some sets I and J. By the above lemma, 2lg Y =
= (202) 7% = 277 gng nence 4®B is complete and complete-
1y disiributive.

Propositiom 5: For A, B,CePA, if A amd C are complete
then A® (B®C) = (A®B)®C.
Proof: If A and C are complete then the map Sycpt
: H(4,H(C,B)) — H(C,H(A,B)) is an isomorphism for all B,
Consequently (C®B)®A = H(H(C,B*)* A*)*
= H(A, H(C,B*))*
= H(C, H(A,B¥))*
ZH(H(A,B*)* c*)*
= (A®B)@cC

But then the result follows from the commutativity of ® .

Corollary (Shmuely L7]): ® is associative in CJSIL.

These results on associativity of ® cannot be pushed

any farther. In fact, for A the 6-element p.o. set in Figure
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1, since

A®(3D3) = H(H(3,3%)* ,A*)¥ H(H(3,3),0)*
and (A®3)®3 & H(H(A,3%)* ,3*)%*= H(3,H(4,3))*
& H(3,H(3,A))*

it follows from Proposition 2 that A® (3®3) is mwt iso-
morphic to (A®3)® 3.

The fact that ® is not associative in the category
of all partially ordered sets and left adjoint maps is
proved in Lisé [4],

Note that if £: A—> B in PA is an epimorphism then

£ maps onto B: for each beB, define g, h: B—> 2 by h(x)
=0 iff x<b, g(x) = 0 iff x&2e¥ (b). Now for aeh, £(a)<
2b iff a<e¥ (v) iff £ (a)< £2¥ (b) and hence (since

££¥ (b)£b), hf = gf. Since £ is an epimorphism, g = h and
thus b = £(£¥ (b)) which establishes the point.

Note also that if £f: A—» B in PA maps onto B then
for b, ce B, £¥ ()4 f* () iff @ f £ @ L iff

@y & @, and thus £% is an embedding; the self duality
of PA via ( )* then implies that the monomorphisms in
PA are embeddings.

Since 2€ CJSL, the same arguments show that epimorph-
isms are onto in CJSL and monomorphisms are embeddings in
CJSL.

Because formation of tensor products is functorial in
CJSL, one can define flatness in CJSL as one does for modu-
les: Ae CJSL is flat iff 1, @f: A@B— A®C is a mono-
morphisms whenever £f: B—>» C is a monomorphism
(1, = H(L,,£*)*),
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Proposition 6: In CJSL, & p.o. set is flat iff it
is projective.

Proof: If A is projective and f: B—» C is a monomor-
phism then £* : C*—> B* is onto B* and hence by the
projectivity of A, H(1,,f*): H(A,C*)—>H(A,B*) is onto,
and thus 1®f = H(1,,f*)* is a monomorphism.

Conversely, if A is flat then for all epimorphisms
f: B—>C, £¥ ;: C¥— B*® jig g monomomh;ems and hence
L@f¥*: A®C* — A®B™* is a monomorphism. But L@r*=
= H(1,,f*%*)* and consequently H(1,,£%¥*) is onto, and
this implies that H(1,,f) is onto (sinece ( )** is an
isomorphism of CJSL) and hence A is projective.

Since ® is associative in CJSL, it follows that
ADB is flat whenever A and B are flat and thus Proposition
6 yields a second proof of the fact that A@E is complete
and completely distributive whenever A and B are,
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