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ON THE EXISTENCE OF WEAK SOLUTIONS FOR SOME QUASILIBEAR
ELLIPTIC VARIATIONAL BOUNDARY VALUE PROBLEMS AT RESONANCE

Georg HETZER, Aachen

Abstract: The equatiom Au = Bu under variational boun-
dary conditions in the sense of F.E. Browder is considered,
where A is a symmetric, uniformly strongly elliptic, linear
partial differential operator with nonzero null space, and
B is a sublinear one of the same order with a suitable asym-
ptotie behavior with respect to the null space of A, If B
satisfies a Lipschitz condition for the terms of highest or-
der, the existence of a weak solution is proved. Properties
of selfadjoint Fredholm operators in regard to the set-mea-
sure of noncompactness and set-contractions are the basic
tools of this paper.

Key words: Coincidence degree, set-measure of roncom-
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problem, boundary value problem, nonlinear partial differen-
tial equations.
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Tntroduction: Let ) be a bounded domain im RK(N eN),

A be a linear, uniformly strongly elliptic, symmetric parti-
al differential operator on {1 of order 2m(m ¢ N), and B be
a sublinear partial differential operator of order @(H<2m),
given in divergence form. The following destination is often
drewn: Au = Bu is called a quasilinear equation, if @ = 2m,
& semilinear, if W<2m.

In this paper we are concerned with variational boundary
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value problems, in the sense of F.E, Browder (111), for Aw =
= Bu in the quasilinear case, when Au = 0 has at least oneé
nonzero solution, satisfying the boundery conditions (i.e.
the resonance case).

The study of such problems for the semilir ar equatiom
was initiated by landesman and Lazer in 1970 ([101) and is
continued by De Figueiredo, Fud{k, Hess, Kulera, Mhin, Ne-
as, Nirenbefg, Schechter and Williams (see e.g.: [21,[31, °
41,05]1,1111,113],(14] »[151,[171)., In order to emsure the ex~
istence of solutions in that case, they use the Hilbert spa—
¢e approach and "topological” arguments, like Schauder’s f£i-
xed point theorem or the degree theory for comple tely conti-
nuous nonlinearities,

Even, if a Sobolev-Rellich embedding theorem is applie-
able, the nonlinear part is no longer completely continuous
in the quasilinear case. But, when B satisfies a Lipschitz
condition with respect to the derivatives of order 2m, we can
use a coincidence degree continuation theorem for nonlineari-
tires, which are Set-contractions, for deriving the operator

theoretic results, we need. This theorem is stated in {71 amd

derived in a more general versiom in {673,
Section 1 contains the later needed notations and asser-
tions. In Section 2 we compute the lower bound of a lingar
selfadjoint Fredholm operator in a Hilbert space with respect
to the set-measure of noncompactness by its essential spect-—
rum, which is basi ¢ for our existence theorem. In Section 3
the boundary value problem is formula ted and solved.,

Special
cases are mentioned in Section 4.
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1. Here we recall some definitioms and preliminary
results. lLet 2 be a metric space and M be a subset of Z,
then the set-measure of noncompactness 4 of M is defined
by:

4 (M):= inf {€ | € >0, there is a finite covering of
M by subsets of Z with diameter lower than € % .

For metric spaces, Z, Z and k € R¥ we call a continuous
function f£: Z—»> Z a k-set-contraction, iff o (£f(M)) =

= k(M) for each bounded subset M of Z,, and comple tely con-
tinuous, iff £(M) is compact for each bounded M£Z. Further
for a function £ D(f) denotes the domain of f, R(f) the ran-
ge. Concerning the coefficient field of the here considered
spaces, we suppose K € {R,C 3} in general, but K =R,

if a real valued function space occurs.

Let X, Y be Banach spaces and L: X2D(L)—> Y be a clo-
sed linear operator, then L is said to be 2 ¢+-operator,
iff the null space of L, denoted by Ker(L), is finite dimen-
sional, and R(L) is closed. If additionally Y | R(L) is fini-
te dimensional, we call L a Fredholm operator and ind(L):=
:= @im(Y | R(L)) the Fredholm index of L. Further we set:

2(L):= sup {r | r eR", r ¢(M) & (L)) for each bound-
ed M&€D(L)%.

In [6) it is shown that £(L)>0, iff L is a ¢+-operator.
Now let us make the following assumptions:

(a) X, Y are Banach spaces and L: X2D(L)—Y is a
Fredholm operator with ind(L) =0

(b) k €C0,£(L)) and N: X—> Y is a k-set-contraction.

(a) involves the existence of continuous projectors P: X—>X
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and Q: Y—>Y with R(P) = Ker(L) and Ker(Q) = R(L), and of
& linear isomorphism J: R(Q)—> Ker(L). Further we denote
the pseudo-inverse of L associated to P by Kp, i.e. Kpi=

:= (L] (I - PXX) )'1. The following assertion is basic in

regard to Section 3.

Theorem 1: Let (a) and (b) be satisfied and P, Q, Kp
and J be defined like above. Assume further:

(1) There are d°e [0,1) and ¥ , w € ]R+, such that
for xeX:

e
IKp e (T-Qelxl ewhxll + 9 .

(2) For each bounded subset W of R(I - P) there exists
a t >0, such that for all tzt,, all zeW, and all we Ker(L)
with lwl =1 we have: Qo N(tw + 1 2)+ 0.
(3) There is a t >0 with:
deg(Je QoN| Ker(L), ix | xeKer(L), l x [ <t3,0)40 for t=1,.
Then R(L - N)2 R(L).
Here deg means the degree for a finite dimensional normed spa-
ce. The proof is straightforward in regard to the proof of

Theorenm VI.4 in [11] and the degree continuation result for

k-gset-contraction in [61].

2. In dealing with applications, a calculation of £(L)
for a given Fredholm operator L is necessary. Direct estima-
tion can be given in the case of ordinary differential equa=-
tions ([71,(81,09]), but they fail, treating partial diffe-
rential equations. Another computation, developed in this

sectiom, is available however, if the given problem involves
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a selfadjoint Fredholm operator in a Hilbert space.

Let H be & Hilbert space over K and L: H2D(L)—s H
be & closed linear operator, then we denote the spectrum of
Lby 6 (L) and define the essential spectrum of L by:
6,(L):= {A| 1 e 6 (L), A is not an isolated eigenvalue
of finite multiplicity3 .

Observe that many different definitions are used, but that

they all coincide, when L is selfadjoint. Now we can prove:

Theorem 2: Let H be a Hilbert space over K end L:
: E2D(L)—> H be a closed, selfadjoint, linear operator.
Then £(L) = inf {I1Al| A & 6,(1) 3.
Proof. For convenience we set: Q:= inf £lal lﬂ. e &, (L)}.
1) We show: L(L)£Q.
It is well-known that for A e 6 (L) there exists a sequen-
ce (x ) N € D(L)Nv with: llxall =1fornelN 4
lim(Ax, - Ix )y =0, and (x,)p ey Dhas no convergent sub-
sequence. Hence: 7 (ix,|neNg)>0 and y({Ix | neN§)=
¥ ({dlx, | n elN}). Then y(irAx, |ne N3) =
Al g (4x,| n eN3 ) involves: £L(L) « 141  for each
A e 6,(L), therefore £(L)«Q.

2) We show: £(L)2Q.

If 0 e G'e(L), the assertion is obvious. Otherwise Q>0 and
L is a Fredholm operator with ind (L) = O, because L is assum-
ed to be selfadjoint. We first consider the case K=« .
Since L is selfadjoint, L is reduced by Ker(L) and Ker(L)‘L v
We set Lq:= Ll Ker(L)* and note that L, is an injective,
selfadjoint, linear operator in K.er(L)‘L . It follows from

& (L) = 6(L Ker(L))v 6(L;) and 6(L|Ker(L)) = £0% that
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& (L) = 6 .,(Ly). Since Q>0 Proposition 1.1 (b) in [16] says
that L;l is a k-set-contractiom with k<Q L, We show £(L) =z
ZQ. let BED(LI) be bounded. We can assume 2 (Ly(B)) < @ ,
and obtain from 7 (LM (L(B))) &k 7(L(B)): Ko (B) 4 7(L(B)),
which implies k™l A(L,), hence £(L)2Q. If P is the ortho-
gonal projector on Ker(L), we have for each bounded subset B
of D(L):

¥(B) = L (P+I-P)B)J£4[PB)+ (I-P)BIJs=
£ ¥ (P(B)) +  ((I -P)(B)) = 9 ((I-P)B)) £ y(B),
using that I - P is nonexpansive and P is completely continu-
ous. Hence o (B) = » ((I - P)(B)).

Since Ker(L) and Ker(L)Y reduce L, Le(I - P) is equal
to (I - P)e L and we conclude analogously:

¥ (L(B))

YLLeo(P+I-P)B)] < y(Le(I-P)B))
¥ ((I -P)eL(B)) = o (L(B)),
which verifies 7 (L(B)) = 4 (Lla (I -P)(B)). Both assertions

together ensure £(L) =,Z(Ll), which proves 2) in the complex
case.

For K =R we consider the complexification " of H
and the operator L+, induced by L. L' is selfadjoint and this
implies: & (L) = 5'e(L+). Therefore £(L')2Q. On the other
hand we obtain for € > O and a bounded Be D(L):
7(LUB)) = (L' (BxL0¥ )z (e(L*) -e) y(Bx£0%) =
(Q -e) » (B),
which involves: 2 (L)Z=Q.

3. Now we can treat the boundary value problem, which

is indicated in the introduction. First of all some notations
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and conventions. We always consider real-valued functions,
defined on a bounded domain L of the RY¥ with ¥ e N .

N

For o & 7' we set lel = 3 Npri(o(,), where pr; means

the i-th coordinate projectior:,‘.::d denote the oc-th deri-

vative in the weak sense for a function u on L vy D*u.

For me 2% the Sobolev space wl12( Q) is defined Yy:
wh2(9);:= ful ueLz(.Q.), D¥uell(f) for lec| « m3.

For u,vewm’z(_(z) an inner product is given by:

.= o o "
{u,v> 5 ‘ﬂ%m j.‘n. D*®u(x)D®v(x)dx

The norm, associated to <, 2 m, 2 will be denoted by
(| m,2° Let C‘:(.ﬂ.) be the set of C® -functions with com-

pact support in £ , then ng’z(.ﬂ.) means the closure of
Ca:(-ﬂ.) in W%2(0Q ) with respect to | Im,2' Finally we set
for me Z+, Sn to be the cardinal number of the set Sm:=
= {ex|oce 2N, |l nt, and § ) (x):=
1= (D°°u(x))m‘ém .

With these notations we can state the assumptions, we

will make in this section.

(H1) m,NeN. O € RY is a unded domain, such that
the natural embeddings of wmvz(.a) in Wn’z(.()_) are complete-
ly continuous for O£ n<m. Further suppose that for <, 3 €

0 -
esmax e I1®(0) andaxﬂ—aﬂw S

I3
(H2) V is a closed, linear subspace of Wm’Z(D.), which

contains w'g'z(n_). a: VxV—>R , defined by
.= o¢ [
a(u,v): l«%ﬁ\ém _Laocﬁ(x)D u(x)DPv(x)dx

is uniformly, strongly elliptic.
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Then, assuzing (H1) and (H2), a continuous selfadjoint, li-
near Fredholm operator L: V— V is &fined by: (Lu,v)m’z =
= a(u,v) for u,veV.
In ‘dealing with the resonance case, we further suppose:
(H3) dim(ker(L))>o0,

Concerning the nonlinear part we make the following hy-
potheses:

(H4) For o & Sp 8 : L x R sm—-b R ssatisfies
Carathéodory s conditions, i.e. for each y ¢ R B 8 (¢ ,¥)
is measurable in Q , and for x € AN (a.e.) go (x,+) is
continuous. Further the following growth restriction is as-

sumed. There is & ¢>0, 6 € [0,1) and O € Lz(n.), such
that

lg o 3 | 2 ¢
BolZy cm‘l‘-‘;m lery )17+ O(x)

)
is satisfied for each y e R ™ ang lc| € m, and for xe N
(a.e.).

(H5) Por « e S, there is a measurable function h,:
: _Q.xE-:b'R,where = :=4y|y E]Rsm, lyl =127, and
Qe € 12/1-€ () with: |h (x,5)] < O, (x) for xe N
(a.e.) and al1 y ¢ S v and: If (y,) o € =% viwm
Ypo—>y and (@n)ncﬂ e RN with ®p—> @ , then for
8ll o« € S, and for x € N (a.e.) we have:

. -2
ul_:.lnwg”(x, @nyn)/pn =h(x,y).
We set for v: O —»>R A v):=4x|xe 0, v(x)#%£02 .

(H6) For all weKer(L) with |fw lm 2 1land allx e S‘,1
’
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h (s, §,0 /1§ MG D [§500 (x)i% D¥w(x)axz0,

[

2,(D%)
and for at least one o € S the integral is strictly grea-
ter than zero.

(H7) There is a k e R ¥ with k<inf {2l |2 e &,(DF,
‘such that

lgy (%,2,77) - B (X,2,70) | £ kly, - yo!
for all o 4 S, for x € L (a.e.), for all z € R *m-1 g
all y ,¥, € Rsm-sm-l.
If (H4) is satisfied, we define a generalized Dirichlet form

by:

n(u,v):= uﬁ‘:‘_m fﬂ_ 8o (X, ?m(u)(x))D"‘v(x)dx for u,veV,

i.e. the nonlinear part is given in divergence form. It is

well-known that a continuous operator N: Vv—> V is given by:

{Nu,v> = n(u,v) for u,veV.
m’

In the sequél we are concerned with the following boun-
dary value problem:

Find a solution u of

® a(u,v) = n(u,v) for all veV.
For a discussion about the type of this problem, we refer to
[1] and mention only that V = w‘;"zm) leads to the Dirichlet
boundary conditions.

Further, in regard to [41, we notice that, when the boun-
dary of L is suitable, we can also treat @ for a linear

Dirichlet form:

= A . (x)D®u(x)DPv(x)asS
A(u,v) = alu,v) +l&§@‘éw4 '{a.n"“(’ x s
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where 4, € L®(84)) and dS is defined, as in [12] chap.
3.

We obtain the following existence assertion for ® :

Theorem 3: Iet (H1) - (H7) be satisfied.
Then there exists a solution ueV of @ .

The proof will be given in three steps:

Lemma 1: Suppose that the assumptions on Jf. and V in
(H1) and (H2) are satisfied, and (H4) and (H7) are fulfilled.
Then N is a k-set-contraction.

Proof. As mentioned before, we know the continuity of

N. For « € Sm we set N by:
CNpu,v oy o= [ gy (x, §,00)(0)D% v(x)ax.

If lel< m, N is completely continuous. Therefore we are

done, if Ne= ,,_g N, is a k-set-contraction. Let
z:= 12 (Q,R ou m—l) and ¥ € Z., The map Togyyr # Y Lz(.ﬂ.),

defined by T, (@) = gy (o, §p-1(wW) (e ), ¥), is complete-
ly continuous with respect to | um oonVand | | 0,2 OB
= (L), since (H1) ensures the complete cont:mu:.ty of
ur— (§, 1(w),¥) from V into (Lz(.().)) T and because the
Nemyckij operator, induced by 8« » 18 continuous from
(L2 (_Q.)) into I? (£2). Further the uniform equicontinuity
of the family 4 ur—»> (?m_l(u),'qr) }1"‘2 and the comple te
continuity of each map u s (§ p-1¢w),y) inply that
(‘I"V).’.‘z is uniformly equicontinuous on bounded sets.
Now, let BEV be bounded and € > 0. Then there ex-
ists a finite covering (Bl""’Bh) of B by subsets of B

with diamm’z(Bi) € ¥(B) + €/2 for 1£i4n. Further, using
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the above stated properties of (Ta,?.)q,.ez , we obtain for
ieil,...,n§ a covering (le‘,...,cg) of B; by subsets with
$ i .
dlamg,Z(T&:V(C@)) £ €/2s for 1£wsj; and ¥ e Ze
Hence we can suppose that the covering (Bl""’Bn) addition=-

ally satisfies:
. [} .
dlamO,Z(Tar.,v (B;)) £ €/2s for 1£i4n and ¥ & Z.
Then we have:
~ ~
| Fu - Nv Ilm,z_ =

= sup | & fle,(x, §pm)@) -

llaer l,m_‘ﬂ_g 1 lxl=m

- g, (x, (M xN1D¥wx)ax | =
=“i}-11€m2=4 \ \m%rm.-[‘n.[gx (x, Em-l(u)(X)’ alm(u) (x)) -

- By (X, §p 1 (V) (), M (V) ()] DFw(x)ax] ,
where 7 (u)(x):= (D™u(x)) 4~ m - Then we.obtaini
1 - ¥ :
| T Nv!lm’zﬁ?‘xaxgllmﬂ:" = Lol gax §py @00,
NawW @) - g, (x, §,_,(V)x), qm(v)(x)l ID®w(x) | dx]1 4
& sup (u) (x), (w) (x)) -
- 8 (%, §p 1 (W), (V) (x)) | | D¥w(x) | dax +
+ 0] B (%, §p (@@, W)X = g (X, §poy (V) (XD,
NN | D*¥w(x) | dx] £
£ sup, - ot [ X f_n. [ m () (x) = 2 (W) )L,
my
JAD%w(x) | ax + [ | g (% § g (W), (W) (X)) -
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8o (X, §p 1 (W)X, 7 (V)N FD<wx) ldx ]

= kllswufm'2_=4 \at%m L J;)_l ”Lm(u)(x) -
- "lm(v)(x)] 232 11/2 [f_nl Dew(x) | 23x11/2 4
+ E:P“llﬂ-2=4 l§=m [ f.ﬂ. l gc& (X, €m_l(u)(x), Ayzm(v)(x)) -

‘ 2 172
- g (%, §p (M), (v () | Zax M2 [ | DownTaxd
£

klu-vl n,2 * (sy - 8y 1) €/28; £k ¥(B) + e/2+ /2.

Hence diam , (ﬁ(Bi))ék'r(B) + ¢ for 14i4neand € >0,
’
therefore, ¥ (N(B)) 2k #(B).

Temma 2: Let (H1) - (H6) ‘be satisfied. Then the following
assertion holds: For each bounded subset W of R(L), there ex-
ists a t >0 with: { N(tw + t.‘rz), w> >0, for all tzt,
all ze W, and all weKer(L) with | w Ilm’2 = 1.

Proof. Otherwise there exists a WSR(L), (ty ), pn €
e (R* 1403 ™ | w)_ € Ker(W¥  ana (v, e WM,
satisfying W is bounded, t —> oo , |l wn“m,z =1 forme N
and:

& aC
|&lE€m J:)_ 8o (Xy gm(tnwn * tnvn)SX)),D wn(x)dxé 0.

By going if necessary to subsequences, we can assume:
There is we Ker(L) with: lw, - wl n,2 o,

&=
t, lvn - vlm,z-—> 0, D¥w,(x) —» D¥w(x) for x XX

& -
(a.e) and each o € S, and D®w,(x) + t, -

lwn +
D v, (x) -
- D¥w(a)—> O for x € . (a.e.) and «< e Spe Now let o« €

€ Sm'

- 326 -



-¢

ty fo 8o (X5 §p(tpWy + tivn)(x))D“ wn('x)dx =

£2% £ B (Xy Epltaig *+ tvy) (R)IDTwlxIax +

+

4 £, g (x, Spltywy + tovy) () [DTwy(x) -

D¥w(x)] dx =: I, + I,
We claim: lim IX_ = O.
m > n
L) £ 01678 (%) Ealt¥y *+ £ T) () e 1/2,

o oo
AN D¥w, - D "’“0,2'

Since ID%w, - D¥w ¥, 5—>0, we ave done, if the integral
3

is bounded. Using the growth condition in (H4), we find:
-6 & 2
Jo 15y 8y (=) Epltnvy + Ty V) (x)) | “ax =

= fyle Z 1 0t ong + Syl 70 @] fx s

\26’

2 &1
< 2c sm'lngm Inlnﬂ(wn+tn v, ) (x) ax +

-2¢ 2 2 6-1 2 ~26 2
2t NONg %4e splwy, + ty, ¥ 13,2 * 2ty ens ,+

+ 28 meas Q).

’ §-1 s
Since (wn +t vn)neN is al “m,z convergent sequence,
the bounded’ss is proved.

We have for In:

= -€ € o
T, by 2,0%) 8o (%5 §p(tp¥n * U v,) (x))D w(x)ax.
Since D™wy (x) + ti"4 DXy, (x)—> D¥w(x) a.e. in L, we

£ind for almost each X € .Q.o(D"‘w) an n,(x) € N with:

&6-1

~ i
D wn(x) + b, D“vn(sto for nz no(x).
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-1
Hence \§m(wn * 1t V) (x)\ > O for almost every x €
€ Q (D*w) and all nzn (x). Thus dim 1§t w, +
+ tg v, (x) =0 holds in .Y).O(Dac (w)) a.e. . Therefore
(H5) implies for almost each x eﬂ.o(D"‘w):
@ un 2% g_(x, § (tw_ +t° v )(x)) =
m—>o00 I gac !Sm*'nn n n

= he (6, §, N @/ [§ MG 1) 1§ 1

(For nz n, (x) choose ¥, = gm(tnwn + tg v ) (x)/ | § (E W +

_ =)
+t v )(x)| and fn = lgm(tx:an Yy vn)(X)gl +) Now @ ant
the boundedness of (t;f B (s Em(tnwn vy en in

12(0) involve the weak convergence of (t;e 8, (* §n(towyt

2 ey tohg (e, E1w)/ 1 E 1) 1§ 0T in
LZ(QO(DWW)). Hence

G
Mp L= [ n (x, §,mM@/1§,m@ 1)1 E ) C
D*w(x)dx.

Then (H6) implies:

[S

. -6 6
"3..1)1:; l"‘Z_'. o tn Be (X Fpltow, + t) v) (x))D*¥w, (x)ax >0,

which is a contradiction.

Now we can prove Theorem 3:

Proof to Theorem 3: We realize the hypotheses of Theo-

rem 1 for X =Y = (V, | Ilm’z) and for the above defined L
and N, Since L is a selfadjoint Fredholm operator, R(L) is
equal to Ker(]:.)'L ‘. Hence we can take the orthogonal projec-
tor on Ker(L) to be P and Q, and J to be the identity of

Ker(L). The condition "N is a k-set-contraction with k<1(L)"
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follows by Lemma 1, Theorem 2 and assumption (HT)«
We derive the hypotheses (1) - (3).
(1): LetueVand & >0.

Nl o= I = g (x, gy DT v(x)ax]

D \«xleEm
1/2
: é|1s"l:'1| =4 \<l€m E‘r [gac(x’ gm(u)(x)” dx]
ll p*vl, 2

£ sup [‘[n. = (c\D@u(x)|€+

larly, =4 |prem

+@ENaxI M2, = _Ipev il
Ji&m ’

£[2c? jn ( 24 | D”u(x)lze'dx +216 “§,2]1/2

el2e?s, | B [, pPu|Paxi? + V2R, ,

£ VB EF RIS, + N8I, < @huly o ¥

’

where @ , ¥ are suitable constants, end < satisfies:
MW &clgl,, foreach ge 12(£). Here W W
. . = LY 1/25
means the quasinorm, given by Ilg I :=( fnl @ (x)|“ax)
which is weaker on 12(Q) then | I pe Now the boundedness
AL 6

of the pseudo-i s I N el ul + ¥

e pseudo-inverse K, ensure I| Na llm,2 @ m,2
for suitable @ ,V and 6€[0,1) (the case 6 = 0 is obvi-
ous), whereﬁ=K?c(I-Q)eN. '

(2): Let W be a bounded subset of R(L), then, using

Lemma 2, there exists a tozo with:

(k) <N(tw + tev,w)>0 for tZt,, weKer(L), llwﬂm’2 =1
and ve W. -~

This implies Qe N(tw + tfv) 40 for tzt, w € Ker(L),
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lwll,,=1and vew.

)

(3): Set v =0 in (%), then {QoN(tw), tw) =
=t {N(tw),w> >0 for t2 t,+ Therefore the Poincaré-Bohl

theorem implies:

deg (Je Qe N|Ker(L), fwl weKer(L), Il wl m,2<t},0)=l=0.

Now Theorem 1 yields: There is ueV with: Iu - Nu = 0, which

implies: a(u,v) = n(u,v) for all ve V.

4. Here we will make a few notes on Theorem 3:

Concer.lihg the lirear part we only mention:

Remark 1: The spectrum of L must be determined with

respect to V, i.e. we have to consider an equation of the
form:

‘,Esm Jy 2ep D% u(x)D P (x)ax =2 2 [} DFu(x)Pv(x)ax -
for veV. In regard to (H1) and (H2) we can suppose without
loss of generality: 8yp = O for ll + 131 < 2m,

If we consider the Laplacian for example, i.e.
<Bu,vd o=, F [ pamoivoas,
we obtain 6,(A) =413}, hence 2(A) = 1.

Assumptions, analogous to (H4) - (H6), appear in [31].

Remark 2: One observes that the choice of & is uni-

que, because it depends not only on the growth condition in
(H4), but also on (HS) - (H6). Instead of e

der:

we can consi-

- 33C -



(xx) alu,v) = n(u,v) + £f,v 70’2 for veV,

where £ is given functiom of 12(0), by setting 8, = &, * £+
If 6 > 0, we obtain:

Corollary: Let (H1) - (HT7) be satisfied and € > O.
For fe LZ(D.') there exists a solution ue€ V of (xx).

We end with some special cases:

Remark 3: If g, depends only on x and the o ~-th de-
rivative (we write then g, (x,D®u(x))), the conditions (H5)

and (H6) are reduced to:

(85)° There exists functions h:‘e LZ/l-g and

h e 12/1-6 yith:
1i (x,y)/ ) \g'ht()forxe.n.(ae)
'%’_)néw g:“, x,y y = oc X e Cole

(H6)° TFor all we Ker(L) with l!vrllm’z =1 and all <€
€ sy
* “ 146 . _ - 5 146,
n‘j‘(pﬁ,)h“ (x) | D*¥w(x)| ax i_()“«r) h, (x) ! w(x)l = 20,
g
where 'QL+) (D¥w):={xlxe 1, D“w(x)(Zo}, and at least

for one <« € S the integral is strictly greater than zero.

Remark 4: If V = ng’z(.().) and 6 = 0, Theorem 3 is a
generalization of the Iandesmann lazer result (e.g. [10],
{17]). Wnen we consider equation (xx ) (see Remark 2), we

receive the following condition for l«l=01in (H6):

[ reominax ¢ n{m h (x, § () (@) | § 5w () wx)dx.
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Remark 5: To prove Theorem 3.2 in [4] for the quasi-
linear case, we need the assertion of Corollary VI.6 in
[11] for set-contractions, which can be derived in the sa-
me manner from Theorem 1 as the just mentioned Corollary

from Theorem VI.4 there. We omit details.

Remark 6: Instead of Theorem 1 we can use a theorem
for set-contractions, corresponding to Theorem 1 in [21, to

prove Theorem 3.
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