

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log44

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17, 3 (1976)

FINITENESS CONDITIONS ON EDZ - VARIETIES

Miroslav KOZÁK, Praha

Abstract: We shall study conditions for a given EDZ-variety to be locally finite and to be generated by a finite algebra. These two properties are algorithmically decidable. An EDZ-variety of a finite type is generated by a finite algebra iff it is locally finite and finitely axiomatized.

Key words: Variety, locally finite, generated.

AMS, Primary: 08A15

Ref. Z.: 2.725.2

Secondary: 08A10

The study of EDZ-varieties (varieties of universal algebras with equationally definable zeros) provides us with various counterexamples, suitable in many respects. Moreover, EDZ-varieties are worth themselves of a special attention. Their investigation was begun in [1] and [2]. In the present paper we shall be concerned with the finiteness and generability by a finite algebra. We shall preserve the terminology of [1] (with a slight modification regarding the length of a term). Some terminology and notations will be listed now.

The set of variables is denoted by $X = \{x_1, x_2, \dots\}$. If Δ is a type (i.e. a set of operation symbols), we denote by W_{Δ} the algebra of Δ -terms. For every $t \in W_{\Delta}$ let

 $\lambda(t), \lambda'(t)$ denote the numbers defined as follows: if t is a variable or a constant, then $\lambda(t) \neq \lambda'(t) = 1$; for $t = F(t_1, \dots, t_{n_F})$ put $\lambda(t) = 1 + \lambda(t_1) + \dots + \lambda(t_{n_F})$ and $\lambda'(t) = \lambda'(t_1) + \dots + \lambda'(t_{n_F})$. In this paper $\lambda'(t)$ is called the length of t.

The definition of an irreducible set of Δ -terms, of an EDZ-variety and related concepts, as well as their basic properties, are contained in [1] and repeated in [2].

A variety K of universal algebras is called locally finite if every finitely generated algebra from K is finite. It is well-known (see e.g.[3]) that if a variety is generated by a finite algebra, then it is locally finite. The converse is not true (a counterexample could be easily derived from results of this paper).

Let J be an arbitrary non-empty set of Δ -terms. For every positive integer n we define a Δ -algebra \mathbf{W}_n^J as follows: its underlying set is the set $\mathbf{W}_n - \Phi(J) \cup \{0\}$, where \mathbf{W}_n is the subalgebra of \mathbf{W} generated by $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$; if $\mathbf{F} \in \Delta$, $\mathbf{t}_1, \dots, \mathbf{t}_n \in \mathbf{W}_n - \Phi(J)$ and $\mathbf{F}(\mathbf{t}_1, \dots, \mathbf{t}_n) \neq \Phi(J)$, then we put $\mathbf{F}_{\mathbf{W}_n}(\mathbf{t}_1, \dots, \mathbf{t}_n) = \mathbf{F}(\mathbf{t}_1, \dots, \mathbf{t}_n)$; in other cases we put $\mathbf{F}_{\mathbf{W}_n}(\mathbf{t}_1, \dots, \mathbf{t}_n) = 0$. It is easy to see that \mathbf{W}_n^J is the \mathbf{Z}_J -free algebra over $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$.

Let us define a set $\overline{\mathbb{W}_{\triangle}}$ by $\mathbf{t} \in \overline{\mathbb{W}_{\triangle}}$ iff t contains no constants and whenever $F(\mathbf{u}_1, \dots, \mathbf{u}_{\mathbf{n}_F})$ is a subterm of t, then at most one of the terms $\mathbf{u}_1, \dots, \mathbf{u}_{\mathbf{n}_F}$ is not a variable; now for every $\mathbf{t} \in \overline{\mathbb{W}_{\triangle}}$ we define a finite sequence $\mathfrak{S}'(\mathbf{t})$ as follows: if t is a variable, then put $\mathfrak{S}'(\mathbf{t}) = \langle \mathbf{t} \rangle$; if $\mathbf{t} = F(\mathbf{y}_1, \dots, \mathbf{y}_{\mathbf{n}_F})$, where $\mathbf{y}_1, \dots, \mathbf{y}_{\mathbf{n}_F}$ are variables, then put

$$\begin{split} & \mathfrak{G}(\mathsf{t}) = \langle \mathbf{y}_1, \ldots, \mathbf{y}_{n_F} \rangle \;; \; \text{if } \mathsf{t} = \mathrm{F}(\mathbf{y}_1, \ldots, \mathbf{y}_{j-1}, \mathbf{u}, \mathbf{y}_{j+1}, \cdots \\ & \ldots, \mathbf{y}_{n_F} \rangle, \; \text{where } \mathsf{u} \; \text{is not a variable and} \; \; \mathfrak{G}(\mathsf{u}) = \langle \mathbf{z}_1, \ldots \\ & \ldots, \mathbf{z}_{\mathsf{m}} \rangle \;, \; \text{put} \; \; \mathfrak{G}(\mathsf{t}) = \langle \mathbf{z}_1, \ldots, \mathbf{z}_{\mathsf{m}}, \mathbf{y}_1, \ldots, \mathbf{y}_{n_F} \rangle \;. \; \text{It is obvious that if} \; \; \mathfrak{G}(\mathsf{t}) = \langle \mathbf{y}_1, \ldots, \mathbf{y}_{\mathsf{n}} \rangle \;, \; \text{then } \mathsf{n} = \mathcal{N}(\mathsf{t}) \;. \end{split}$$

For every $J \subseteq W_{\triangle}$ we define two subsets J' and J'' of J as follows: te J' if te J, t contains no constants and no variable has more than one occurence in t; $J'' = J' \cap \overline{W_{\triangle}}$.

For every \triangle -term t let o(t) denote the positive integer defined in this way: if t is a variable or a constant, then o(t) = 1; if t = $F(t_1, ..., t_{n_F})$, then o(t) = $\max \{ o(t_1), ..., o(t_{n_F}) \}$ + 1.

Proposition 1. Let J be an irreducible set of \triangle -terms. The variety Z_J is locally finite iff W_1^J is finite and for every positive integer n there exists a positive integer k_n such that $\{t \in W_n; \ \mathcal{N}'(t) \geq k_n \ \} \subseteq \Phi(J)$ and $\{F \in \triangle \ ; \ n_F = n, \ F(x_1, \ldots, x_{n_F}) \notin \Phi(J) \ \}$ is finite.

Proof is easy.

<u>Proposition 2.</u> Let J be an irreducible set of Δ -terms. The variety Z_J is generated by a finite algebra iff it is locally finite and there exists a positive integer m such that $\{t \in W_{\Delta}; \lambda'(t) \ge m\} \subseteq \Phi(J)$.

<u>Proof.</u> Let Z_J be generated by a finite algebra. It is easy to see that Z_J is locally finite and that Z_J is generated by W_n^J for some positive integer n. Since W_n^J is finite, there exists a positive integer m such that $\{t \in W_n; \mathcal{N}'(t) \geq m\} \subseteq \Phi(J)$.

Let t be an arbitrary Δ -term of length \geq m; it is

enough to prove $t \in \Phi(J)$. There exists a term of length $\geq m$ such that $t \neq v$. If φ is an arbitrary homomorphism of W_{Δ} into W_n^J , then evidently $\varphi(t) = \varphi(v) = 0$. Hence the identity $\langle t, v \rangle$ is satisfied in W_n^J ; since W_n^J generate J, it is satisfied in Z_J and thus $t \in \Phi(J)$.

Conversely, let Z_J be locally finite and every term of length $\geq m$ belong to $\Phi(J)$. The algebra W_{m-1}^J is finite and it is enough to show that Z_J is generated by W_{m-1}^J . This will be proved if we derive a contradiction from the following assumption: there exist Δ -terms u, v such that $u \neq v$, the identity $\langle u, v \rangle$ is satisfied in W_{m-1}^J and $u \notin \Phi(J)$.

Denote by y_1, \ldots, y_k the variables contained in u. Since $u \notin \Phi(J)$, we have k < m. There exists an automorphism ∞ of \mathbb{W}_{Δ} such that $\{\infty(y_1), \ldots, \infty(y_1)\} \subseteq \{x_k, \ldots, x_{m-1}\}$, so that $\infty(u) \in \mathbb{W}_{m-1}^J$. Evidently $\infty(u) \neq \infty(v)$ and the identity $\{\infty(u), \infty(v)\}$ is satisfied in \mathbb{W}_{m-1}^J . Let φ be the homomorphism of \mathbb{W}_{Δ} onto \mathbb{W}_{m-1}^J defined as follows: $\varphi(x_1) = x_1, \ldots, \varphi(x_{m+1}) = x_{m-1}, \varphi(x_m) = \varphi(x_{m+1}) = \ldots = 0$. Evidently $\varphi(t) = t$ for all $t \in \mathbb{W}_{m-1}^J - \{0\}$ and $\varphi(t) = 0$ for all other t.

Since $\langle \alpha(u), \alpha(v) \rangle$ is satisfied in W_{m-1}^J , $\varphi(\alpha(u)) = = \varphi(\alpha(v))$, i.e. $\alpha(u) = \varphi(\alpha(v))$. This implies $\varphi(\alpha(v)) \neq 0$ and thus $\varphi(\alpha(v)) = \alpha(v)$. We get $\alpha(u) = \alpha(v)$ and consequently u = v, a contradiction.

<u>Proposition 3</u>. Let J be an irreducible set of \triangle -terms. Then for every integer $n \ge 1$ the following conditions are equivalent:

i) Z_J is locally finite and $\{t \in W_{\triangle}; \mathcal{N}(t) \ge n\} \subseteq \Phi(J);$

ii) $Z_{J'}$ is locally finite and $\{t \in W_{\Delta} : \mathcal{N}'(t) \geq n \} \subseteq \Phi(J')$; iii) the algebra $W_1^{J'}$ is finite and $\mathcal{N}'(t) < n$ for all terms $t \in W_1^{J'} - \{0\}$.

<u>Proof.</u> i) \Longrightarrow ii). Let $t \in \mathbb{W}_{\Delta}$ and $\mathcal{N}'(t) \geq n$. Evidently there exists a term $s \in \mathbb{W}'_{\Delta}$ such that $s \leq t$ and $\mathcal{N}'(s) = \mathcal{N}'(t)$; since $\mathcal{N}'(s) \geq n$, we have $s \in \Phi(J)$ by i) and so $\varphi(w)$ is a subterm of s for some $w \in J$ and some endomorphism φ of \mathbb{W}_{Δ} . Clearly $w \in J'$ and thus $t \in \Phi(J')$. We have proved $\{t \in \mathbb{W}_{\Delta}; \mathcal{N}'(t) \geq n\} \subseteq \Phi(J')$. The rest is easy by Proposition 1.

1i) => iii) is obvious.

iii) \Longrightarrow i). Let φ be the endomorphism of W_{\triangle} defined by φ (x_i) = x_1 for all i = 1,2,...

Let $t \in \mathbb{W}_{\Delta}$ and $\mathcal{N}'(t) \geq n$. We have $\varphi(t) \in \mathbb{W}_{1}$ and $\mathcal{N}'(\varphi(t)) = \mathcal{N}'(t)$. There exist an endomorphism ψ of \mathbb{W}_{Δ} and a term $u \in J'$ such that $\psi(u)$ is a subterm of $\varphi(t)$. Put var $u = \{y_{1}, \dots, y_{\mathcal{N}'(u)}\}$. From the definition of φ it is easy to see that there exist subterms $t_{1}, \dots, t_{\mathcal{N}(u)}$ of t such that $\varphi(t_{1}) = \psi(y_{1})$ and such that $\psi'(u)$ is a subterm of t, if ψ' is an endomorphism of \mathbb{W}_{Δ} such that $\psi'(y_{1}) = t_{1}$. Hence $t \in \Phi(J') \subseteq \Phi(J)$.

Similarly if $F(x_1,...,x_{n_F}) \notin \Phi(J)$, then $\varphi(F(x_1,...,x_{n_F})) \in W_1^{J'}$. The local finiteness of Z_J follows now from Proposition 1.

<u>Corollary.</u> Let J be an irreducible set of Δ -terms and let the variety Z_J be locally finite. Then Z_J is generated by a finite algebra iff Z_J is locally finite.

Proof. Follows from Propositions 2 and 3.Proposition 4. Let J be a finite irreducible set of

 Δ -terms. Suppose that the variety Z_J is non-trivial and locally finite. Then Δ is finite and Z_J is generated by a finite algebra.

<u>Proof.</u> If \triangle were infinite, then there would exist a symbol $F \in \triangle$ $(n_F \neq 0)$ such that no term from J contains a subterm of the form $F(u_1, \dots, u_{n_F})$. Consequently e.g. the algebra $W_{n_F}^J$ would contain infinitely many terms t_1, t_2, t_3, \dots , where $t_1 = F(x_1, \dots, x_{n_F}), \dots, t_{n+1} = F(t_n, \dots, t_n)$, a contradiction.

Put $k = 2 + \max\{n_F; F \in \Delta\}$ and for every positive integer n put $S_n = \{t \in W_\Delta''; o(t) = n\}$.

Suppose first that for every positive integer n there exists a term $t_n \in S_n - \Phi(J'')$. Put $T = \{t_1, t_2, \dots\}$ and $s = \max \{\lambda'(t); t \in J\}$. Since Z_J is locally finite, there exists an r such that $\{t \in W_s; \lambda'(t) \geq r\} \subseteq \Phi(J)$.

Let us define a set T_s of Δ -terms by $t \in T_s$ iff the following two conditions are satisfied:

- a) te Wan WA,
- b) if $\mathcal{E}(t) = \langle y_1, \dots, y_p \rangle$ and $y_i = y_j$ for $i, j \in \{1, \dots, p\}$, then $i \equiv j \pmod s$.

Let us prove that if $t \in T_8$ and $\mathcal{A}'(t) \geq r$, then $t \in \Phi(J'')$. We have evidently $t \in \Phi(J)$, so that there exist a term $u \in J$ and an endomorphism ψ of W_{\triangle} such that $\psi(u)$ is a subterm of t. It is not difficult to prove (using $t \in T_8$) that $u \in J'$. Now $u \in J''$ is easy and so $t \in \Phi(J'')$.

There exist a number $n \ge r$ and a term $t \in T_8$ such that $G(t) = \langle x_1, \ldots, x_n \rangle$ for some automorphism ∞ of W_Δ . Let us define an endomorphism φ of W_Δ in this way:

 $\varphi\left(\mathbf{x}_{\mathbf{i}}\right) = \mathbf{x}_{\mathbf{j}}, \text{ where } \mathbf{j} \in \{1,\dots,s\} \text{ and } \mathbf{i} \equiv \mathbf{j} (\text{mod } \mathbf{s}).$ Evidently $\varphi\left(\boldsymbol{\infty}(t)\right) \in T_{\mathbf{s}} \text{ and } \boldsymbol{\lambda}'(\varphi\left(\boldsymbol{\infty}(t)\right)) = \mathbf{n}, \text{ so that } \varphi\left(\boldsymbol{\infty}(t)\right) \in \Phi\left(\mathbf{J}''\right).$ Similarly as in the proof of Proposition 3 (iii) \Longrightarrow i)) it can be proved that $\boldsymbol{\infty}(t) \in \Phi\left(\mathbf{J}''\right)$ and consequently $t \in \Phi\left(\mathbf{J}''\right)$, a contradiction with the assumption $t \notin \Phi\left(\mathbf{J}''\right).$ Denote by n the smallest number such that $\mathbf{S}_{\mathbf{n}} \subseteq \Phi\left(\mathbf{J}''\right).$ By Proposition 2 it is enough to show that if $t \in \mathbf{W}_{\Delta}$ and $\boldsymbol{\lambda}'(t) \geq \mathbf{k}^{\mathbf{n}-1},$ then $t \in \Phi\left(\mathbf{J}''\right) \subseteq \Phi\left(\mathbf{J}\right).$

Evidently $n \ge 2$, since $Z_{,J}$ is non-trivial; we shall define sets P_1, \dots, P_{n-1} as follows: we have $t = F_1(u_1^1, ..., u_{n_{F_1}}^1)$. If n = 2, put $P_1 = \{u_1^1, ..., u_{n_{F_1}}^1\}$. If $n \ge 3$, then there exists a number $j_1 \in \{1, \dots, n_{F_1}\}$ such that $\lambda'(u_{j_1}^1) \ge k^{n-2}$; put $P_1 = \{u_1^1, \dots, u_{j_1-1}^1, u_{j_1+1}^1, \dots, u_{n_{F_1}}^1\}$. Again we have $u_{j_1}^1 = F_2(u_1^2, ..., u_{n_{F_2}}^2)$. If n = 3, put $P_2 = P_1$ $v \{u_1^2, \dots, u_{n_{\mathbf{F}_n}}^2\}$. If $n \ge 4$, then there exists a number $j_2 \in$ $\in \{1, ..., n_{F_2}\}$ such that $\lambda'(u_{j_2}^2) \ge k^{n-3}$; put $P_2 = P_1 \cup \{u_1^2, ...\}$..., $u_{j_2-1}^2$, $u_{j_2+1}^2$,..., $u_{n_{F_2}}^2$ } . If we have defined $P_1, P_2, ...$..., P_{n-2} , put $P_{n-1} = P_{n-2} \cup \{u_1^{n-1}, ..., u_{n-1}^{n-1}\}$ and let us define terms $t^{(n-1)},...,t^{(1)}$ in this way: $t^{(n-1)} = F_{n-1}(x_1, ..., x_{n_{F_{n-1}}}), t^{(n-2)} = F_{n-2}(y_1, ..., y_{j_{n-2}-1})$ $t^{(n-1)}y_{j_{n-2}}, \dots, y_{n_{F_{n-2}}-1}$, where $y_1, \dots, y_{n_{F_{n-2}}-1}$ are pairwise different variables not occuring in t(n-1), $\mathbf{t^{(1)}} = \mathbf{F_1}(\mathbf{z_1}, \dots, \mathbf{z_{j_1-1}}, \ \mathbf{t^{(2)}}, \mathbf{z_{j_1}}, \dots, \mathbf{z_{n_{F_1}-1}}), \text{ where } \mathbf{z_1}, \dots$ \cdots , $z_{n_{F_{\gamma}}-1}$ are pairwise different variables not occurring in

 $t^{(2)}$. Evidently $t^{(1)} \in S_n$ and $t \in \Phi(\{t^{(1)}\}\}) \subseteq \Phi(J^{(1)})$.

<u>Proposition 5.</u> Let J be an irreducible set of terms of a finite type Δ and let Z_J be generated by a finite algebra. Then J is finite.

<u>Proof.</u> Put $k = \max\{n_F; F \in \Delta\}$ and let n be the smallest positive integer such that $\{t \in W_\Delta; \Lambda'(t) \geq n\} \subseteq \Phi(J)$. Let us denote by T the set of Δ -terms $t \in W_{n+k} \cap \Phi(J)$ such that $\Lambda'(t) \leq n + k$. Obviously T is finite, so that there exists a finite irreducible subset $S \subseteq T$ such that $\Phi(S) = \Phi(T)$.

Let us prove by induction on $\mathcal{A}(t)$ that $t \in \Phi(J)$ implies $t \in \Phi(T)$. If $t \in \Phi(J)$ and $\mathcal{A}'(t) \leq n + k$, then there is an automorphism ∞ of \mathbb{W}_{Δ} with $\infty(t) \in \mathbb{W}_{n+k}$; we have $\infty(t) \in \mathbb{W}_{n+k} \cap \Phi(J)$, i.e. $\infty(t) \in T$, so that $t \in \Phi(T)$.

Let $\lambda'(t) > n + k$ and $t \in \Phi(J)$. There exist a symbol G and terms y_1, \dots, y_{n_G} such that $G(y_1, \dots, y_{n_G})$ is a subterm of t and every y_i is either a variable or a constant. Let z be a variable not contained in t. If we replace precisely one occurence of $G(y_1, \dots, y_{n_G})$ in t by z, we obtain a new term s. Evidently $\lambda(s) < \lambda(t)$ and $\lambda'(s) \geq \lambda'(t) - k + 1 > n$, so that $s \in \Phi(J)$. By the induction assumption $s \in \Phi(T)$. However $s \leq t$, so that $t \in \Phi(T)$, too.

We have proved $\Phi(J) \subseteq \Phi(T)$. Since $\Phi(T) \subseteq \Phi(J)$ is obvious, we get $\Phi(J) = \Phi(T) = \Phi(S)$. Since every two irreducible generating subsets of $\Phi(J)$ have the same cardinality, J has the same cardinality as S and consequently J is finite.

Theorem 1. Let J be an irreducible set of terms of a

finite type Δ . Then the wariety \mathbf{Z}_J is generated by a finite algebra iff \mathbf{Z}_J is locally finite and J is finite.

Proof. Follows from Propositions 4 and 5.

For every positive integer p and for every $J \subseteq W_{\Delta}$ we define $S_n = \{t \in W_{\Delta} ; o(t) = p \}$,

$$\begin{split} \mathbf{U}_{\mathbf{p}} &= \{\mathbf{t} \in \mathbf{W}_{\Delta} \; ; \; \mathbf{o}(\mathbf{t}) = \mathbf{p}, \quad \mathbf{\delta}'(\mathbf{t}) = \langle \, \mathbf{x}_1, \dots, \mathbf{x}_{\mathcal{X}(\mathbf{t})} \, \rangle \quad , \\ \mathbf{J}_{\mathbf{p}} &= \mathbf{U}_{\mathbf{p}} \, \cap \, \Phi \, (\mathbf{J}'') \, . \end{split}$$

<u>Proposition 6.</u> Let J be a finite irreducible set of terms of a finite type Δ and let the variety Z_J be locally finite. If $k = \max\{n_p; F \in \Delta\} + 2$, $p = \max\{o(t); t \in \mathcal{S}''\}$, $r = \operatorname{card} U_p$, $q = \operatorname{card} J_p$, then $\{t \in W_\Delta; \mathcal{N}(t) \geq \sum k^{p+r-(q+1)}\} \subseteq \Phi(J'')$.

<u>Proof.</u> For every $t \in S_p$ we shall construct a term $u \in \Phi(J'')$ as follows.

If $t \in \Phi(J'')$, put u = t. If $t \notin \Phi(J'')$, then for an arbitrary symbol $G \in \Delta$ such that $n_G \neq 0$ we define $t_1 = G(u_1, \dots, u_{n_G})$, where $\{u_1, \dots, u_{n_G}\} = \{y_1, \dots, y_{n_G-1}, t\}$ and y_1, \dots, y_{n_G-1} are arbitrary variables.

There exist a symbol $F \in \Delta$ and variables z_1, \dots, z_{n_F} such that $F(z_1, \dots, z_{n_F})$ is a subterm of t_1 . Let us replace this subterm by x_1 and all other occurences of variables in t_1 which are not contained in this subterm by x_2, x_3, \dots , so that the new term t_1' is such that $\sigma'(t_1') = \langle x_1, \dots, x_{\lambda'(t_1')} \rangle$. Obviously $t_1' \in U_p$; since $t \notin \Phi(J'')$, we have $t_1 \in \Phi(J'')$ iff $t_1' \in J_p$.

If $t_1 \in \Phi(J'')$, put $u = t_1$. If $t_1 \notin \Phi(J'')$, then for

an arbitrary symbol $H \in \Delta$ such that $n_H \neq 0$ we define $t_2 = H(v_1, \dots, v_{n_H})$, where $\{v_1, \dots, v_{n_H}\} = \{w_1, \dots, w_{n_H-1}, t_1\}$ and w_1, \dots, w_{n_H-1} are arbitrary variables.

There exists a symbol $E \in \Delta$ such that $E(\dots,F(z_1,\dots,z_{n_F}),\dots)$ is a subterm of t_2 . Let us replace this subterm by x_1 and all other occurences of variables in t_2 which are not contained in this subterm by x_2,x_3,\dots , so that the new term t_2' is such that $\sigma'(t_2') = \langle x_1,\dots,x_{\lambda'}(t_2') \rangle$.

Again $t_2' \in U_p$ and $t_2 \in \Phi(J'')$ iff $t_2' \in J_p$. If $t_2 \in \Phi(J'')$, put $u = t_2$. If $t_2 \notin \Phi(J'')$, we can define analogously terms t_3, t_3', \dots

Put $V=\{t_1,t_2,\dots\}$. We shall show that $t_1' \neq t_j'$, if $i \neq j$. In the contrary case let $\langle i,j \rangle$ be pair the first such that i < j and $t_1' = t_j'$. We can define terms u_{j+1}, u_{j+2}, \dots such that for every positive integer m o(u_{j+m}) = p+j+m and $u_{j+m}' = t_n'$, where $i \leq n < j$ iff $m \equiv n \pmod{j-i}$. If $t_{i+1} = F(y_1,\dots,t_i,\dots,y_{n_F-1})$, then we put $u_{j+1} = F(y_1,\dots,t_j,\dots,t_j,\dots,y_{n_F-1})$ and if u_{j+m} is already defined, $m \equiv n \pmod{j-i}$ for some n ($i \leq n < j$) and if $t_{n+1} = G(z_1,\dots,t_n,\dots,z_{n_G-1})$, then we put $u_{j+m+1} = G(z_1,\dots,u_{j+m},\dots,z_{n_G-1})$. Thus $u_{j+m} \neq \Phi$ (J'') for all m, a contradiction with Proposition 4.

Therefore card V
eq r - q and we put $u = t_n$, where n is the smallest integer such that $t_n \in \Phi(J'')$. Hence it is easy to see that $U_{p+r-q} = J_{p+r-q}$ and $S_{p+r-q} \subseteq \Phi(J'')$. By the proof of Proposition 4 $\{t \in W_{\Delta} ; \ \mathcal{N}(t) \ge k^{p+r-(q+1)}\} \subseteq \Phi(J'')$.

Theorem 2. Let J be a finite irreducible set of terms of a finite type Δ . Let $s = \max \{ \mathcal{X}'(t); t \in J \}$, $k = \max \{ n_F; F \in \Delta \} + 2$, $p = \max \{ o(t); t \in J'' \}$, $r = \operatorname{card} U_p$, $q = \operatorname{card} J_p$. Then the following conditions are equivalent.

- 1) Z_T is locally finite.
- 2) Z, is locally finite.
- 3) Z.w is locally finite.
- 4) The algebra $W_1^{J''}$ is finite.
- 5) The algebra $W_{\mathbf{S}}^{\widetilde{\mathbf{J}}}$ is finite.
- 6) There exists an $n \le k^{p+r-(q+1)}$ such that $\{t \in W_{\Delta}; \mathcal{X}(t) \ge n\} \subseteq \Phi(J'').$
- 7) Z_J is generated by a finite algebra. Proof. 1) \Longrightarrow 6) \Longrightarrow 7) \Longrightarrow 1). Apply Propositions 6 and 2.
 - 3) \$\implies 4). Follows from Proposition 3.
 - 3) ⇒ 2) ⇒ 1). Trivial.
- 1) \Longrightarrow 3). By Proposition 4 there exists an positive integer m such that $S_m \subseteq \Phi(J'')$. Hence $\{t \in W_\Delta : \Lambda'(t) \ge k^{m-1}\} \subseteq \Phi(J'')$ and consequently $Z_{J''}$ is locally finite.

1) >> 5). Follows from the proof of Proposition 4.

Remark 1. For every finite irreducible set J of terms of a finite type Δ we have an algorithm to decide whether the variety Z_J is locally finite. By Proposition 6 it suffices to decide whether $U_{p+r-q} = U_{p+r-q}$, where $p = \max\{o(t); t \in J''\}$, $r = \operatorname{card} U_p$ and $q = \operatorname{card} U_p$. This process is obvious from the proof of this Proposition.

Remark 2. We know that under the assumptions of Theorem 2 the finiteness of $\mathbf{W}_{\mathbf{S}}^{\mathbf{J}}$ implies the local finiteness of

 $Z_{J^{\bullet}}$ If we put $h = \max \{ (card (var t); t \in J \} \}$, then it is not true in general that the finiteness of W_h^J implies the local finiteness of $Z_{J^{\bullet}}$.

For example, let $\Delta = 4$ F $_3$, where F is a binary operation symbol and let o denote the corresponding operation on \mathbb{W}_{Δ} . Let L denote the set of all terms $t \in \mathbb{W}_{\Delta}$ of the form $t = (\mathbf{x}_{\mathbf{i}_1} \circ \mathbf{x}_{\mathbf{i}_2}) \circ (\mathbf{x}_{\mathbf{i}_3} \circ \mathbf{x}_{\mathbf{i}_4})$ or $t = (\mathbf{x}_{\mathbf{i}_1} \circ \mathbf{x}_{\mathbf{i}_2}) \circ \mathbf{x}_{\mathbf{i}_3}$ or $t = (\mathbf{x}_{\mathbf$

References

- [1] JEŽEK J.: Varieties of algebras with equationally definable zeros (to appear in Czech. Math. J.).
- [2] JEŽEK J.: EDZ-varieties: The Schreier property and epimorphisms onto (to appear in Comment. Math. Univ. Carolinae).
- [3] MALCEV A.I.: Algebraiczeskie sistemy, Moskva 1930.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 8.4. 1976)