

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log37

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,2 (1976)

DECOMPOSITIONS OF COMPLETE k-UNIFORM HYPERGRAPHS INTO FACTORS WITH GIVEN DIAMETERS

Pavel TOMASTA, Bratislava

Abstract: The aim of this paper is to find an upper estimate for the minimal n (if it exists) with the property that K_n^k is decomposable into factors with given diameters. It will be shown that this property is hereditary.

Key words: Complete graphs, factor, diameter of graph.

AMS: 05C35 Ref. Z.: 8.83

Introduction. The next considerations deal with k-uniform hypergraphs and give some generalizations of problems solved in [2] for graphs.

The purpose of this paper is to prove:

- l. If a complete k-uniform hypergraph K_n^k with n vertices can be decomposed into m factors with given diameters (k,n,m) are positive integers) then for any integer $N\geq n$ the hypergraph K_N^k can be also decomposed into m factors with the same diameters. This is a generalization of Theorem 1 of [2].
- 2. An upper estimate for the minimal n with the property that K_n^k is decomposable into factors with given diameters. This is an analogue of Theorem 4 of [2].

At first we give some definitions. A hypergraph is an

ordered pair of sets G = (V,H) where $H \subset P(V)$ (the potence of V). Let k be a positive integer. The hypergraph G is said to be a k-uniform hypergraph if for each $h \in H$ we have |h| = k. For k = 2 we obtain graphs. If the set H contains all the k-element subsets of V then G is said to be a complete k-uniform hypergraph and we denote G by K_{n}^{k} where n = |V|. The distance $d_{G}(x,y)$ of two vertices x and y in G is the length of the shortest path joining them. The dismeter of the hypergraph G is defined by

$$d = \sup_{x,y \in V} d_{G}(x,y)$$
.

The factor of G is a subhypergraph of G which contains all vertices of G. For unknown concepts see Berge [1].

The general case. Let $F^k(d_1, d_2, \dots, d_m) = t$ be the smallest integer (if it exists) such that the hypergraph K_t^k is decomposable into m factors with diameters d_1, d_2, \dots ..., d_m .

<u>Agreement:</u> We shall say that K_n^k is of type $T^k(d_1, d_2, \ldots, d_m)$ if it is decomposable into m factors with diameters d_1, d_2, \ldots, d_m .

The importance of the number $F^k(d_1,d_2,\ldots,d_m)$ follows from

Theorem 1: Let m, n and k \geq 2 be positive integers and let d_1, d_2, \ldots, d_m be positive integers or symbols ∞ . If $F^k(d_1, d_2, \ldots, d_m) = n$ then for every integer N \geq n the complete k-uniform hypergraph k_N^k can be decomposed into m factors with diameters d_1, d_2, \ldots, d_m .

Remark: We denote the diameter of a disconnected hypergraph by the symbol ∞ .

First we prove the following

Lemma 1: Let $2 \le k \le n$ be integers. Then the hypergraph K_n^k cannot be decomposed into more than $\binom{n-2}{k-2}$ factors with diameter d=1.

Proof of Lemma 1: Consider a factor of K_n^k with diameter one. Then every pair of its vertices belongs to at least one edge. There are $\binom{n}{2}$ pairs of vertices and every edge contains $\binom{k}{2}$ pairs of vertices. Consequently the number of edges of this factor is at least

$$\frac{\binom{n}{2}}{\binom{k}{2}} = \frac{n(n-1)}{k(k-1)}.$$

Thus for the number m_1 of the factors of K_n^k with diameter d = 1 we have

$$m_1 = \frac{\binom{n}{k}}{\frac{n(n-1)}{k(k-1)}} = \binom{n-2}{k-2}.$$

The proof is completed.

Proof of Theorem 1: The induction on N will be used. Suppose $d_1 \leq d_2 \leq \ldots \leq d_m$.

- 1°. The first step of induction is evident: K_n^k is of type $T^k(d_1,d_2,\ldots,d_m)$ by the assumption.
- 2°. Let $N \ge n$ and K_N^k be of type $T^k(d_1, d_2, \dots, d_m)$. Our aim is to prove that K_{N+1}^k is also of type $T^k(d_1, d_2, \dots, d_m)$. Denote its vertices by $1, 2, \dots, N, v$. The hypergraph K_N^k with

vertices 1,2,...,N is of type $T^k(d_1,d_2,...,d_m)$ by the induction hypothesis. Denote its factors with diameters $d_1,d_2,...$..., d_m by $F_1,F_2,...,F_m$.

We shall construct the factors G_1, G_2, \dots, G_m of K_{N+1}^k as follows:

- (a) If $h \in F_i$ then $h \in G_i$ for every i = 1, 2, ..., m.
- (b) Let p be an arbitrary but fixed vertex of K_N^k and let $p_1, p_2, \ldots, p_{k-1}$ be vertices of K_N^k different from p. Then the edge $\{v, p_1, p_2, \ldots, p_{k-1}\} \in G_i$ if and only if $\{p, p_1, p_2, \ldots, p_{k-1}\} \in F_i$, for every $i = 1, 2, \ldots, m$.
- (c) If $d_1 = 1$ then there are exactly $\binom{N-1}{k-2}$ edges of type $\{v,p,q_1,q_2,\ldots,q_{k-2}\}$ in the hypergraph K_{N-1}^k and by Lemma 1 we can give into every factor with diameter one at least one edge of this type. The remaining edges can be given into any factor with diameter one.
- (d) Assume $d_1 \ge 2$. Let q be some fixed vertex of K_N^k and $p \ne q$. If $\{p,q,q_1,q_2,\ldots,q_{k-2}\} \in F_i$ then $\{p,v,q_1,\ldots,q_{k-2}\} \in G_i$, $i = 1,2,\ldots,m$.

Now we prove that the factors G_1, G_2, \ldots, G_m have diameters d_1, d_2, \ldots, d_m , respectively.

I. First we show that $d_i \leq d_i$ for every i = 1, 2, ..., m where d_i is the diameter of G_i .

The edges $\{v,p_1,p_2,\ldots,p_{k-1}\}\in G_i$ and $\{p,p_1,p_2,\ldots,p_{k-1}\}\in F_i$ will be called "mutually corresponding". Analogously for the edges $\{v,p,q_1,q_2,\ldots,q_{k-2}\}$ and $\{p,q,q_1,q_2,\ldots,q_{k-2}\}$. Further we say that the vertex x is "joined via p" with the vertex y if there exists an edge containing x and p and an edge containing y and p.

Let G_i be an arbitrary factor and x, y be an arbitrary pair of vertices of K_{N+1}^k . If $v \neq x,y$ then $d_{G_i}(x,y) \neq d_i$. Let now one of the vertices x, y be v. For example x = v. If $d_i = \infty$ then evidently $d_i \neq d_i$. Thus it can be supposed $d_i < \infty$. We shall distinguish two cases.

1. $y \neq p$. Then there exists a chain connecting in F_i the vertices y and p. Take a shortest one. Let $\{p, p_1, p_2, \ldots, p_{k-1}\}$ be the last edge of this chain. Then from (b) it follows that the edge $\{v, p_1, p_2, \ldots, p_{k-1}\}$ belongs to G_i . Since $d_{G_i}(p_j, y) \leq d_i - 1$ for some $j = 1, 2, \ldots, k-1$, we have $d_{G_i}(v, y) \leq d_i - 1 + 1 = d_i$.

2. y = p. If $d_i = 1$ then $d_{G_i}(v,y) = 1$, because some edge of type $\{v,p,q_1,q_2,...q_{k-2}\}$ belongs to G_i (it follows from (c)).

If $d_i > 1$ then $d_{G_i}(v,y) \leq 2$. Thus $d_i \leq d_i$ and we proved the first part.

II. We shall show that $d_i \neq d_i$. Let $d_i = \infty$ and $d_i' \neq \infty$. Then we can find two vertices $x,y \neq v$ such that there exists a chain $x,h_1,x_1,h_2,\ldots,h_t,x_t=y$ in G_i but no chain joining x and y in F_i . Every edge $h_r \notin F_i$ in this chain can be replaced by the "mutually corresponding" edge in F_i ensuring the joining between x and y. This is a contradiction to the assumption that there is no chain between x and y in F_i .

Let now $1 < d_i < \infty$. Then there exist two vertices x and y with the property $d_{F_i}(x,y) = d_i$. Let x',y'be the vertices from a shortest chain between x and y in G_i which are "joined via v" and either $d_{G_i}(x',y') = 2$ or $d_{G_i}(x',y') = 1$.

Then x' and y' are "joined via p" by the chain of length either 2, if $d_{G_i}(x',y') = 2$, or 1 if $d_{G_i}(x',y') = 1$ with "mutually corresponding" edges in F_i . Consequently, $d_{G_i}(x,y) = d_i$.

Let now $d_i = 1$. From the case I we have $d_i \leq d_i$ what implies $d_i = d_i = 1$.

Since $d_i \leq d_i$ and $d_i \leq d_i$ we have $d_i = d_i$ for every i = 1, 2, ..., m and this completes the proof.

Corollary 1: Let F_1, F_2, \ldots, F_m be factors of a decomposition of K_t^k with diameters d_1, d_2, \ldots, d_m , respectively. Then there exists a decomposition of K_{t+1}^k into factors G_1, G_2, \ldots, G_m with diameters d_1, d_2, \ldots, d_m such that $F_i \subset G_i$, $1 \leq i \leq m$. Proof: It is evident.

<u>Decompositions with the diameter one</u>. Theorem 1 does not ensure the existence of the number $F^k(d_1,d_2,\ldots,d_m)$. Our aim in this section is to ensure it in the case that at least one of the diameters is one.

Lemma 2: Let k≥3 be an integer. Then

$$F^{k}(1,1) = k + 1 \text{ if } k \ge 5 \text{ and}$$

 $F^{k}(1,1) = k + 2 \text{ if } k = 3, 4.$

Proof: If k = 3 then we consider K_5^3 . Let G_1 contain the edges $\{1,2,3\}$, $\{1,2,4\}$, $\{1,3,5\}$, $\{2,4,5\}$, $\{3,4,5\}$ and G_2 contain all the remaining edges. Then evidently both of them have diameters equal to one.

We show that $F^3(1,1)>4$. Consider a decomposition of K_4^3 into two factors G_1 and G_2 with diameters equal to one. Since G_1 has the diameter one it must contain at least three edges.

Hence G_2 contains only one edge. Thus $d_{G_2} = \infty$ and $F^3(1,1) > 24$.

If k = 4 then let $G_1 = \{\{1,2,3,4\}, \{1,2,5,6\}, \{3,4,5,6\}\}$ and G_2 be its complement. Evidently $d_{G_1} = d_{G_2} = 1$.

Now let $F^4(1,1)
eq 5$. Then one of the factors G_1 and G_2 contains two or less edges. Hence it cannot have the diameter one.

If $k \ge 5$ then let $G_1 = \{\{1,2,\ldots,k\}, \{1,2,\ldots,k-1,k+1\}, \{2,3,\ldots,k+1\}\}$ and G_2 be its complement. The factors G_1,G_2 have the diameters equal to one and the proof is finished.

It will be said that a decomposition R of K_t^k has the property (P) if each factor of R covers all vertices of K_t^k .

We shall prove some trivial but useful statements for our further considerations.

Lemma 3: Let $n \ge 1$ be integer and $t = 5.2^{n-1}$. Then there exists a decomposition of K_t^2 into 2^n factors with property (P).

Corollary 2: Let $n \ge 1$, $k \ge 2$ be integers and $t = (k + 2)2^{n-1}$. Then there exists a decomposition with property (P) of K_+^{k-1} into 2^n factors.

The proof follows immediately.

Theorem 2: Let m and $k \ge 3$ be integers. Then $F_m^k(1)$ exists and

 $F_{m}^{k}(1) \leq (k + 2)2^{\{\log_{2} m\} - 1}$.

Proof: We shall show that $F_{2^n}^k(1)$ exists and $F_{2^n}^k(1) \neq (k+2)2^{n-1}$ for every integers $n \geq 1$ and $k \geq 3$. The induction on n will be used.

1°. Let n = 1. Then from Lemma 2

$$F_2^k(1) \le k + 2 = (k + 2)2^0$$
.

2°. Suppose $F_{2^n}^k(1) \neq (k+2)2^{n-1}$. Put $t = (k+2)2^{n-1}$ and consider $K_{2^t}^k$ with the vertex set $V = V_1 \cup V_2 = \{1_1, 2_1, \dots, t_1\} \cup \{1_2, 2_2, \dots, t_2\}$. Let $\{T_1^1, T_2^1, \dots, T_{2^n}^1\}$ and $\{T_1^2, T_2^2, \dots, T_{2^n}^2\}$ be decomposition with property (P) of the hypergraph K_t^{k-1} with the vertex set V_1 and V_2 , respectively. Such decompositions are warranted by Corollary 2.

Let $\alpha_1 = (1_1, 2_1, \dots, (2^n)_1)$ and $\alpha_2 = (1_2, 2_2, \dots, (2^n)_2)$ be permutations. By the induction assumption the hypergraph K_t^k with the vertex set V_1 and V_2 , respectively can be decomposed into 2^n factors with diameters equal to one. Denote these factors by F_j^1 and F_j^2 , $j = 1, 2, \dots, 2^n$.

Now we shall construct the decomposition of K_{2t}^k into 2^{n+1} factors with diameters equal to one.

(1) If
$$\{(v_1)_1, (v_2)_2, \dots, (v_{k-1})_1\} \in \mathbb{T}_1^1$$
 then
$$\{(v_1)_1, (v_2)_1, \dots, (v_{k-1})_1, (\infty_2^j(i))_2\} \in \mathbb{G}_j^1.$$
 If $\{(v_1)_2, (v_2)_2, \dots, (v_{k-1})_2\} \in \mathbb{T}_i^2$ then
$$\{(v_1)_2, (v_2)_2, \dots, (v_{k-1})_2, (\infty_1^j(i))_1\} \in \mathbb{G}_j^2.$$

for every $1 \le i \le 2^n$, $1 \le j \le 2^n$.

(2) If
$$\{(v_1)_1, (v_2)_1, \dots, (v_{k-1})_1\} \in T_1^1$$
 then
$$\{(v_1)_1, (v_2)_1, \dots, (v_{k-1})_1, s_2\} \in G_1^1.$$
If $\{(v_1)_2, (v_2)_2, \dots, (v_{k-1})_2\} \in T_1^2$ then
$$\{(v_1)_2, (v_2)_2, \dots, (v_{k-1})_2\} \in G_1^2$$

for every $2^n < s \le t$, $1 \le i \le 2^n$.

- (3) If $h \in F_j^2$ then $h \in G_j^1$ and if $h \in F_j^1$ then $h \in G_j^2$ for every $1 \le j \le 2^n$.
- (4) All the remaining edges can be added into an arbitrary factor.

Now it will be verified that the diameters of the factors G_j^1 and G_j^2 are equal to one. Let G_j^1 be an arbitrary of them.

(i) If $a_1, b_1 \in V_1$ then there exists i such that $\{a_1, b_1, (x_1)_1, (x_2)_1, \dots, (x_{k-3})_1\} \in T_1^1$ for some x_1, x_2, \dots ..., x_{k-3} . Since (1) holds we have for $s = \alpha \ \dot{2}(i)$:

$$\{a_1,b_1,(x_1)_1,(x_2)_1,\ldots,(x_{k-3})_1, s_2\} \in G_j^1.$$

Thus the distance between a_1 and b_1 is equal to one.

- (ii) If $a_1 \in V_1$ and $b_2 \in V_2$ then two cases are possible.
- 1. $1 \le b \le 2^n$. Then there exists i, $\infty_2^j(i) = b$. From the property (P) it follows that there exists

 $\{a_1, (x_1)_1, (x_2)_1, \dots, (x_{k-2})_1\} \in T_1^1 \text{ for some } x_1, x_2, \dots, x_{k-2}.$ Since (1) holds we have

$$\{a_1, (x_1)_1, (x_2)_1, \dots, (x_{k-2})_1, b_2\} \in G_{\mathbf{j}}^1$$

Thus the distance between a_1 and b_2 is equal to one.

2. $2^n < b \le t$. From the property (P) we have that there exists

 $\{a_1(x_1)_1, (x_2)_1, \dots, (x_{k-2})_1\} \in T_j^1$ for some x_1, x_2, \dots, x_{k-2} . Since (2) is true we obtain

$$\{a_1, (x_1)_1, (x_2)_1, \dots, (x_{k-2})_1, b_2\} \in G_j^1$$

Thus the distance between a and b 2 is equal to one.

(iii) If $a_2, b_2 \in V_2$ then there exists in F_j^2 some edge which contains both of these vertices. Since (3) holds this edge is also in G_j^1 . Thus the distance between a_2 and b_2 is equal to one.

The verification for the factors $\mathbf{G}_{\mathbf{j}}^2$ can be made analogously.

We showed that $F_{2^{n+1}}^k(1) \leq (k+2)2^n$ and the induction is completed. Put $q = \{\log_2 m\}$. Since $F_m^k(1) \leq F_q^k(1)$ the proof is finished.

Lemma 4: Let $m \ge 2$, $k \ge 3$ and $1 \ne d_1, d_2, \dots, d_m$ be integers. If $F^k(d_1, d_2, \dots, d_m, 1)$ exists then

$$F^{k}(d_{1} + 1, d_{2}, d_{3}, ..., d_{m}, 1) \le F^{k}(d_{1}, d_{2}, ..., d_{m}, 1) + k - 1.$$

Proof: Put $t = F^k(d_1, d_2, \dots, d_m, 1)$ and consider a decomposition of K_t^k with the vertex set $\{v_1, v_2, \dots, v_t\}$ into factors F_1, F_2, \dots, F_{m+1} with diameters equal to d_1, d_2, \dots, d_m , respectively. Add the vertices y_1, y_2, \dots, y_{k-1} to K_t^k .

Now we shall construct a decomposition of K_{t+k-1}^k into factors $G_1, G_2, \ldots, G_{m+1}$ with diameters $d_1 + 1, d_2, d_3, \ldots, d_m, 1$, respectively.

Since the diameter of F_1 is d_1 there exist two vertices \mathbf{v}_p and \mathbf{v}_q with $d_{F_1}(\mathbf{v}_p,\mathbf{v}_q)=d_1$. By Theorem 1 there exists a decomposition of K_{t+k-1}^k into factors H_1,H_2,\ldots,H_{m+1} with diameters $d_1,d_2,\ldots,d_m,1$, respectively. Consider accurately this decomposition. Moreover, using Corollary 1 we have $F_i \subset H_i$ for every $i=1,2,\ldots,m+1$.

Now put $G_x = H_x$ for every $2 \le x \le m$ except such $x_0 \ne 1$ for which $\{v_p, y_1, y_2, \dots, y_{k-1}\} \in H_{x_0}$.

Let G_1 contain the factor F_1 and the edge $\{v_p, y_1, y_2, \dots, y_{k-1}\}$. Let G_{m+1} contain the factor H_{m+1} and the edges from $H_1 - F_1$. Let $G_{\mathbf{x}_0} = H_{\mathbf{x}_0} - \{v_p, y_1, y_2, \dots, y_{k-1}\}$. The diameter of G_1 is equal to $d_1 + 1$, because $d_{G_1}(y_{k-1}, v_q) = d_1 + 1$.

It is easy to see that the factors G_1,G_2,\ldots,G_{m+1} form the required decomposition of K_{t+k-1}^k and this completes the proof.

Theorem 3: Let $m,k \ge 3$, $1 \le d_1, d_2, \ldots, d_m$ be integers and at least one $d_i = 1$. Then

(N)
$$F^{k}(d_{1},d_{2},...,d_{m}) \leq F^{k}_{m}(1) + (k-1) + (d_{j}-1).$$

Proof: From Theorem 2 it follows that $F_m^k(1)$ exists. Then by Lemma 4 $F^k(d_1,d_2^{\frac{1}{p}},\ldots,d_m)$ exists, too. The inequality (N) follows immediately from Lemma 4 and the proof is completed.

The upper estimate of the number $F^k(d_1, d_2, ..., d_m)$ can be improved for some values of parameters $d_1, d_2, ..., d_m, m$.

Theorem 4: Let $k \ge 3$, $q \ge 3$, q < m, $2 \ne d_1 \ne \cdots \ne d_q$ be integers and $d_{q+1} = d_{q+2} = \cdots = d_m = 1$. Then

$$F^{k}(d_{1},d_{2},...,d_{m}) \leq \max \{F^{2}(d_{1},d_{2},...,d_{q}), F^{k}_{m-q}(1), m-q)\} + \max \{(k-2)d_{q}, 3(m-q)\}.$$

Proof: Put $m_1 = \max \{F^2(d_1, d_2, ..., d_q), F_{m-q}^k(1), m - q\}$ and $m_2 = \max \{(k-2)d_q, 3(m-q)\}$.

Let M_1 and M_2 be sets of cardinality m_1 and m_2 , respectively. Lemma 2 of [3] implies that there exists a decomposition of $K_{m_1}^2$ with the vertex set M_1 into factors F_1, F_2, \dots, F_q with diameters d_1, d_2, \dots, d_q . Now we shall construct the factors G_1, G_2, \dots, G_q of the hypergraph $K_{m_1 + m_2}^k$ with diameters d_1, d_2, \dots, d_q .

Choose from M_2 any $(k-2)d_r$ vertices v_1^j , $1 \le j \le k-2$, $1 \le i \le d_r$, $1 \le r \le q$. Let x_r and y_r be vertices of M_1 such that $d_{F_n}(x_r,y_r) = d_r$.

- 1. If the edge $\{a,b\}\in F_r$ and if $d_{F_r}(x_r,n)=d_{F_r}(x_r,a)=0$ and then $\{a,b,v_d^1,v_d^2,\ldots,v_d^{k-2}\}\in G_r$.
- 2. If the edge {a,b} \in F_r and if $d_{F_r}(x,b) = d_{F_r}(x_r,a) = + 1 = d$ then {a,b,v $_d^1$,v $_d^2$,...,v $_d^{k-2}$ } \in G_r .
 - 3. If $\{x_0, y_0\} \in F_r$ is some fixed edge and if $M_3 = M_2 \{v_1^j \mid 1 \le j \le k 2, 1 \le i \le d_r\}$

has cardinality $|M_3| \ge k - 2$ then

 $\{x_0,y_0,v_1,v_2,\ldots,v_{k-2}\}\in G_r$ for every (k-2)-tuple $\{v_1,\ldots,v_{k-2}\}\in M_3$.

If $|M_3| = s < k - 2$ then

 $\{ x_0, y_0, v_1, v_2, \dots, v_s, v_1^1, v_1^2, \dots, v_1^{k-2-s} \} \in G_r \text{ where } \\ \{ v_1, \dots, v_s \} = M_3.$

It is easy to see that the diameter of G_r is equal to d_r . For example $d_{G_r}(v_1^1, v_{d_r}^1) = d_r$.

Now we shall construct the factors $G_{q+1}, G_{q+2}, \ldots, G_m$. Since $F_{m-q}^k(1) \neq m_1$ there exist the factors $F_{q+1}, F_{q+2}, \ldots, F_m$ of $K_{m_1}^k$ (on the vertex set M_1) with diameters equal to one. Let $\{T_{q+1}, T_{q+2}, \ldots, T_m\}$ be a decomposition with the property (P) of the hypergraph $K_{m_2}^{k-1}$ with the vertex set M_2 . Such a decomposition exists from Lemma 3.

Let us have q + 1 £ r £ m.

- 1. If $h \in F_r$ then $h \in G_r$.
- 2. Let ∞ be a permutation on vertices $p_1, \dots, p_{m-q} \in M_1$ with $\infty(p_1) = p_2$, $\infty(p_2) = p_3, \dots$, $\infty(p_{m-q}) = p_1$.

If $\{y_1, y_2, \dots, y_{k-1}\} \in T_i$ then $\{y_1, y_2, \dots, y_{k-1}\} \in T_i$ then $\{y_1, y_2, \dots, y_{k-1}\} \in T_i$

3. If $\{y_1, y_2, \dots, y_{k-1}\} \in T_r$ then $\{y_1, y_2, \dots, y_{k-1}, x\} \in G_r$, where $x \in M_1 - \{p_1, p_2, \dots, p_{m-q}\}$.

The remaining edges of $K_{m_1+m_2}^k$ can be inserted into an arbitrary factor with diameter one.

The factors G_1, G_2, \dots, G_m evidently form the required

decomposition of $K_{m_1+m_2}^k$ and this completes the proof.

The case m=2. In this section there is obtained a complete solution of the problem of decomposing complete kuniform hypergraphs into two factors with given diameters.

<u>Lemma 5:</u> Let G be a k-uniform hypergraph with diameter $d \ge 2$. Then its complement \overline{G} has the diameter

$$d_{\overline{G}} \neq 2$$
 if $k = 3$ and $d_{\overline{G}} = 1$ if $k \ge 4$.

Proof: Let x_0 and y_0 be vertices of G such that $d_G(x_0,y_0) \ge 2$. All the edges containing x_0 and y_0 belong to \overline{G} . Let x and y be arbitrary vertices of \overline{G} . If $k \ge 4$ then there exists an edge in \overline{G} containing x_0,y_0,x,y . Thus $d_{\overline{G}}(x,y)=1$. If k=3 then $\{x_0,y,y_0\} \in \overline{G}$ and $\{x_0,x,y_0\} \in \overline{G}$. Hence $d_{\overline{G}}(x,y) \le 2$ and the proof is finished.

Lemma 6: Let G be a 3-uniform hypergraph with diameter $d \ge 3$. Then its complement \overline{G} has diameter equal to one.

Proof: Let x_0, y_0 be vertices of G such that $d_G(x_0, y_0) \ge 23$. Then let x, y be any pair of vertices in G. There evidently exists a vertex z_0 such that $\{x,y,z_0\} \notin G$. Hence $\{x,y,z_0\} \in \overline{G}$ and this completes the proof.

These lemmas imply the following results:

Theorem 5:

1. If $d_1 = 1$ and $d_2 = \infty$, then $F^k(d_1, d_2) = k$.

2. If $d_1 = 1$ and $d_2 = 1$, then $F^k(d_1, d_2) = k + 1$ if $k \ge 5$, $F^k(d_1, d_2) = k + 2 \text{ if } k = 3, 4.$

3. If $d_1 = 1$ and $d_2 = 2$, then $F^k(d_1, d_2) = k + 1$ if $k \ge 4$,

 $F^{k}(d_{1},d_{2}) = 5 \text{ if } k = 3.$

4. If $d_1 = 2$ and $d_2 = 2$, then $F^k(d_1, d_2)$ does not exist if $k \ge 4$,

 $F^{k}(d_{1},d_{2}) = 4 \text{ if } k = 3.$

5. If $d_1 \ge 2$ and $d_2 \ge 3$, then $F^k(d_1, d_2)$ does not exist.

6. If $d_1 = 1$ and $3 \le d_2 < \infty$, then

 $F^{k}(d_{1},d_{2}) = \frac{kd_{2}}{2} + 1 \text{ if } d_{2} \text{ is even,}$

 $F^{k}(d_{1},d_{2}) = \frac{k(d_{2}+1)}{2}$ if d_{2} is odd.

Proof: We shall denote the vertices by naturals and the factors of a decomposition by \mathbf{G}_1 and \mathbf{G}_2 .

- 1. G_1 contains $\{1,2,\ldots,k\}$ and G_2 is empty.
- 2. If follows from Lemma 2.
- If k≥4, then it follows from Lemma 5.

If k = 3, then $G_1 = \{\{1,2,3\}, \{1,2,4\}, \{1,3,5\}, \{2,4,5\}, \{3,4,5\}, \{1,2,5\}\}$. Put $G_2 = \overline{G}_1$.

If k≥4, then it follows from Lemma 5.

If k = 3, then $G_1 = \{\{1,2,4\}, \{1,3,4\}\}$ and $G_2 = \overline{G_1}$.

- 5. It follows from Lemmas 5 and 6.
- 6. It directly follows from the construction of a chain of length equal to d_2 .

It remains to prove the existence of the number

 $F^k(d_1,...,d_m)$ for arbitrary $d_1,...,d_m$ and to give an upper estimate for this.

This problem is partially solved in [4] for the case m>k. In [5] it is proved that if $m \neq k$ and 3 d_1, d_2, \ldots, d_m then such a number does not exist.

References

- [1] C. BERGE: Graphs and hypergraphs, North Holland Publ. Comp., Amsterdem, 1970.
- [2] J. BOSÁK, A. ROSA, Š. ZNÁM: On decompositions of complete graphs into factors with given diameters, Theory of graphs, Proc. of the Colloq. held in Tihany, Hung., Sept.1966 (Akadémiai Kiadó, Budapest, 1968), 37-56.
- [3] J. BOSÁK, P. ERDÖS, A. ROSA: Decompositions of complete graphs into factors with diameter two, Mat. čas. 21(1971), 14-28.
- [4] P. TOMASTA: On decomposition of complete k-uniform hypergraphs, Czechoslovak Math. J. (to appear).
- [5] P. TOMASTA: Decompositions of graphs and hypergraphs into isomorphic factors with a given diameter, Czechoslovak Math. J. (to appear).

Matematický ústav SAV Obrancov mieru 49 Bratislava Československo

(Oblatum 8.3. 1976)