#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1976
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017 | log44

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17, 3 (1976)
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Abstract: We shall study conditions for a given EIZ-
variety to be locally finite and to be generated by a fini-
te algebra. These two properties are algorithmically decid-
able. An EDZ-variety of a finite type is generated by a fi-
nite algebra iff it is locally finite and finitely axioma-
tized.
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The study of EDZ-varieties (varieties of universal al-
gebras with equationally definable zeros) provides us with
various counterexamples, suitable in many respects. Moreo-
ver, EDZ-varieties are worth themselves of a special atten-
tion. Their investigation was begun in [1] and [2]. In the
present paper we shall be concerned with the finiteness and
genera-bility by a finite algebra. We shall preserve the ter-
minmology of [1] (with a slight modification regarding the
length of a term). Some terminology and notations will be
listed now.

The set of variables is denoted by X = AE ST OYRTRY I
If A is a type (i.e. a set of operation symbols), we deno-
‘te by W, the algebra of A -terms. For every te Wa let
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2 (t),A"(t) denote the numbers defined as follows: if t is a
variable,or a constant, then A(t) A’ (t) = 1; for t = F(tq,

ceesty ) put A(t) =1 +a,(t1)+...+z,(tnF) and A°(t) =2al(t)+
+oeet 2.'(tnF). In this paper A‘(t) is called the length of t.

The definition of an irreducible set of A -terms, of
an EDZ-variety and related concepts, as well as their basic
properties, are contained in [1] and repeated in [21.

A variety K of universal algebras is called locally fi-

nite if every finitely generated algebra from K is finite.
It is well-known (see e.g.[3]1) that if a variety is generat-
ed by & finite algebra, then it is locally finite. The con-
verse is not true (a counterexample could be easily derived
from results of this paper).

Let J be an arbitrary non-empty set of A -terms. For e-
very positive integer n we define a A -algebi'a Vfl as follows:
its underlying set is the set W, - ® (0)u {03, where W, is
the subalgebra of W generated by {xl,...,xn}; irtPes A,
tl,...,tnFe W, - §(‘J) and F(tl,...,tnF) ¢ $(J), then we
put Fwn(tl,...,tnF) = F(tl,..._,tnr); in other cases we put
Fwn(tl,...,tnF) = 0, It is easy to see that !i is the Zj~
free algebra over{x,...,x%

Let us define a set W, by teW; iff t contains no

constants and whenever F(“l""’”‘nr) is a subterm of t, then
at most one of the terms Uj,ec.,U is not a variable; now

for every te W, we define a finite sequence & (t) as fol-
Jows: if t is & variable, thenput 6 (t) =(t); if t =

= F(yl,...,yn?), where yl,...,ynF are variables, then put
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& (t) =<y1,...,ynr) ; it t = F(yl,...,yj_l,u,yj+1,...

...,ynr), where u is not a variable and & (u) =<2g,...

ceegZy) , Put 6(t) =<z1,...,zm,y1,...,ynP) . It is ob-
viow that if 6 (t) =<yy,e¢y¥, >, then n = A(t).

For every JEW, we define two subsets J and J ‘? of
J as follows: te J° if te J, t contains no constants and no
variable has more than one occurence in t; J°° =Jdn W, .

For every A -term t let o(t) denote the positive inte-
ger defined in this way: if t is a variable or a constant,
then o(t) = 1; if t = F(tl,...,tnr), then o(t) = max{o(t{),

eesyo(t, )} + 1.

nF

Proposition 1. Let J be an irreducible set of A-terms.
The varietzy ZJ is locally finite iff W‘{ is finite ani for eve-
ry poaitive integer n there exists a positive integer kn such
that {teW ; A (t)zk ¥ £ § (J) and
{Fe A ; np = n, F(xl,...,ls.‘r) ¢ § (J)F is finite.

Proof is easy.

Proposition 2. Let J be an irreducible set of A -terms.
The variety Z J is generated by a finite algebra iff it 15 lo-
cally finite and there exists a positive integer m such that
iteW,; Mt)zm ¥ & ().

Proof. Iet Z; be generated by a finite algebra. It is
easy to see that Z; is locally finite and that ZJ is generat-
ed by wg for some positive integer n. Since w'!{ is finite, the-
re exists a positive integer m such that {teW,; A(t)zm3s
s & (J).

let t be an arbitrary A -term of length = m; it is
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enough to prove t € ¢ (J). There exists a term of length
2m such that tv., If ¢ 1is an arbitrary homomorphism of
W, into W'IJI, then evidently < (t) = ¢ (v) = O, Hence the
identity (t,v) is satisfied in wﬁ; since w‘!{ generate J,
it is satisfied in ZJ and thus t € & (J).

Conversely, let Z J be locally finite and every term of
length 2= m belong to $(J). The algebra Wg_l is finite and
it is enough to show that 2y is generated by W;':_l. This will
be proved if we derive a contradiction from the following as-
sumption: there exist A -terms u, v such that u%v, the iden-
tity {u,v) is satisfied in w’i_l and u & & (J).

Denote by Yyseee)¥y the variables contained in u. Since
u & & (J), we have k< m. There exists an automorphism o of
Ws such that {oc(yy)yee., x (yy)3 =4 Xy seeesXy 1%, 80
that oc(u)e van-l' Evidently oc (u) # oc (v) and the identity
< (u),x(v) > is satisfied in ";_1. Let ¢ be the homo-
morphism of W, onto 'g-l defined as follows: gp(xl) = Xpyeee
ey @Oy 0) = x4, (x) = ¥ (xpyq) = oo = 0. Evidently

@ (t) = t for all teW) , -£0% amd @(t) = O for all other
t.

Since Coc(u), ec(v)> is satisfied in W) ,, @(oclu)) =
= @(x(v)), ice. o(u) = @(c(v)). This implies < (oc(v))+
%0 and thus ¢ (cc(v)) = oc(v). We get oc (u) = oc(v) and
consequently u = v, a contradiction.

Propositiom 3. Let J be an irreducible set of A -terms.
Then for every integer n=1 the following conditionﬁ are eqﬁi—

valent:

i) Z; is locally finite and {teW, ; A’(t)Z2n 3 = § (J);
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ii) Zg is locally finite and {teW, ;A°(t)2n3cs & (J°);
iii) the algebra w'{' is finite and A“(t)<n for all terms
tew) - 40 .

Proofi. i) =p ii). Let teW, and A7(t)=n. Evidently
there exists a term se Wy such that s<t and A’(s) =A’(t);
since A“(s)2mn, we have s € $ (J) by i) and so < (w) is a
subterm of 8 for some weJ and some endomorphism ¢ of Wu .
Clearly weJ’ and thus t € $ (J°). We have proved {te W, ;
A’(t)2n} = 3 (J°). The rest is easy by Proposition 1.

1i) =) iii) is obvious.

iii)=>i). Let ¢ be the endomorphism of W, defined
by @ (x;) =x; for all i =1,2,... .

let teWy end A’(t)zn. We have @(t)eW, and
A’(g(t)) =A7(t). There exist an endomorphism % of W; and
a term ue J’ such that vy (u) is a subterm of @ (t). Put
var u =4 yl,...,yx(u)‘i . From the definition of ¢ it is ea-
8y to see that there exist subterms tl""'t’x(u) of t such
that @ (t;) = ¥ (y;) end such that % “(u) is a subterm of t,
if ¥’ is anendomorphism of W, such that ¥’(y;) = t;. Hen-
ceved (J°) e &)

Similarly if F"l"""‘nr) ¢ 3 (), then @ (F(xy,...
...,IDF))E"{I. The local finiteness of Z; follows now from

Proposition 1.

Corollary. Let J be an irreducible set of A -terms and
let the variety Z g be locally finite. Then 2 J is generated by
a finite algera iff ZJ,ia locally finite.

Proof. Follows from Propositions 2 and 3.

. Proposition 4. Let J be a finite irreducible set of
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A-terms. Suppese that the variety Z; is non-trivial and lo-
cally finite. Then A is finite and Z; is generated ty a
finite algebra. ’

Proof. If A were infinite, then there would exist a
symbol F € A (np#0) such that no term from J contains &
subterm of the form F(ul,...,%r). Consequently e.g. the al-
gebra ‘g'? would contain infinitely many terms tl,tz,t3,... -
where t, = F(xl,...,rhr),...,tml = Fty,e..,ty), a contra-
diction.

Put X = 2 + max {ng; F e A3 and for every positive in-
teger n put S, ={te w5 0o(t) =n3%.

Suppose first that for every positive integer n there
exists a term t €S -~ $(J°7). Put T =4{t),ty,+.ct and s =
= max {A’(t); teJ%. Since Z; is locally finite, there ex-
ists an r such that fteW ; A‘(t)zr § = & (9).

Let us defime a set T, of A -terms by teTg iff the fol~-
lowing two conditions are satisfied:

a) teW,nW, ,
b) if €(t) =<yl,...,yp> and y; =y; for i,j € 41,...,p%,
then i= j(mod 8).

Let us prove that if te«T, and A’(t)=r, then t &
€ & (J°°). We have evidently t € @ (J), so that there exist
a term ueJ and an endomorphism 4 of W, such that 3 (u)
is a subterm of t. It is not difficult to prove (using te Tg)
that ueJ’. Now ue J°’ is easy and so t € & (J°°).

There exist a mumber n=r and a term te T, such that

6(t) = (xl,...,xn> for some automorphism o of Wy o Let

us define an endomorphism ¢ of W, in this way: !
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@ (x5) = X3, where j €41l,...,8% and i = j(mod s).
Evidently < (ec(t))e T, and A’ (@ (ec(t))) =n, so that

@ (x(t)) 6 & (J°°). similarly as in the proof of Proposi-
tion 3 (iii)==1i)) it can be proved thet oc(t) € & (J°’
and consequently t € @ (J”), a contradiction with the assum-
ption t &€ & (J'°). Denote by n the smallest number such that
Sp € ® (97°). By Proposition 2 it is enough to show that
if teWy and A’(t)z K"}, then te d (J°°) & § (9).

Evidently nZ2, since ZJ is non-trivial; we shall define

sets P,,...,P _, as follows:

1 e
we have t = Fl(u%,...,u;'; ) If n = 2, put Py ={u1,...,%}.
1 1
If n23, then there exists a number j; e-{l,...,nFl} such

1 -2 —¢..1 1 1 1
that Af (ujl)zkn ; put Py "iul"‘"“jl-l'“jfl”“’"*n.? 1.

. 1
Again we have ujl F (ul,...,un? e If n =3, put P, =Py v

v {ul,...,unp { « If n24, then there exists & number .]2

e{l,...,np }such that .7L(u )>kn3 put P, = P u-{ul,...

2
""u.'lz'l’ .12*’1""’““5-2} . If we have defined P,,P,,...
n=-1
eeesPp o, PUL P o = nzu{ul ,...,t).nF } and let us de-
; {n-1) (1) 50 ens .ol
fine terms t seeest in this way:
(n-1) _ n-2)_
t = Fn_l(xl,...,an e (=22 Fn-2(y1""'yjn_2-l’
n-1
¢ (n-1) ,yJ 2,...,ynr _1)s where yl,_...,yn_F _ are pairwise

n-2 n-2

different variables not occuring in (-

(2) 1), where z,,...

(1) -
t Fl(zl""’zjl-l’ t ,zjl, ...,anl_

eeeyZy _p &TE pairwise different varisbles not occuring in
F
1
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£, Evident1y t{He s and t € & (stMP3) e 3@,

Proposition 5. Iet J be an irreducible set of terms of
a finite type A and let Zy be generated by a finite algeb-
ra. Then J is finite.

Proof. Put k = max4np; Fe A3 and let n be the
smallest positive integer such that {teW, ;A (t)zn3 =
e & (J). Let us denote by T the set of A -terms teW ., N
A ® (J) such that A’(t)£n + k. Obviously T is finite, 80
that there exists a finite irreducible subset SET such that
p(s) = (M.

Let us prove by induction on A (t) that t €& & (J) imp-
lies t €  (T). If t € § (J) and A’(t)4n + k, then there is
an automorphism cc of W, with oc(t) e W ;5 Ve have ot(t)e
eV, nd W), ie. x(t)eT, 80 that t € & (T).

Let A’(t)>n +k and t € & (J). There exist a symbol G
and terms yl,...,ynG such that G (yl,...,ynG) is a subterm
of t and every yi is either a variable or a constant. Let z
be a variable not contained in t. If we replace precisely
one occurence of G(xl,...,:nG) in t by z, we obtein a new
term s. Evidently A(s) < A(t) end A'(s) = A'(t) -k +
+ 1>n, so that s € & (J). By the induction assumption 8 €
e & (T). However s4t, so that t ¢ & (T), too.

We have proved @ (J) & & (T). Since &(T) s §(J) is
obvious, we get & (J) = $(T) = d(S). Since every two ir-
reducible generating subsets of & (J) have the same cardi-
nality, J has the same cardinality as S and consequently J
is finite.

Theorem 1, ILet J be an irreducible set of terms of &
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finite type A . Then the wariety Z g is generated by‘ a fi-
nite algebra iff Z; is locally finite and J is finite.
Proof. Follows from Propositions 4 and 5.

For every positive integer p and for every J SW, we
define Sp ={teW, ; o(t) =p %,

Up =4teW,; o(t) = p, 6(t) =<11"“’x.1’(t)> .
I, =U,Nn .

Proposition 6, Let J be a finite irreducible set of
terms of a finite type A and let the variety Z g be local-
ly finite. If k = max{np; Fe A} + 2, p = max{fo(t); te
€J’’}, r = card Ups @ = card J;,, then {te W, ; A'(t) >
2P (@) 3 ¢ 5 (g0,

Proof, For every teSp we shall construct a term u €
e & (J°°) as follows.

Itte dW'’),putu=t. Ift ¢ & (J°°), then for an
arbitrary symbol G e A such that ng¥ 0 we define t, =
= G(“l”"'“ug)' where -iul,...,unG} =-fxl,...,ynG_l,t} and
11,...,ynG_1 are arbitrary variahbles.

There exist a symbol Fe& A and variables zl,...,znr
such that F(zl,...,znr) is a subterm of t,. Let us replace

this subterm by X, and all other occurences of variables in
t, which are not contained in this subterm by X)3X3seee 5 80

that the new term 1::'L is such that G’(t]'_) =<x1,...,x1,(t1)> .

Obviously t € Uy since t& & (3°°), we have t; € § (J7°) ifs
Iftie $(3°7), put u =t,. If t; & & (J°7), then for
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an arbitrary symbol H e A such that ny+0 we define t, =

= H(vl,...,vnn), where -ivl,...,vnﬂlv ={Wy 000" _qtq ¥ and

wl"“'wn.H-l are arbitrary variables.
There exists a symbol E e A such that E(...,F(zl,...

...,an),...) is a subterm of t,. Let us replace this sub-

term by x, and all other occurences of variables in ty which
are not contained in this subterm by Xp,X3sec« » so that the

new term t, is such that & (ty) = <xl""'x.;l’(t'2)> .

Again toe Up

put u = t,. If t, € P (3°°), we can define analogously terms

and t, € & (3°°) iff tyed . If by € d W,

t3,t3',... .

Put V = 4ty,t5,..0 . We shall show that t{# t.%’ if i% je
In the contrary case let <(i,j» be pair the first such that
i< j and t{ = tg. We cen define teYms Uj,q,Ujepse: e such that
for every positive integer m °(“j+m) =p+ j+mand usﬂn =

= t!'] , where i£n<j iff m= n(mod § = i)e IF t344 <

F(yl,...,ti,...,ynF_l), then we put Uj.y = F(yi,...,tj,...

...,ynF_l) and if Ysem is already defined, m = n(mod j - i)
for some n (i4n<j) and if t 4 = G(zl’“”tn""’zne—l)’

then we put U pyg = G(zl,...,ujm,...,zns_l). Thus U3y &
& & (J°°) for all m, & contradiction with Proposition 4.

Therefore card V4r - q and we put u = t , where n is

the smallest integer such that t & & (J ‘’), Hence it is ea-

sy t that U = Y
y to see that pr=q Jp+r-q and Spﬂ--qﬁ &(J°"). By the
proof of Proposition 4 {teW, ; A(t)z kp+r—(q+1)} =]

b}
e &,
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Theorem 2., Let J be a finite irreducible set of terms
of a finite type A . Let s =max 4A°(t); ted}, k= .
= max inp; Fe A} + 2, p = daxd o(t); teJd’’3, r = card Up’
q = card Jp' Then the following conditions are equivalent.

1) Z; is locally finite,

2) Zy is locally finite.

3) 24, is locally finite.

4) The algebra W‘{” is finite.,

5) The algebra wg is finite.

6) There exists an n< kp+r-(q+1) such that

ftewW, ; A()2n3 € W
7) Zy is generated by a finite algebra.
Proof, 1) =>6) =>7) =>1). Apply Propositions 6 and

3)&=>4). Follows from Proposition 3.

3)==2)==>1). Irivial.

1) =3). By Proposition 4 there exists an positive in-
teger m such that S € & (J°°). Hence fteWp; A'(¥)z KR
€ ¢ (J°7) and consequently Zz, is locally finite.

1)¢==> 5). Follows from the proof of Proposition 4.

Remark 1,. For every finite irreducible sei J of terms
of a finite type A we have an algorithm to decide whéther
the variety Z; is locally finite. By Proposition 6 it suffi-
ces to decide whether UD"'T‘-q = "I'p-l-r-q’ where p = max {o(t);

teJ."}, r = card U and q = card J,. This process is obvi-

P
ous from the proof of this Proposition.
Repark 2. We know that under the assumpticns of Theo-

rem 2 the finiteness of Vg implies the local finiteness of
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Zg. If we put h = max fcard (var t); teJ%, then it is not
true in general that the finiteness of ‘Iﬁ implies the local
finiteness of Z;. )

For example, let A =4{P} , where F is a binary opera-
tion symbol and let o denote the corresponding operation on
Wy o Let L denote the set of all terms te W, of the form
t = (xilo ,iz) o (xi3o xi4) ort = (xilo xiz)a xi3 or
t = xilo (xizo 15_3), where il,'iz,i3,i4 e 11,23 . Then there
exists an irreducible subset JSL such that & (J) = @ (L);
we have h = 2, Tt is not difficult to prove (by induction on
A7 (t)) that {teWy; A(t)=43 & $ (J) and consequently 1‘;
is finite. However by Theorem 2 the variety Z 7 is not locally

finite, since J° =J°’ = g,
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