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‘Abstract: In earlier papers (R. Ree and R.J. Wisner,
Proc. Amer. Math. Soc. 7(1956 »_6-8 and B.J. Gardner,
Comment, Math. Univ. Carolinae 15(1974), 381-392) the nil
completely decomposable torsion-free abelian groups were
characterized, and a description of the absolute annihila-
tors of comple tely decomposable torsion-free abelian groups
wa&s given, For a completely decomposable torsion-free abe—
liam group A, a chain

05A(1)=sA(2)s ... sA(x ) ...SA(KL) = A+ 1)
of "iterated absolute annihilators" of A was also defined
and this gave some information about the kinds of ring mui-
tiplications admitted by A. This paper is concerned with stu~-
dymg these same concepts for other classes of torsion-free
abelian groups. § 2 is devoted to vector oups and certain
direct products of slender groups, while ?‘3 deals with se~-
parable groups,

Key words: Ring, nil group, absolute annihilator,
AMS: 20K99 Ref, Z,: 2,722,1

1. Preliminaries. Throughout this paper we use the word
"group” to mean abelian group, and the word "ring" to mean a
not necessarily associative ring, 4 ring (R,=) with addi-
tive group isomorphic to A is called a ring on A. The anni-
hilator of a ring (R ,x ) is denoted by (0:(R »><)), and the
absolute annihilator A(¥ ) of a group A is defined as the in-
tersection of the annihilators of all rings (R,x) on A.

Szele [81 defines the nil-degree (Nilstufe) of a group

A as the largest integer n such that there is an associative
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ring (R,x) on A with (R,x )®4# 0, if such an n exists. Ana-
logously the first author [4] defined the strong nil-degree
pf A as the lergest integer n (if one exists) such that the-
re is a ring (R,x) on A with (R, )®, the subring generat-
ed by all products of the form (...((a;= 8,)x 83)e..x 8y, non-
zero. We call a group A nil (resp. strongly nil) if A has nil-
degree 1 (resp. strong nil-degree 1).

The type of an element a, or a rational group A is deno-
ted by T{a), T(A) respectively. If A, and A, are two rationmal
groups, then the product T(A,) T(A,) and quotient T(&,):T(Ay)
of the two types T(A,), T(A,) are defined as in [2]. All ot~
her unexplained not;tiom appears in [1] or [2].

Ree and Wisner [ 6] have classified the nil completely de-
composable torsion-free groups, a paraphrase of their result
being:

If A =4’.@1 4;, where the 4, are rational groups, then A is nil
(equivalently strongly nil) if and only if T(4;) T(Aj)é T(A,)
for all i, j, end ke I.

In the sequel we will need

Proposition 1.1, Iet A =-L@I. 4;, where the A; are ratio-
nal groups. If T(A;) T(Aj)é T(A)) for some i, j and keI then
there is an associative ring (R ,x ) on A with Ayx A, + O for
some £ & I, and A=A, =0 for all meI, m4i,

Proof: See the proof of Theorem 1.1 of L[4].

2. Vector groups. A vector group is a direct product of
rank one torsion-free groups (i.e., a group V =,TII RL where
<
the Ri are rational groups).

- 494 -



We begin this section by giving a description of the
nil vector groups. To do this we need the following defini-
tions, and the well known results (2.1) to (2.3).

A slender group A is a torsion-free group with the pro-
perty that every homomorphism from a countable direct product
of infinite cyclic groups < e > (n =1,2,...) into A sends
almost all components. < en> into the zero of A.

A set is measurable if I admits a countably- additive me-

asure (@ such that « assumes only the values O and 1, and

@(I) =1, «(i) =0 for all iel.

(2,1) (Sgsiada [71, Nunke [5]) Every countable and reduced
torsion-free group is slender.
(2.2) (Fuchs [21,p. 160) Direct sums of slender groups are
slender.
(2.3) (Xod; see [21, pp. 161, 162) If G is a slender group,
A; (i€ I) are torsion-free groups and the index set I is mt
measurable, then

(i) if ¢ is a homomorphism from .T;I'I A; into G such
that ¢ (;®; 44) =0, then $ =0;

(ii) there is a natural isomorphism

Holn(‘,:ll'I 4,,6) Ei@I Hom(4;,G).

Whenever we represent a vector group as a direct product
v '=—LTeTI R; in this section it is to be understood that the Ry
are rational groups.

We are naw in a position to prove

lemma 2.4, If V =-LU1 R; is a vector group such that

the index set I is not measurable, every R, is reduced and
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Hom(R;, .® Hom(R-,Rk)):# Q for some i and ke I, then there
€l J
exists je I with T(R;) T(Rj)éT(Rk).

Proof: Hom(Ri,a.'@I Hom(RJ.,B.k)) is a subgroup of
Hom(_Ri,& I Hom(Rj,Rk)) so Hom(Ri,Hom(Rj,Bk))* 0 for some
JjeI. Now Hom(Rj,B.k) is a rank one torsion-free group whose
type isT(R): 'L‘(RJ-). Thus T(R;) T(Rj)é [T(R): T(Rj)] T(Rj)é
éT(Bk), as required.

Theorem 2,5, Let V =£7;I'I R; be a vector group where the
index set I is not measurable. Then the following conditions
are equivalent:

(1) V is strongly nil;
(2) V is ni1;
(3) T(R;) T(R)ET(Ry) for all i, j and ke I.

Proof: (1) =>(2) is immediate.

(2) => (3). Suppmse T(R;) T(RJ)éT(Rk) for some i, J
and keI. It follows from Propesition 1.1 that we can define
a non-trivial associative ring on a completely decomposable
direct summand V° of V. This ring can be extended to the who-
le of V by making all other products zero, so V is not nil.

(3)==>(1). If V is not strongly nil, then.

Hom(V, Hom(V,V))= 0.

Since T(Ri)zé T(R;) for all i€ I, and I is not measur-
able, (2.1) and (2.3)(ii) show that Hom(V,V)sh‘II_I 5121 Hom(R;, R ).
Now Hom(Rj,Rk) is either zero or a rank one torsion-free group
whose type is less than or equal to T(R). (2.1) and (2.2)

then show that ?.@1 Hom(Rj,Rk) is a slender group for all ke I,
Applying (2.3)(ii) we get

Ho:ml(V,Hom(V,V))5"_-“'.11'I 1'.?1 Hom(Bi,é_@I Hom(Rj,Rk)). Hence
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Hon(;ll,é_QI Hom(Rj,Rk))# O for some i and keI, so from Lem-
ma 2.4 we conclude that T(Bi) T(Ra-)é T(Pk) for some je I.

Corollary 2,6, Let V =£TeTI R; be a vector group, where
I is not measurable., Then V is nil if and only if -i?l R; is
nil,

We now turn our attention to the absolute annihilator

V(*) of a vector group V,

Theorem 2,7, Iet V =.TII R; be a vector group with the

L3
index set I not measurable, and let

I, =4i€ I there exist no j and keI with T(R;) T(RJ-) £
4 T(R)P.

Then V(* ) =4'-1eTI R.
4

Proof: Let veV(*), Write v = (...,ri,...) where some
rik 0, rie R, and assume there exist Jy keI with T(R;) T(R)£
£ T(Rk). Applying Proposition 1.1 we obtain an associative
ring (R’,x") on a finite rank comple tely decomposable summand
Vo = @Io Rio €V, V=V® V’, such that ieI,, Ry= Ry +

%

* 0 for some £ ¢ I, and R x’ R, =0 for all me I,, m#i.

We can extend (R’,x’) to a ring (R,%x) on V by letting x

coincide with x’ on V,» and letting all other products be

zero. Now v =, = r. + v’ where v'e V’. Thus 0= vxr,=p;x
LO < 10 10 £y

Xr, for all Yy € R , This cannot be the case since %_x'

wnz* 0, whence v e"'LTIT R.

Conversely, suppose v ¢ L Hi. If R, is divisible for
iel, d
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some je I then I, is empty. so v = O and so V€ V(* ). Hence
R.j can be assumed to be reduced for all je& I. Write v =

= (veeyTy,000) where some ri4 0, rye Ri. Suppose véev(¥),
Then there is a ¢ € Hom(V,Hom(V,V)) with ¢ (v)# 0. Thus
Hom( T R, Bp,(V,V))4 0. (2.1), (2.2) and (2.3)(i1) imp-
Ly Eom( T R;, Hom(,T; Ry, T B)) &

= J0. —:@2143“(31’@@1 Hom(Ry,R,)), 8o there is an ieI, and
ke I with H°'(Bﬁ.'{,§l Hom(Rd,Bk))* O, From Lemma 2.4 we in-
fer that T(R;) 'I‘(Rj)é’l‘(Bk) for some je I, contrary to our

choice of v. Hence v is in V(* ),

Consider the chain
0EV(1)S V(2)E e EV(c) S aee
of subgroups of V defined inductively as follows:
V(1) = V(*); V(x+ 1)/ V() =LV/V(c)] (*); V(B) =
=“_k2J(5V(oc) if @ is a limit ordinal. It is clear that
V(w+ 1) = V() for some ordinal w .

As in [4] we introduce # -matrices in order to give a

descriptiom of V(n) for n finite, A 2x m #r —gatpix is a 2xm
matrix of types

[ Tme o)
T

21 Tz eee Ty

such that qi tzi & t’n+1 for i = 1,2,.0o,l - 1.

Proposition 2.8, lLet V 31,_11'1 R; be a vector group with
I not measurable, and for each positive integer n let I =
=4ie I| there exists no 2x (n + 1) ar -matrix over 1T(Ry) | e

€I% with Ty = ‘.l'(ni)} . Then V(n) 'iglmpfl‘
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Proof: See the proof of Proposition 2.5 of (4].

-We then have

Theorem 2,9, Iet V =4_1;|'1 R; be a vector group with the
index set I not measurable, Then.the following conditions are
equival ent: .

(1) V=V(n), n<oo and V4V(n - 1);

(2) there are 2xn, but no 2x (n + 1) & -matrices
over 4T(Ri) |ieI3;

" (3) V has strong nil-degree n.

Proof: See the proof of Theorem 4.2 of [4] .

Corollary 2,10, ILet V =1."l;]'1 Ri be a vector group with
I not measurable. Then V and 4?1 Rl have the same strong
nil-degree.

Proof: Theorem 4.2 of [4] shows that Theorem 2.9 is true
when V =1.'T;TI R, is replaced by &@I R;.

We conclude this section with some necessary conditions

for a direct product of slender groups to be nil,

Proposition 2,11, Iet A =1._TII 4;, where the 4; are slen-

der and the index set I is not measurable, (R,x ) & ring on
A, If —L@I A; is a subgroup of (0: (®,%)) then (R,x) is

the trivial ring on A.

5 Proof: Iet ¢ € Hom(i'f;l'l Ay, H“%TJI AJ,JL'I 4,)) be

the map defining (R,x ) (thus ¢ (a)b = axb for all a, be4).
Under the natural isomor?hiam Hon(é:\;TI Aj%'l;r_t A) =

=01 Hom(_,&TI1 AJ.,A.k), ¢ (a)—> (oo, T b (a),...), where

Wyt .T;I'I A;—> A, is the projection, for all k € I. Now for
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each a 64‘.?1 A; we have . $ (a)a” = ar (axa ) = 0 for
all k, so (2.3)(i) implies that ary {(a) = @ for all keI
and all a€ A. Thus ¢ (a) = O for all ae4, i.e. axb = 0 for
all a,be A.

Corollary 2.12, ILet A =£'|;TI A; be a direct product of

slender groups where I is not measurasble. If 4‘@! Ai is a sub-

group of A(*), then A is nil.

We need the following result.

lemna 2,13, let {4, | n=1,2,...% be a countable fami-
1y of toraion-free groups, and B be an arbitrary group. If
&0
Hom( @,1 A ,B) = 0 then Hom( TT , A;,B) = O.
Proof: See Propositiom 7.3 of [3].

Propositiom 2.14, Let A =nﬁ'{ A, be a countable direct
product of slender groups such that ”§ 1 Ay is ril. Then A is
nil,

Proof: Observe that smce each A, is slender, (2.3)(i)
implies that Hom( Tl'4 V P, ApsA,) = O for all n, so apply-
ing Bon(TI' 44,2 ) to the exact sequence

[~

- -4
o =1, H“(MTL Ay Qa; Apidy) &

'-E-'Hom('ﬂ' Am/m_"ﬁ, Ah)—-)Hon('lT Annﬁ,, Ay —
—->Hon(@4 Ay, T ,,Ln)

(- a0
we see that A is nil if Hom( TT4 A, ,Hom( ©4 A‘,m_TI,, &)} = 0.

ms=s

i

d”
Now Ak:.em.l,aonon( &,Hm(§45,345))=0,
whence 1!01(""@1 Ak,Eom(mé4 Ap,A )) =0 for all n, 80
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-4 [-2d
Hon(x'@" A.k,Hom(m_é;4 Am,r;l'L 4,)) = 0. By lemm 2.13, we then

a0 - N .
have Hom( T Ak,Hom(mai/, Ay, 1T, A3)) =0, 80 4 is nil.

3. Separalhle groups, A torsion-free group A is called
Separable if every finite set elements of A is contained in a.
completely decomposable direct summand of A, It is clear that
we can choose this summend with finite rank,

We commence this section with a description of the nil
separable groups, First, however, we need to consider the fol-
lowing subgroups of a separable group.

Suppose (R,x ) is a ring on the separale group 4, and
4. A, is a finite rank completely decomposable direct sum-
mand of A. We are permitted to write A =<a1>*@ Ca %@ e
eee @ < .nl>* and A, = <snl+1 W@ < °n1+2->*@ cee
cee ® ¢ -”2 Jx for suitable elements al,az,...,a.na of A, and
A=4,04,@ A, for some subgroup A; of A. Since Aj is & ai-
rect summand of A, Theorem 87.5 of [2) shows it is separable,
and so there is a finite rank completely decomposable direct
summa i A3' of A; with the property that 4@ 4,0 A5 contains
all products of the form a;x a; where i e {l,a,...,nl} and
Jeil,2,..0,n,} . Thus Aq =<anz+1>* @ < an2+2>*@ SO0

eee @ < B, > for suitable elements oow

03 7% 0,418,425 "%nq
of A. Since A, @ A, @ A4 is a pure subgroup of A it is clear
that axbell@ AL, @ A3 for all aeAAl and all beAl@ Az.

lemma 3.1, Let (R,x) be a ring on a separable group
A, and let 4,, A, and A, be subgroups of A defined as above.

- 501 -



If Hom(Al,Hom(Alé 4,,4,© A, B A3))+O then there exist
such that T(ai) T(.j)éT(ak)c

Proaf : Clearly

Hom(4, ,Hom(A, ® 4,,4,D 4,@ 4)) =

4

M.,' m, m_?‘
&?4 i-é; Jll._6-2411011((&5)* ,Hom((aj >* s <oy Vg ))e

Proceeding as in the proof of Lemma 2.4 we obtain the re-

quired result.,

Theorem 3,2. let A be a separatlle group. Then the fol-
lowing conditioms are equivalent:

(1) A is strongly nil;

(2) A is nil;

(3) every rank n (n£3) completely decomposatle direct
summnd of A is nil,

Proof: Clearly (1) =>(2) and (2) =>(3). It remains
to show (3)=> (1). Suppose there is a ring (R,x ) on A,
and elements a,be A with axb#0. Let A; be & finite rank
completely decomposable direct summand of A containing a ad
b, and let A, = O, Define A3 as we did prior to Lemma 3.1.

For ee Ay define ¢: A)—> Hom(4,,A,® 43) by Ple)f = ext
for all feA,. Then ¢e Hom(A,,Hom(A,,4, @ 4;)) and ¢ (a)b =

axb#0. We now apply Lemma 3.1 and Proposition 1.1, toc ob-
tain a rank n (n£3) direct summand of A which is non-nil.
We now turn our attention to the absolute annihilator

A(* ) of a separable group A. We need to make the following
definitions.
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A finite set of elements fay,...,8,fof a separable
group A is called basic if it is linearly independent and
{21 % @ <a,%® ...0 <&, 1is a direct summand of A,

An element ac A is a basic element of A if the set {as is

basic. For a separable group A we define

A ={aeA| a is a basic element of A with the property that
there do not exist basic elements b,ce A with H{a,b,c} basic
and T(a) T(b)£T(e) ¥ .

Proposition 3.3. ILet A be a separable group amnl let A’
be definied as above. Then A(*) is the pure subgroup of A ge-

nerated by A/

Proof: If ae<{ A’ then we can write na = nja, +
+ nya, 4oLl 4 n, &, where ByNyy05000,0 are integers and
a;e A" for i = 1,2,...,k. If a; & A(*) for some i e41,2,,.,
+eeyKk} then there is a ring (R,x ) on A with a;x a+0 for
some a€d. Let 4) = <a;) , and Ay = <ay 2 @< a3 % @ ...
eee @ < 81!:‘2))K be such that A41© A, is a completely decom~-
posable summand of A containing a., Define A3 as we did prior
to Lemma 3.1, As in the proof of Theoren 3.2, a;xX a+ 0 imp-
lies that Hom(Al,Hom(A]_@ Ayy 4@ A, @ Aa))#o, so Iemma 3,1
shows that T(ay) T(aa-)é‘r(ak) for some je{i,Z,B,...,nz}end
ke{i,2,3,...,n3} ywhich contradicts our assumption that
aielA'. Hence each a; is in A(*), so nacA(*), &nd since
A(*) is pure in A it follows that aeA(*),

Conversely, suppose ae€ A(-"‘ )e Now a can bé embedded in
a finite rank comple tely decomposable direct summand Al of A,
A =4a; 2@ < a2 @ ... ® <anl>* , and there exist

integers n’nl’nZ’""%] such that na = may + nas + ...
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ves + nnlabl. If a;& A" for some i € §1,2,...n;} then the-

re are basic elements b,ce A such that {a;,b,c3 is basie
and T(a;) T(b)£T(c). By Proposition 1.1 there exists & ring
(R,x) on A with aix'a'#o for some a‘e A, If we let

=6 %®< %@ L..8<a, >
4, anl+1 % e‘nl+2 % anz %
be such that Ale A, is a completely decomposable summand of
A containing a", and define A3 as usual, then as in the proof
of Theorem 3.2, &; < &' O implies that
Hom( (ai>* ,Bom(A]_@ Az,AlQ A2® A3)H= O. Applying Lemma

L .

3.1 we see that T(a;) T(aj)=T(&k) for some j & 41,2,..0,05%
and k € -11,2,...,113 ¥ « Proposition 1.1 then shows that we
can define a ring (#,x”) on 4, @ 4,@ A3 with
{ag > x" < 2y % ¥+ O for some L€ 41,2,...,n3} and
Cap >4 x< a,% =0 for all me{l,2,...,03} , m&i. Ve
can extend x” to A by setting all other products equal to
0. But then 0 = (na)x"a&, = (ma;) x’@a, . We conclude that
a e(A'>* .

We end with some results concerning the absolute ami-
hila tor series of an arbitrary torsion-free group. Recall
that for a torsion-free group A, this is defined inductively
as follows: A(1) = A(¥* ), A(c+ 1)/A(c) =LA/A(ac)] (*)
and A((3) =xk3ﬁA(oc) if @ is a limit ordinal.

Proposition 3.4, Let A be a torsion-free group and
(B,%x) a ring on A, Then A{cc ) is an ideal in (& ,x) for
all ordinals o .

Proof: First we show A(* ) to be fully invariant in A.
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Let £ be in Hom(A,A) end ae A, If f£(a)é A(*) then there is
a homomorphism ¢ e Hom(A,Hom(4,A)) with ¢ (£(a))+0, Bl’lt
¢ f<Hom(A,A)) and (P £)(a)+0, so adAa(*),

A transfinite induction argument shows that A(«< ) is
fully invariant in A for all ordinals o . The result now

follows immediately,

Corollary 3.5, If A = A(w) for some ordinal « then
any associative ring (R,w) on A is left and right T-nilpo-
tent. If in addition w is finite, then (R, x)*1 =0, '

Proof: See the proaf of Corollary 2.4 of [4],
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