#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1976
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017 | log41

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,3 (1976)
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Abstract: There is given a new proof of the equality
of alT "natural® definitions of local (global) moduli of
convexity in normed linear spaces.
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The goal of the paper is to show that all "natural® de-
finitions of }ocal (global) moduli of convexity in normed
linear spaces coincide. For global moduli of convexity this
was shown by M.M. Day [2, Lemma 5.1) and for local moduli of
convexity by Bui-Min-Ci and V.I. Guraril [1, Proposition 1] .
- Bui-Min-fi and Guraril‘s proof relies upon a lemma [1,
Lemma 1] which coincides essentially with our Lemma 2. But
their proof contains an inaccuracy {being a consequence of
their picture 1). Indeed, they assert that, in our notation,
the straight line x(gy) + tx(y (9)) - x(9)), te (=0 ,+),

1) The results of the paper are a part of the author’s commu-
nication "Some remarks on nonlinear functional analysis"
"~ at the Summer School on "Nonlinear Functional Analysis
and Mechanics", Stard Lesnd, High Tatras, Czechoslovakia,
Sept. 23-27 (1974).
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intersects the half-line tx(y (¢ ”)),t =21, which is easily
seen to be false; for notation see below.

Our proof of the equivalence of different definitions
of local (global) moduli of convexity differs from that of
Bui-Min-Ci and Gurarii [1] (Dey [ 2]). o

We shall beginm with the following lemma on real func-
tions.

lemma 1, Let - &« X < B<+00 and f a real function
defined on (e, (3 ). If there exists an upper semi-continuous
function ¥ : (ec,@)— (o¢,3) such that:

(1) 9 (t)<t for each te (ec,3); and

(i)  £(2")2 £(t) for each te (oc,3) and t'e (yr(t),t),

then f is nonincreasing.

Proof. Let te(w,B) and set s(t) = min4 2t, t ;/3 3,
€ (t) =-supdy(t”) - t": t’e[t,s(t)]3 and oe (t) =

= min {s(t),t + € (t)3 . Clearly t<s(t)<+ o . As Y is
upper semi-continuous, we have ¢ (t)SO and 22 (t)>t. For
each te (t,22(t)), one has # (t)ct’ - g (t)<t<t’, so
that £(t")< £(t) by (ii). This and (ii) easily imply that £
is nonincreasing on (e, 3). The author thanks to J. Reif for
a simplification of the original proof of the lemma.

Remark 1., ILemma 1 remains true with (oc,3) replaced by
(<,3] where ~0 £ oc < @<+ 00 .

Remark 2. If the condition (ii) of Lemma 1 is replaced
by

(ii")  £(t")>£(t) for each te (oc,R) and t’e (yr(t),t),
then £ is (strictly) decreasing on (ec,B).

In the following lemmas and proposition, (X, [l./l) is a
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two-dimensional real normed linear space, B its clcaed unit
ball at O and S the boundary of B, For € € [ 0,2] and x€5
let us define d'(x,e) = inf {1 - | _x_}x” ryes, ly - xl =

= €% (the local modulus of conv;axity of X at x).

Lemma 2, Let x in S be given. Consider a Euclidean sys-
tem of coordinates in X such that the origin of this system
coincides with that of X and the half-line tx, t>0, is the
positive § -axis. For e L[0,2ar), let x(@ ) in 5 be defin-
ed (uniquely) by the condition: arg x(¢) = ¢ . Then:

1) llx+ x(¢ ) I is a nonincreasing continuous funst-
ion for ¢ € [0,ar] ;

(2) Ix+ (@)l is a nondecreasiné continuous func-
tion for e [ar,2ar];

(3) lx-x(e)l 1is a nondecreasing continuocus funct-
ion for ge L 0,ar 1

(4) lx - =x(g)l 4is a nonincreasing continuous func~
tion for ge [ar,20r] .

Proof. From x(¢+a) = - x(@) (g € LO,or] ) and from
the symmetry it follows that it is sufficient to prove the
assertion (1).

From the equivalence of .|| and |.| , where _| b i
the Euclidean norm corresponding to the Eucliz_iean system of
coordinates we have fixed, it follows that x(g;) is ccntinuoﬁs
(in X, 1.11)) for ge CO,20r], i.e. x(.)e C(LO,2a],

X, Mell)). as x + x(¢)+0 for each ¢ € [ 0,97 ), the func-
tion Y (¢ ) = arg (x + x(¢)) is continuous on [0, ). As
x + x(¢) (e [0,0r)) lies in the half-space 105 ,7):

: 7, Z 0% and not on the regative § -axis, we have that
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¥ ():L0,r)—>LO0,o). For @ & [ 0,r), let A(g) be
the closed convex angle (cone) with vertex at O and generat-
ed by {x,x(g)% and B(g ) the closed convex angle (come)
with vertex at - x and generated by {x,x(@)? .

If0& 9'€« @< , then A(g)cA(g ). From this and
O€ (- x,x) it follows that B(g’)cB(@). As A(y(g)) =x+
+ B(g), Ay (¥’)) = x + B(g’), we have Aly(@’))cAly (9 ),
so that ¥ (9")< % (g). As Oe (- x,x), we have, for o &
€ (0,a), B(g) + x = Ay (9))§ A(g), ie., (o)< .
Clearly ¥ (¢)>0 far @ € (0,9r). Therefore 7 (.) is a non-
decreasing continuous function from [ O, ) into [O0,ar) with
Vv (@)l<g foreach ge (0,7) and 3 (g) =0iff ¢ =
= 0.

Let ¢ € (0,9r) and @’ e (9(@),) be given. Then
.x(q’)eInt (A(@)INA(y(@))INS, so that, by the convexity of
B, x(¢’) e H, where H is the closed halfplane with O H =
=4ix(@) + t(x(y(@)) - x(¢)): te(-w,+a)} and 04 H.
From the convexity of B it follows that x(¢”)e H and hence
also x(g) + t(x(g’) - x(¢))eH for all t=0. As x(3(g))e
€ H, we have x(y(9)) + t(x(¢”) - x(g })e H for all t=0,
From x(q ),x(% (¢))e S we conclude that I x(y3r(g)) +
+ t(x(9”) - x(¢)) Il = 1 for all t>0. But
us (x+ x(e)) | x+ x(g)l -la x(y(@)) + t (x(g) -

- x(@)), where t_ = ll x + x(cp)ll "1 (because x(¢(g)) =

= (x+x(g))lx+x(q)ll 71). Bence Hul > 1, i.e.,

Ilx+ x> lx+x(q)ll . Setting (e, 3) = (0,ar),
(@) = [ x+ x(¢g)ll , we see that the hypotheses of Lemma

1 are satisfied, and hence the assertion (1) follows, because
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£(0) = 22f(g)2f(ar) =0 forall e L O,x].
Proposition 1. o7(x,€) is a nondecreasing function
of € € [0,2) (for each x€ S).
Proof. Clearly o"(x,0) =0 £ J(x,g) for all € €
e[o,éJ clet 042 ¢ <e'< 2 with J(x,e’)<1. let y'e S
be such that J"(x,e’) =1 - HE'E"!:” (the existence fol-

lows at once from a continuity and compactness argument).
Take a Euclidean coordinate system as in Lemma 2 such that
vy’ = x(g”) with @’e (0,-3r) (this is possible because

g (x,e)<1). Let y = x(¢), e (0,0r) be such that
lx-yll=€ . A8 e’>¢ , we have by lemma 2, (3), that
0 <% < @“, By Lemma 2, (1), it follows that

Sxe) =1 - |23 e - | Erx@) |2y - |2t o),
2 d(x,e) .

As J(x,8')<1 for any ¢’e C£0,2), the proposition follows.
Lemma 3. For each x in S and €€ [ 0,2] we have

Hhix,e)= inf {1 - “5-5—1" :yes, Ix-yl=ze3 =

= d(x,¢).

Proof. This follows at once from . d5(x,€) =
= inf £d°(x,¢’): €’ € [£,2]% and Proposition 1.

Iemma 4. Let x in S and y in Int(B) be given. Then the-
re is a point z in S such that |y - xl=lz - x| and
lz+xl =z lyg+xl. ‘ ‘

Proof. 1) Suppose that y ¢ (- x,x). Let u, veS be de-
fined by the following conditions: u = = x + t(y + x) for
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some t>0 and v = x + 8(y - x) for some s>0. Take a Euclide-
an coordinate system as in Lemma 2 such that x = x(0) and u =

= x(w) for some @ € (0,ar). Then v = x(» ) for some » €

€ (w,m) (easy). Take ¢e (0, ) such that lx - x(g) |l =

ly-xll=z=e .48 lx=-x(p)l>lx=-yl =¢ , we
have, by Lemma 2, (3), »> ¢ . Suppose that ¢ £ @ . Then,
by Lemma 2, (1), lx+x(g)l = l x+ x() > | x+yl,
so that we can set z = x(cy). Now suppose that o < @ . As
e (0, 2»), yeInt(T), where T is the (closed) triangle
with vertices x, - x, and x(¢ ). This implies that

lx - x(g)ll + | () = (=x)lzlx-yl+ly-l.
as Ix - x(g)l =llx-yll =¢ , we have llx + x(g) Il >
Zllx+yll, so that we may set z = x(¢gp)e

2) If ye(- x,x) and z in S is such that [ 7 - x| =

2 =

]

ly-xll, then lx -2zl + llz+xllz 2]x]

ly -xll + Iy + x|l , and hence z satisfies the assertion
of the lemma.

Lemma 5, For xeS and e€[C,21 ,
S(x,e) = inf {1 - “LE——’E" :yeB, ly-xl = ¢3%
(= d5(x,€)) = inf 41 = u%n :yeB, lly-xl=¢%3
(= dylx, e
Proof. It is clear that o"(x,e) = da(x,e) =

Zd‘“x,s). Let w in B be such that llw - x| z ¢ and

lw+xl =sup§lly+x V| :yeB, ly-xl12¢e3 . Llet ¢’

lw-xll and take z€S (by Lemma 4) such that || z - x |

€ and [z + x| Zl w+ x|l (indeed, it is clear that

lz+xl=1lw+xl). Thus we have o(x,e) < I(x,e") £
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W+ Xx

c1-] 252 c1- 52| = oy, 0.

Lemma 6. If we Gefine, for £€[0,21] ,

d(e) =inf {1 - 25X : xes, yes, Ix-yl =¢} ,

dp(e) =inf{1 - | 25 Z| : xes, yes, |x-ylz el
d3(e) = inf {1 - [XZX| : xes, yeB, Ix-y| =¢},
Oy(e) =inf 41 - [ X5 X| : xes, yes, Ix-ylze?,
d5(e) = inf {1 - |X5X| : xeB, yeB, Ix-yl=c¢?,
ds(e) =inf {1 - |[E5T] :xeB, yeB, |x-ylze},

then d(e) = oH(e) = di(e) = dyle) = dyle) = dyle).
Proof. It is clear that the following inequalities hold:
le) z dy(e) 2 Iy(e)
v I\ IV

dy(e) = d"4(e,)z Fele).

Therefore it is sufficient to prove that dgle) =z dle).
Let x and y in B be such that Ilx -y Z¢ anda dgle) =

-1 =g

X€S or yeS, We may suppose that x€S. Set ¢’ = [x -y | .
Then dgle) =1 - ” Lg% ﬂZd;(x,e') = dx,¢) =z Ix,e)2

Z d(e) (by Lemmss 3 and 5) and the lemma follows.

. It is easy to see that 4x,y5/) S+ 4, i.e.

Let X be a normed linear space (over the field of real
or complex numbers) of real dimension greater than one, B its
unit (closed) ball at O and S the boundary of B, If d’;_(x,e)
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and di(e) (i =8, 2,3,4, resp, i = @, 2,3,4,5,6) are de-

fined as above for X of dimension two, then, clearly,
d'i(x,e) = inf cf'i(x,e) and J%(e) = inf d’g(e), where

Y runs over all two-dimensional real subspaces of X and

d"g(x,.) and d'g(.) denote the corresponding d“'i(x,.) and
d;(.) for Y. _
From the above results we obtain at once the following

Theorem. Iet X be a (real -or complex) normed linear

space of real dimension = 2 and x€X, Il x|l = 1. Then:
(1) J(x,.) is a nondecreasing function:
(2) d'(x,n) = d’z(x,o) = 6'3(!,-) = dv4(x,o);
(3). J7(.) is a nondecreasing function;
4) d(.) = () = 073(.) = d;(.) = d;(.) = del.).
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