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- KETKOV CONDITIONS
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Abstract: The purpose of this paper is to give some
new results on fixed points for noncompact mappings in nor-
med linear spaces which behave something like a 1-spaces

(e.g. Hilbert-spaces, Lp—spaces (l¢p <o )).
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AMS: Primery: 4TH1O Ref. Z.: 7.978

Secondary: 4TH9S

1. Introduction. In this paper we study the existence

of fixed points for mappings satisfying so called weak or
strong "Frum-Ketkov conditions” (see Definition 2 below).
These coﬁditions were introduced in an essential stronger
form by R.L. Frum-Ketkov [3) and M.A. Krasnoselskii [5] and
subsequently used (in this special form) by R.D. Nussbaum
71,081, M.A. Krasnoselskii (5], M. Furi end M, Martelli
(13] and others in proving fixed point theorems. We estab-
lish various existence theorems under certain boundary con-

1) I would like to thank Prof. J. Reinermann for helpful
suggestions,
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ditions which include - as special cases - most of the known

results of this type and some interesting new ones.

2, Definitions and preliminaries. For a normed linear
space (n.l.8) (E,(l 1), a subset X of E and a map £: X—>E

we denote by X, GE}{ and Fix(f) respectively the closure of
X, the boundary of X in E and the fixed point set of f.
A(E, I II) stands for the collection of all nonempty closed
subseia of E.

Definition 1. et (E, Il ) be & n.1.8., #+XcE and K:
: X—A(E, I I). K is said to be admissible:<==)&)_‘;_f(x_-)

Definition 2, Iet (E,Il ) be a n.l.8., §+XcE, f:
: X—>E amd let K: X—>A(E, | /) be admissible.
(i) £ is said to satisfy a weak Frum-Ketkov condition with

respect to K:¢<= u/;X a(£(x), K(x))zd(x,K(x)) 2)

(ii) £ is said to satisfy a strong Frum-Ketkov condition
with respect to Ki¢=>

(o) A\, a(f(x), K(x))<a(x,K(x))
xeX A
() ‘%,);\m‘x'“ [ lim(d. ), K(x )y >0 = -

=> 1in (a(£(x,),K(x ), < Tim(a0xy,K(x)) g ]

Remark 1., If f satisfies a weak (strong) Frum-Ketkov
condition with respect to some admissible K: X—> A(E, | 1)

2) I‘l’ror YeE and McE d(y,M) denotes the distance from y to

- 400 -



we call £ a weak (strong) Frum-Ketkov contraction,

Proposition 1. Iet (E, W ) ) be a n.l.s., #+XcE, f:
: X—>E, McE be compact and m € [0,1) such that

x/e\( ;{M Lf(x) =ylemix -yl

Then f is a strong Frum-Ketkov contraction

Proof: Obvious. '

Proposition 2. let (E,(,)) be a Hilbert-space, @+ Xc E
and f: X—>E

Then

(i) If £ is a Benach-contraction (i.e.  \/ /\
A€L0,4) x,4eX

f£(x) - £y)l « A Il x-yll) then £ is a strong Frum-Ket-
kov contraction

(ii) If X is the finite union of closed, convex sets
and f is a generalized contraction

/\ex L£(x) - £ £ « ()x - yl)

)

(i.e. «<: X—>\/[O,4)

then £ is a strong Frum-Ketkov contraction

(iii) If X is bounded and f nonexpansive
(i.e.) x,/rA}eX | £(x) - £(y)l 2 l x = y|) then £ is a weak
Frum-Ketkov contraction

Proof:(i) By a well-known theorem of Kirszbraun and
Valentine [12] there is a Banach-contraction g: E —>
—> Co(f(X1) 1) guch that glx = f, dhoose ye Fix(g) and de-
fine K: X—» A(E,(,)) by K(x):={y} . It is easily seen that
£ satisfies a strong Frum-Ketkov condition with respect to K.

1) For McE <©o(M) denotes the convex closure of M
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m
(ii) Let X = %1 C, with C, nonempty, closed and

convex and choose & map j: X—>41,...,n% w:Lth&/e}( X€Cj(yye
For ve {1,...,0% 1let r: E—)Cv be a nonexpensive retrac-
tion onto Cv. A theorem of W.A. Kirk [4] guarantees that the-
re is for v € {1,...,n% exactly one x € E with for (x ) =

= x,. If we ¢efine m:= max {co(rv(xv))) |vedil,eee,n?} we
have m e [ 0,1) and for xeX: ll£(x) - X5 (x) <

£ W(rj(x)(x,j(x))) Ix - X5yl £mix - X5 (x) | . Hence £ is
& strong Frum-Ketkov contraction by Proposition 1.

(iii) Analogous to part (i). Q.E.D.

Definition 3. Let (E, Il I) ve a n.l.8., #+X+E ad
f: X—>E. £ is said to be demicontinuous: —>

(awDQNeNN NQX Elm(xn)nem = x, (stromgly) —>

=> lim (r(xn))ne\N = f(x,) (weakly)

3. Fixed points of weak Frum~-Ketkov contractions
TeAX _-~rum-ketkov contractions

Lemma 1, Let (E,(,)) be a Hilbert-space, #+Ce H and
let P: E—» To(C) be the metric projection onto €5(C)

(i.e.'%/;a Iy - Py = a(y,s6(C)))

. 2 2 2
'I'henM/K\‘__c @Edw(y) K +ly - P(y) || 2 a(y,K)

Proof: Let #+KcC, ye E and ¥,€ K. For 2 = (0,1)
we have

Iy -2 12 = a3,500)% § y - (AP(y) +

* A=) = HG - P + @ -2 eey) - g2 =
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=y -P@ 12+ Q-2 -y 12+

+ 2(1 -A)Re(y - P(y), P(y) - yo)
hence 0£(1 -A) NP(y) - yoll2 + 2 Re(y - P(y),P(y) - ¥,)
and therefore (A —> 1-): 042 Re(y - P(y),P(y) - y,). This

yields
Iy - P2+ a@y),02elly - Pl 2 +1PG) - 3,1 2+
+2 Re(y - P(y),P(y) - y;,) = (g - P(y)) + (P(y) - y ) 2.

=ly -y 2

By taking the mfmum on the right hand side of the last in-
equality we get the desired result. Q.E.D.

Theorem 1. let (E,(,)) be a Hilbert-space, §+XcE
be closed and convex, K: X—>A(E,(,)) be admissible such

that (%) &ﬁ/} % K(x)c X and let the continuous map £: X—>
e : 4

—> E satisfy a weak Frum-Ketkov condition with respect to
K

Then Fix (£)+&
Proof: Set C:= s\.‘)-x K(x) and let P: E—>¢o(C) and

r: E—>X respectively denote the metric projections onto
&6(C) and X. By Schauder’s fixed point theorem there is xe E
such that Po £fo r(x) = x. From Lemma 1 we have

alx,K(r(0N? + I2(x(x) - x %2 a(E(ra) Krx)F £

2a(r(x),K(x(x)))2 and alr(x),Kr@N%+lx - r(x) I 2 £
é.d(x,K(r(x)))z. Combining this, we get llx - r(x) 2,

+12(x(x)) = x 1240 and thus £(x) = x. Q.E.D.
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Remark 2. (1) M.A., Krasnoselskii’s theorem 5 in [5]
is a special case of Theorem 1,

(2) 1I* should be noted that we do not assume f [XlcX
in Theorem 1 and that the assumptions in fact do not even
imply £ [3gXlc X (E:=TR ; X:=L[-1,+41]; £(x):= -2x;
K(x):= 4 =x3})

(3) Corollary 1. Iet (E,(,)) be a Hilbert-space, £+
=% Xc E be closed and convex and £: X—> E be continuous such
that there exists a compact subset M of X with

AN VIEE) -yllelx-3l
xeX yeM

Then Fix(f)+#

4. Fixed points of strong Frum-Ketkov contractions

Lemma 2, Iet (E, | ll) be a n.l.8., #=XcE be closed,
K: X— A(E,ll | ) be admissible and let the demicontinuous
map f: X—> E satisfy a strong Frum-Ketkov condition with
respect to K.

Then the following two assertions are equivalent

(i) Fix(£)x P

(ii) For e > O there is a nonexpansive map P: E—E
such that Fix(Po f)% % and [P(y) -yll«e forye chf‘X K(x).

Proof: "(i) = (ii)" For € > O define P:= Idge.

"(ii)=» (i)" Let C:= ukch X(x). By assumption there
are sequences (Pn)neN and (xn)neIN such that

(1) m./c-\IN P,: E—> E nonexpansive

1
@ % TR e d
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(3) /\ x e XAPy e £(x ) = x,

meN
If we choose for ne N a point y, € K(x ) with
he(x,) = yoll = alelxy) K(x,)), we get alx,,Kix))) £

£lx, -y, e lp ef(x,) - Pylyy) o+ NP, yy) = vy
Lal(xy),Kix,)) + & .

Rence TE(A(x,,K(x,))), oy & TB(A(L0x,) K)oy s Which
implies: &m(d(xn,x(ﬁ)))n‘m = 0. By compactness of C we

may assume lim(d(xn,K(xn)))neN = 0 and 1im<xn)nelN = x€eCy
(strongly). The demicontinuity of f yields lim(f(xn))nem =

= £(x) (weakly) and because of lim(d(f(x,),K(x,))), =0

we find lim(f(x,)) = £(x) (strongly). The inequality

nelN
a(f£(x),C) ed(f(x),Kix, )} £l £(x) - £(x ) + a(f(x,),K(x,))

shows f(x)e C. Finally, because
lx - £(x)ll «ll x - ﬁll +ﬂPno £(x,) - Pnof(x)l\ +

+ 1B 0200 - £@ I &l x = x| + W 2(x) -2+ 5

holds for n &« N , we see that x is a fixed point of f.
E Q.E.D.

Theorem 2, Let (E, | 1) be a n.l.8., Xc E be an open,
bounded neighborhood of the origin, K: X—> A(E, )l I ) be ad-
missible and let the demicontinuous map f: X—> E satisfy a
strong Frum-Ketkov condition with respect to K.

Assume that there exists a sequence of.ﬁnite-dimensional

: N
lire ar nonexpansive projections (P )y o € (%) such that
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lim(Pn(y))nelN =y (strongly) for y e xLeJx K(x). 1

Iet furthermore one of the following conditions be satis-
fied:
(a) X is an open ball about the origin and

: a1 =A)x + Af(x),X)] -
1 =0
u'g/\asx a—%+{ A }

(i.e. £ is "weakly inward", see [10])

(b) The conjugate space of (E, Il II) is strictly con-
vex and if J: E—> E* denotes the normalized duality map-
piﬁg we have

+) x/e}',ax Re J(x)(£(x)) 1 x12
or

(++) /\ . Re J(x)(£(x)) = Nxl?
xeaEX

(¢) X is an open ball about the origin and 13 Xlc X
(d) X is symmetric and /\ _ f(x) = -f(-x)

x&aEX
Then Fix(£)% 9

Proof: Let ¢ > O, By a standard argument there is
neN such that lan(y) -ylze - for ye%LaJx K(x). In
view of Lemma 2 it remains to show that each of the condi-
tions (a) - (d) implies Fix(Pno f)4 4. Let H:= Pn[EJ .

(a) Using Pntfl = XAH it is easily seen that P eof
is weakly inward, too, when restricted to XnH, By a well-

- =

1) Such a sequence exists f.e. if (E, | ) is a (ar),-space
(see [81)
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¥nown result there is xe XA H with P o £(x) = x,

(b) From [2] we learn that %/;H J(y)e P = J(y). Hen-

ce P o f'an satisfies (+) or (++) (with X replaced by Xn H)
according @s (+) or (++) holds for f. Therefore Fix(Pj o f)+4
% @ by the lLeray-Schauder theorem for finite-dimensional spa-

ces.
(¢) We have (a) fulfilled and therefore Fix(P o £)*d.
(d) The antipodal-theorem for finite-dimensional spaces
yields the existence of xeHnX with P o £(x) = x. Q.E.D.

Remark 3. (1) Theorem 2 with condition (¢) improves &
result of R.D. Nussbaum [8] where f is assumed to be a conti;

nuous map such that

S \/ /N, a(£(x),M) £ kd (x,M)
P%Mc Ecompact & el0M) xeX ’ d
(2) Corollary 2., Let (E,(,)) be a Hilbert-space, Xc E
be an open, bounded neighborhood of the origin and let f:

: X— E be & demicontinuous strong Frum-Ketkov contraction

such that
° 2
() x/eBEX Re (f(x),x) < ixl
or
: 2
( ) b(/e\aEx Re (£(x),x) = M=xl°.

Then Fix(£)+0

(3) Corollary 2 improves the results of M.A, Krasnosel-
skii and P.P. Zabreiko [6] and J. Reinermann [91.

(4) Conditions (e ) and ( » » ) of Corollary 2 are res-
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‘pectively equivalent to

(M A lex) -xh221e@)02 - Dxl?
xeagx

and

(1) A l2 -xW2che@n?2 - 1xl?
xeaEX

(5) A long but elementary computation yields that if
X is an open ball about the origin (e« ) of Corollary 2 is

equivalent to (e « «) £ is weakly inward

We end this paper in proving a Rothe-type theorem. We
will need the following two lemmata. The first is a well-
known result and the second is proved in a more general form

_in [10]. For the sake of comple teness we give the proof of

the second one.

Iemma 3, let (E,(,)) be a Hilbert-space, ne N ,
XyyeeesyX,€ E, MCE be compact and € > 0

Then there is a finite-dimensional subspace H of E such
that « XysesesX ¥ © H and the orthogonal projection P: E—>
—>H satisfies IP(y) -yllee for yeM

Lemma 4, Iet (E,N ) be a n.1l.8. and #+XcE be a fi-
nite union of closed convex subsets of E such that X is con-
tractible. Let £f: X—> E be compact with £ L aEXJ cX

Then Fix(f)+0

Proof: Since X is an ANR (see [11), a well-known re-
sult of Borsuk implies (by contractibility.of X) that X is

an AR. If r: E—> X denotes a retraction onto X, we défine

. . ff(x) xe X
g: E—=Eby g(0): =1 % or(x) xeENX -
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Since g is compact, Schauder s fixed point theorem yields

Fix(£)4 0. Because of Fix(f) = Fix(g) we are done. Q.E.D.

Theorem 3. Let (E,(,)) be a Hilbert-space and XcE be
finite union of closed balls such that X is contractible in
the weak or strong topology of (E,(,)). Let f: X—> E be a
demicontinuous strong Frum-Ketkov contraction satisfying
£ CogXlcX

Then Fix(£)+0

Proof: (hoose an admissible K: X—> A(E,(,)) such that
£ satisfies a strong Frum-Ketkov condition with respect to K.
Set C:= ’J‘E('{) and let € > O. By assumption there are n e
€N , xy,000,x € E and 7y,..0,Tp€ (0,00) with X =
U B(:%,r ) By Lemma 3 there is a fmlte-dmensmnal sub-

space H of E such that -ixl,...,yh’}c H and the orthogonal
projection P: E—» H satisfies IP(y) -y Nze for yeC.
We have PLX1 = X~H and thus XnH is the finite union of
compact convex sets and contractible. Because

Pof [B3g(XnH)lc Pef LoXnHIc PIXIc XnH we have
Fix(Po f)+ @ by Lemma 4, Lemma 2 gives the conclusion. Q.E.D.

Remark 4, (1) We do not know, whether the assumption
"X is the finite union of closed talls" can be weakened to
"X is the finite union of closed convex sets". In this con-
text it should be noted that M. Furi and M. Martelli L1313, in
extending a result of R.D. Mussbaum [ 71, recently proved that
(strongly) contractible subsets of arbitrary Banach spaces,

which are finite unions of closed, bounded and convex sets,
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have the fixed point property for special selfmappings of
Frum-Ketkov type, namely those we described in Remark 3 (1).
Unfortunately the‘ir argument doesn’t work in the general
setting, although it seems to be very useful in the area of
fixed p oint theory (see [101).

(2) Proposition 2 (ii) and Theorem 3 gives a fixed
point result for generalized contractions, which is extend-

ed to nonexpansive mappings in [10] .

NOTE ADDED IN PROOF,

J. Dme3 from the Charles University, Pragie, has indi-
cated to the author that Lemma 1 can be found in the appen-
dix to "Topological Methods in Nonlinear Analysis" (Charles
University, 1972/73) written by J. Kolomy and J. Dane3.

References

{11 F.E. BROWDER: Fixed point theorems on infinite-dimen-
sional manifolds, Proc. Amer. Hath. Soc. 90
(1965), 179-194. '

{21 F.E. BROWDER ard F.G. DE FIGUEIREDO: J-monotone nonli-
near operators in Banach spaces, Proc. Konin,
Nederl. Akad. Wet. 28(1966), 412-420,

{31 R.L. FRUM-KETKOV: On mappings of the sphere of a Banach
space, Soviet Math. Dokl. 8(1967), 1004-1006.

(4] W.A. KIRK: Mappings of generalized contractive type,
J. Math. Anal. Appl. 32(1970), 567-572.

{51 M.A. KRASNOSELXII: On several new fixed point princip-
les, Soviet Math. Dokl. 14(1973), 259-261.

(6] M.A. KRASNOSELSKII and P.P, ZABREIKO: A method for pro-

ducing new fixed point theorems, Soviet Math.
Dokl. 8(1968), 1297-1299.

- 410 -



{71 R.D. NUSSBAUM: Some asymptotic fixed point theorems,
Trens. Amer.Math, Soc. 171(1972), 349-375.

(8] R.D. NUSSBAUM: Asymptotic fixed point theorems for lo-
cal condensing mape, Math. Ann, 191(1971),
181-195.

{91 J. REINERMANN:' Fortsetzung stetiger Abbildungen in Ba-
nach-Rumen und Anwendungen in der Fixpunkt-
theorie, Berichte der Ges. f. Math. und Da~
tenverarbeitung Bonn Nr. 57(1972), 135-145.

{10] J. REINERMANN and R. SCHONEBERG: Some results and pro-
blems in the fixed point theory for nonexpan-
sive and pseudocontractive mappings in Hil-
bert-space, Proceedings on a seminar "Fixed
Point Theory and its Applications®, Dalhousie
University, Halifax, N.S., Canada, June 9-12,
1975 (to appear).

{11] R. SCHONEBERG: Eine Abbildungsgradtheorie ffir A-Opera-
toren mit Anwendungen, Diplomarbeit an der
Techn. Hochschule Aachen 1975 (unpublished).

[12] F.A, VAIENTINE: A Lipschitz condition preserving exten-
sion for a vecior function, Amer. J. Math.
67(1945), 83-93.

{13] M. FURT and M. MARTELLI: On the minimal displacement
under acyclic-valved maps defined on a class
of ANR’s, Sonderforschungsbereich 72 an der
Universitit Bonn, preprint No. 39(1974).

Lehrstuhl C f{ir Mathematik
der RWTH Aachen
Templergraben 55, 5100 Aachen
Bund esrepublik Deutschland

(Oblatum 27.1. 1976)

-4 -



ST1s



	
	Article


