

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log46

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,3 (1976)

K-ESSENTIAL SUBGROUPS OF ABELIAN GROUPS . I

Jindřich BEČVÁŘ, Praha

Abstract: The purpose of this paper is to investigate K-essential subgroups of abelian groups and to generalize some known results about essential subgroups. In the section 1 there are presented some fundamental properties of the K-essential subgroups. In the section 2 there are given the necessary and sufficient conditions for the existence of a (maximal) K-essential extension. The section 3 investigates sets of K-essential subgroups, where K runs through the subgroups of a group G.

Key words: K-essential, essential subgroups; (maximal) K-essential extensions; N-high, N-K-high subgroups.

AMS: 20K99, 20K35

Ref. Z. 2.722.1

0. Introduction. All groups considered here are abelian. Concerning the terminology and notation, we refer to [11 and [21. Otherwise, if G is a group then G_t and G_p are the torsion part and p-component of G_t respectively.

We shall frequently use the following notation:

Q - group of rationals,

 $\mathbb Z$ - group of integers, infinite cyclic group,

Z (n) - cyclic group of order n,

 $N = \{n \in \mathbb{Z} : n > 0 \}$

P - the set of all prime numbers,

(n,m) - the greatest common divisor of n and m,

 $h_{p}^{G}(g)$ - the p-height of g in G.

Let $K \subset N$ be subgroups of a group G. Following Krivonos [3], a subgroup A of G is said to be N-K-high in G if A is maximal with respect to the property $A \cap N = K$.

1. K-essential subgroups

Definition 1.1. Let G be a group and K a subgroup of G. A subgroup N of G is said to be K-essential in G if for every $g \in G \setminus K$ there is $n \in \mathbb{N}$ such that $ng \in \mathbb{N} \setminus K$.

Remark 1.2. O-essential subgroups of a group G are exactly the essential subgroups of G and every subgroup of G is G-essential in G. If K is a proper subgroup of G then no subgroup of K is K-essential in C. The group G is K-essential in G for every subgroup K of G. If K is a proper subgroup of a mixed group G then no torsion subgroup of G is K-essential in G.

The proof of the following proposition is straightforward and hence omitted.

<u>Proposition 1.3.</u> Let N and K be subgroups of a group G. Then the following are equivalent:

- (i) N is K-essential in G;
- (ii) K is the unique N No K-high subgroup of G;
- (iii) if $\alpha: G \longrightarrow A$ is a homomorphism and $\operatorname{Ker}(^{\infty}|N) \subset K$ then $\operatorname{Ker} \alpha \subset K$:
- (iv) if X is a subgroup of G and K≠K then X∩N≠K;
- (v) if H is a subgroup of G then NoH is KoH-essential in H;
- (vi) if $g \in G$ then $\mathbb{N} \cap \langle g \rangle$ is $\mathbb{K} \cap \langle g \rangle$ -essential in $\langle g \rangle$;
- (vii) if L is a subgroup of K then $^{N+L}/L$ is $^{K}/L$ -essential in $^{G}/L$.

If N is a K-essential subgroup of a group G and A is a subgroup of G with $A \cap K = 0$ then $A \cap N$ is essential in A by 1.3 (v).

If K and N are subgroups of a group G then K is N - N \cap K-high in G iff N + K is K-essential in G.

Proposition 1.4. The family of all K-essential subgroups of a group G is a filter.

<u>Proof.</u> If N is a K-essential subgroup of G and M a subgroup of G containing N then M is K-essential in G. If N and M are K-essential subgroups of G then $N \cap M$ is K-essential in G.

Proposition 1.5. Let G be a group. Then

- (i) If N is a K_i -essential subgroup of G for every is I then N is $\bigcap K_i$ -essential in G.
 - (ii) If N is a K_i -essential subgroup of G for every $i \in I$, where $i \in K_i$; $i \in I$ is a chain of subgroups of G, then N is $U K_i$ -essential in G.
 - (iii) If N is a K-essential subgroup of H, where H is a K-essential subgroup of G, then N is K-essential in G.
 - <u>Proof.</u> (i) If $g \in G \setminus \bigcap K_i$ then there is an element $j \in I$ such that $g \in G \setminus K_j$. Now, there is $n \in \mathbb{N}$ with $ng \in \mathbb{N} \setminus K_j$ and hence $ng \in \mathbb{N} \setminus \bigcap K_i$.
 - (ii) Let $g \in G \setminus U K_i$. For every $i \in I$ there is $n_i \in \mathbb{N}$ such that $n_i g \in \mathbb{N} \setminus K_i$. If $\langle g \rangle \cap \mathbb{N} = \langle ng \rangle$ then obviously $ng \in \mathbb{N} \setminus K_i$ for every $i \in I$.
 - (iii) If $g \in G \setminus K$ then there is $n \in \mathbb{N}$ such that $ng \in H \setminus K$. Further, there is $m \in \mathbb{N}$ with $mng \in \mathbb{N} \setminus K$.

Remark 1.6. Let K_i and N_i be subgroups of a group G, $i \in I$.

If \bigoplus N_i is \bigoplus K_i -essential in \bigoplus G_i then N_i is K_i -essential in G_i for every $i \in I$. Obviously, the same applies to direct products.

<u>Proposition 1.7.</u> Let $K_i \subset N_i$ be subgroups of a group G_i , $i \in I$. Then $\bigoplus N_i$ is $\bigoplus K_i$ -essential in $\bigoplus G_i$ iff N_i is K_i -essential in G_i for every $i \in I$.

Proof. Let $g \in G_i \setminus G_i$, i.e. $g = \sum_{j=1}^m g_{ij}$, where $g_i \in G_i$ for every $j = 1, \ldots, m$, $m \in \mathbb{N}$ and there is an integer k, $1 \le k \le m$, such that $g_{ik} \in G_{ik} \setminus K_{ik}$. Since N_{ik} is K_{ik} -essential in G_{ik} , there is $n \in \mathbb{N}$ such that $ng_{ik} \in N_{ik} \setminus K_{ik}$. If $ng \in M_i$ then we are through, since obviously $ng \notin M_i$. If $ng \notin M_i$ then there is an element $r \in \mathbb{N}$, $1 \le r \le m$ such that $ng_{ik} \in G_{ik} \setminus K_{ik}$ and so on. The converse follows from 1.6.

If G is a group and K is a torsion subgroup of G, then the torsion parts of all the K-essential subgroups of G are K-essential in G_t by 1.3. The following proposition implies that all the K-essential subgroups in G_t can be obtained in this very way.

<u>Proposition 1.8.</u> If K is a torsion subgroup of a group G and L is a K-essential subgroup of G_{t} then every G_{t} -L-high subgroup of G is K-essential in G.

<u>Proof.</u> Let N be a G_t -L-high subgroup of G and $g \in G \setminus K \cup N$. If $g \in G_t$ then there is $n \in N$ such that $ng \in L \setminus K \subset N \setminus K$. If $g \notin G_t$ then $\langle g, N \rangle_t \stackrel{?}{=} L$; there are $k \in N$, $m \in N$ and $t \in G_t \setminus L$ such that kg + m = t. Now, $\sigma(t)kg \in N \setminus K$.

Proposition 1.9. Let N be a K-essential subgroup of a

group G and A be a subgroup of G. Then A is N-high in G iff A is $M \cap K$ -high in K.

<u>Proof.</u> If A is N-high in G then A is a subgroup of K by 1.1.

<u>Proposition 1.10.</u> Let k, n be nonnegative integers. Then the subgroup n Z is k Z -essential in Z iff $h_p^Z(k) \ge 1$ implies $h_p^Z(n) < h_p^Z(k)$.

<u>Proof.</u> The assertion is obviously for k = 0. Suppose $k \in \mathbb{N}$.

Let $n\mathbb{Z}$ be $k\mathbb{Z}$ -essential in \mathbb{Z} and k = pr, where $p \in \mathbb{P}$ and $r \in \mathbb{N}$. Obviously $r \notin k\mathbb{Z}$; consequently there is $m \in \mathbb{N}$ such that $mr \in n\mathbb{Z} \setminus k\mathbb{Z}$. Hence $n \mid mr$ and (p,m) = 1. If $p^i \mid n$ then $p^i \mid r$ and $p^{i+1} \mid k$.

Conversely, let $x \notin \mathbb{Z}$. Now, there are $p \in \mathbb{P}$ and is $\in \mathbb{N}$ such that $h_p^{\mathbb{Z}}(k) = i$ and $h_p^{\mathbb{Z}}(x) < i$. We can write x = ya, n = yb, where (a,b) = 1. Obviously $bx = anc n \mathbb{Z}$. If $bx \in k \mathbb{Z}$ then $p^i \mid bx$. Hence $p \mid b$ and (p,a) = 1. Consequently, $p^i \mid n$ and $p^{i+1} \mid k$, a contradiction. Hence $bx \in n \mathbb{Z} \setminus k \mathbb{Z}$.

2. Maximal K-essential extensions

Definition 2.1. Let N and K be subgroups of a group G. The group G is said to be a K-essential extension of N, if N is K-essential in G. The group G is said to be a maximal K-essential extension of N, if N is K-essential in G and is not K-essential in a group H, whenever G is a proper subgroup of H.

Let G be a maximal K-essential extension of a group N. Then G is a maximal K-essential extension of a subgroup M of N iff M is $K \cap N$ -essential in N.

Theorem 2.2. Let N and K be subgroups of a group A. Then the following are equivalent:

- (i) There exists a K-essential extension of N;
- (ii) There exists a maximal K-essential extension of N;
- (iii) N is K-essential in N + K;
- (iv) Either $K/K \cap N$ is a torsion group and $(K/K \cap M)_p \neq 0$ implies $(K/K \cap N)_p = 0$ or $N \subset K$.

<u>Proof.</u> (i) \Longrightarrow (iii). If G is a K-essential extension of the group N then N is K-essential in N + K by 1.3 (v).

(iii) \Longrightarrow (ii). Let D be a divisible group containing A and M be the set of all K-essential extensions of N, that are contained in the group D. It is N + K \in M by (iii), M is partially ordered and inductive. By Zorn's lemma, there is a maximal element G in M. Suppose N is K-essential in a group H, where GcH. Now, there exists a homomorphism $f\colon H \longrightarrow D$ extending the natural inclusion G into D. Consequently, Ker $(f \mid N) = 0$ cK and by 1.3 (iii), Ker $f \in K$; hence f is a monomorphism. If $g \in f(H) \setminus K$ then $f^{-1}(g) \in H \setminus K$ and there is $n \in \mathbb{N}$ such that $mf^{-1}(g) \in \mathbb{N} \setminus K$, i.e. $ng \in \mathbb{N} \setminus K$. Consequently, the group f(H) is a K-essential extension of N and $G \in f(H) \subset D$. Hence G = H.

(ii) ⇒ (i). Trivial.

(iii) ← (iv). If m∈N, k∈K and n∈N then

m + k∈N + K \ K iff m ∉ K ∩ N

and

 $nm + nk \in N \setminus K$ iff $nm \notin K \cap N$ and $nk \in K \cap N$.

Moreover, if $m \in \mathbb{N} \setminus K \cap \mathbb{N}$ and $k \in K \cap \mathbb{N}$ then $m + k \in \mathbb{N} \setminus K$ (in this case n = 1). Here, the assertion (iii) is equiva-

lent to the assertion

(v) if $m \in \mathbb{N} \setminus K \cap \mathbb{N}$ and $k \in K \setminus K \cap \mathbb{N}$ then there is $n \in \mathbb{N}$ such that $nm \notin K \cap \mathbb{N}$ and $nk \in K \cap \mathbb{N}$.

 $(iv) \Longrightarrow (v)$. Suppose $m \in \mathbb{N} \setminus K \cap \mathbb{N}$ and $k \in K \setminus K \cap \mathbb{N}$. Let n be the least nonzero natural number such that $nk \in K \cap \mathbb{N}$. Such number exists, since ${}^{K}/K \cap \mathbb{N}$ is a torsion group by (iv). If n = pr, where $p \in \mathbb{P}$ and $r \in \mathbb{N}$, then $rk + K \cap \mathbb{N}$ is a nonzero element of the group $({}^{K}/K \cap \mathbb{N})_{p}$. For each prime p with $p \mid n$ $({}^{N}/K \cap \mathbb{N})_{p} = 0$ by (iv). Hence $nm \notin K \cap \mathbb{N}$.

 $(v) \Longrightarrow (iv)$. If N is not a subgroup of K, i.e. $\mathbb{N} \supseteq K \cap \mathbb{N}$, then $\mathbb{K}/K \cap \mathbb{N}$ is a torsion group by (v). If $(\mathbb{K}/K \cap \mathbb{N})_p \neq 0$ and $(\mathbb{K}/K \cap \mathbb{N})_p \neq 0$ for some prime p then there are elements $k \in \mathbb{K} \setminus K \cap \mathbb{N}$ and $m \in \mathbb{N} \setminus K \cap \mathbb{N}$ such that pk, $pm \in \mathbb{K} \cap \mathbb{N}$. By (v), there is $n \in \mathbb{N}$ such that $nm \notin K \cap \mathbb{N}$ and $nk \in \mathbb{K} \cap \mathbb{N}$. Now, (p,n) = 1 and there are integers u, v such that up + vn = 1. Hence $k = upk + vnk \in K \cap \mathbb{N}$, a contradiction.

Proposition 2.3. Let N and K be subgroups of a group G and there exists a K-essential extension of the group N. Then

- (i) There exists a subgroup of G that is maximal with respect to the property of being a K-essential extension of N im G;
- (ii) The group G is a K-essential extension of N iff $^{G}/K$ is an essential extension of the group $^{N+K}/K$;
- (iii) The group G is a maximal K-essential extension of W iff $^{G}/K$ is a divisible hull of the group $^{N+K}/K$;
- (iv) If G/K is a divisible group then G contains a maximal K-essential extension of the group N.

- Proof. (1) Let Mt be the set of all K-essential extensions of the group N that are contained in G. By 2.2, the group N + K is an element of Mt. The set Mt is partially ordered and inductive. By Zorn's lemma there is a maximal element in Mt.
- (ii) Suppose that the group G/K is an essential extension of the group G/K. If $g \in G/K$ then there is $n \in N$ such that ng = m + k, where $m \in N/K$ and $k \in K$. Let r be the order of the element $k + K \cap N$. By 2.2, r is finite and $rm \notin K$. Hence $rng \in N/K$. The converse follows from 1.3 (vii).
 - (iii) It follows immediately from (ii).
- (iv) The group G /K contains a divisible hull D /K of the group $^{N+K}$ /K and hence D is a maximal K-essential extension of N by (iii).

If G is a maximal K-essential extension of N then G is an extension of K by a divisible hull of the group $^{N+K}/K$.

Corollary 2.4. Let K and N be subgroups of a group G. Then

- (i) If NcK then K is the unique maximal K-essential extension of N;
- (ii) If $K \subset \mathbb{N}$ then there is a maximal K-essential extension of N. The group G is a maximal K-essential extension of N iff G/K is a divisible hull of M/K;
- (iii) If $K \cap N = 0$ and N is monzero then there exists a maximal K-essential extension of N iff K is torsion and $K_p \neq 0$ implies $N_p = 0$. If it holds then G is a maximal K-essential extension of N iff $^G/K$ is a divisible hull of $^{N \bigoplus K}/K$.

Remark 2.5. The existence-assumption of K-essential extension of N in 2.3 cannot be omitted as it is seen from the following example: Suppose $G = N \oplus K$, where $N \cong \mathbb{Q}$, and $K \cong \mathbb{Z}$. Then the group N+K/K is essential in G/K and G/K is divisible. But N is not a K-essential subgroup of G.

Remark 2.6. Im [4], T. Szele investigates the algebraic elements with respect to a given subgroup and problem of algebraic extensions of groups. It is closely related to the problem of K-essential subgroups as it follows.

Let N and K be subgroups of a group G. An element g of G is said to be K-algebraic over N if $g \in K$ or $\langle g \rangle \cap K \cap K \neq \pm \langle g \rangle \cap N$. If every $g \in G$ is K-algebraic over N, we call G K-algebraic over N. In this case the group G is also said to be K-algebraic extension of N. Now, it is easy to see that G is K-algebraic over N iff N is K-essential in G. Hence, K-essential extensions of N and K-algebraic extensions of N are the same.

3. Comparing K-essential subgroups

Lemma 3.1. Let G be a group and N a subgroup of G such that $^{G}/N$ is a torsion group. Let K be a subgroup of G such that if $(^{G}/N)_{p} \neq 0$ then $^{G}_{p} \subset K$ and K is p-pure in G. Then N is K-essential in G.

<u>Proof.</u> Let $g \in G \setminus K$. If $n = \sigma(g + N)$ then $ng \in N$. Moreover, $ng \notin K$. For, if $ng \in K$ then there is $k \in K$ such that ng = nk. Now, n(g - k) = 0 and consequently $g - k \in K$. Hence $g \in K$ implies a contradiction.

Lemma 3.2. Let G be a group. If K is a proper subgroup and N is a K-essential subgroup of G then G/N is a torsion group.

<u>Proof.</u> Suppose $g + N \in {}^{G}/N$. If $g \notin K$ then there exists $n \in \mathbb{N}$ such that $ng \in N \setminus K$. If $g \in K$ then by 2.2 either $N \subset K$ (hence K = G, a contradiction) or ${}^{K}/K \cap N$ is a torsion group. Consequently, there is $m \in \mathbb{N}$ such that $mg \in \mathbb{N}$.

Theorem 3.3. Let G be a group with subgroups K and N. Then

- (i) N is G_t-essential in G iff G/N is torsion;
- (ii) If K is proper and N is K-essential in G then N is G_t -essential in G_t
- (iii) If G is not torsion then the set of all K-essential subgroups of G and the set of all G_t -essential subgroups of G are identical iff K is proper pure containing G_t ;
- (iv) If K is proper then each K-essential subgroup of G is K_t -essential in G;
- (v) If K is proper and torsion-free then each K-essential subgroup of G is essential in G.

<u>Proof.</u> (i) Let N be G_t -essential in G. If $G = G_t$, then G_t is torsion. If $G \neq G_t$ then G_t is torsion by 3.2. Conversely, if G_t is a torsion group then N is a G_t -essential subgroup of G by 3.1.

- (ii) It follows immediately from 3.2 and (i).
- (iii) Let K be a proper pure subgroup of G containing G_t . If N is G_t -essential in G then G/N is a torsion group by (i) and N is K-essential in G by 3.1. The converse follows from (ii).

(iv) If N is a K-essential subgroup of G then N is ${\tt G_t-essential}$ in G by (ii) and N is K_t-essential in G by 1.5.

(v) It follows from (iv).

References

- [1] FUCHS L.: Infinite abelian groups I, Acad. Press 1970.
- [2] FUCHS L.: Infinite abelian groups II, Acad. Press 1973.
- [3] KRIVONOS F.V.: Ob N-vysokich podgruppach abelevoj gruppy, Vest. Mosk. Univ. 1(1975), 58-64.
- [4] SZELE T.: Ein Analogon der Körpertheorie für abelsche Gruppen, J. Reine Angew. Math. 188(1950), 167-192.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 6.4. 1976)