

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log31

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,2 (1976)

METRIC-FINE, PROXIMALLY FINE, AND LOCALLY FINE UNIFORM SPACES

Michael D. RICE, Fairfax

Abstract: The following main result is established in the paper. A metric-fine (measurable) proximally fine space is locally fine if and only if the space is proximally fine and each uniformly locally finite cozero (Baire) cover is a uniform cover if and only if each hypercozero(hyperBaire) set is a cozero (Baire) set.

Key Words: and Phrases: Metric-fine, measurable proximally fine, cozero-fine, Baire-fine, locally fine uniform spaces; uniformly locally finite uniform cover; cozero set, Baire set, hypercozero set, hyperBaire set.

AMS: Primary 54E15, 54 C50 Secondary 54H05

Ref. Ž.: 3.962

This paper originated in the attempt to establish that metric-fine proximally fine spaces were locally fine. This question has since been answered in the negative by the author ([R]₃). (A negative answer to this question is also implicit in [Fr]₃, in view of the correction by [P].) The main contributions of the present work are Theorem 2.1, which shows that the condition hypercozero=cozero guarantees the locally fine property for metric-fine proximally fine spaces and Theorem 2.2.

In general, the notation employed is found in [R]_{1-5} and [I], and is consistent with the terms used in [Fr]_{1-8}. uX denotes a uniform space. If u and v are uniformities, u/v is the quasi-uniformity having covers of the form $\{V_s \cap U_t^s\}$ as a basis, where $\{V_s\} \in v$, $\{U_t^s\} \in u$, for each s. uX is locally fine if $u/u + u^{(1)} = u$ and locally sub-M-fine if u(eu = u), where eu has the basis of countable u-covers. A function $uX \xrightarrow{f} vY$ is UIUC if f/U_s is uniformly continuous for each member of $\{U_s\} \in u$.

Theorem 1.1: These statements are equivalent.

- (i) uX is metric-fine and each bounded ULUC function is uniformly continuous. (uX is locally e-fine metric-fine in the sense of [Fr]_{2*})
 - (ii) uX is metric-fine and hypercoz (uX) = coz (uX).
- (iii) Each σ -uniformly discrete cozero cover is a uniform cover.
- (iv) uX is locally sub-M-fine and each uniformly locally countable cozero cover is a uniform cover.

Proof: The equivalence of (i) - (iii) has been established in [R]₅ and [Fr]₂, Theorem 3, while (iv) follows from (i) using [Fr]₂, Theorem 3, and the definition of locally e-fine. We sketch a proof of (i) \longrightarrow (iv) that also enables us to establish 2.2. Let $\{\cos f_t\}$ be a uniformly locally countable cozero cover with respect to $\mathcal{F}_p(\varepsilon)$, where φ is uniformly continuous. Let $\mathcal{U} = \bigcup \mathcal{U}_i$, $\mathcal{U}_i = \{U_{s,i}: s \in S_i\}$, be a \mathscr{E} -uniformly discrete uniform refinement of $\mathcal{F}_p(\varepsilon)$, with \mathcal{U}_i discrete with respect to $\mathcal{F}_{p,i}(\varepsilon_i)$, \mathcal{F}_i uniformly continuous, $\varepsilon_i < \varepsilon$. For

se S_i , define the cozero sets $V_{s,i} = \{x: \varphi_i(x,U_{s,i}) < \varepsilon_i/8\}$ and the countable family $C_{s,i} = \{\cos f_t: \cos f_t \land V_{s,i} \neq \emptyset\}$. Write $C_{s,i} = \{S_{s,i}^j: j \in \mathbb{N}\}$ and for $j \in \mathbb{N}$ define $T_{s,i}^j = S_{s,i}^j \land V_{s,i}$; then the cozero family $\{T_{s,i}^j: s \in S_i\}$ is uniformly discrete for each j, so by (ii) $C_i^j = U A T_{s,i}^j: s \in S_i\}$ is a cozero set. Define $B_i = \{x: \varphi(x,U_{s,i}) > \varepsilon_i/16$ for all $s \in S_i\}$ and let $V_i = \{C_i^j: j \in \mathbb{N}\} \cup \{B_i\}$. By (iii), $V_i \in U$. Define $H_i = U A U_{s,i}: s \in S_i\}$ and set $A_i = V_{i/H_i}$. Note that A_i is a uniform cover of A_i . Finally, $A_i < \{\cos f_i\}_{H_i}$; hence $\{\cos f_i\} \in U = U \text{ since } U \text{ is metric-fine.}$

Assume that (iv) is satisfied. Then each countable cozero cover is uniform and uX is locally sub-M-fine, so uX is metric-fine ([R]₅). Let X \xrightarrow{f} [0,1] be a ULUC function with respect to $\mathcal{U} = \{U_g\}$, where \mathcal{U} is a uniformly locally finite cozero cover (which may be assumed since uX is metric-fine). If $\{H_i\}$ is a finite open cover of [0,1], then $\{U_g \cap f^{-1}(H_i)\}$ is a uniformly locally finite cozero cover that refires $\{f^{-1}(H_i)\}$; hence by (iv) f is uniformly continuous and (i) is established.

Theorem 1.2: Assume that uX has a basis of finite dimensional uniform covers. Then each countable (resp. finite) cozero cover is a uniform cover and hypercoz (uX) = coz (uX) if and only if each uniformly locally countable (resp. uniformly locally bounded) cozero cover is a uniform cover.

<u>Proof</u>: Using the notation in 1.1 and the fact ([I], 4.25) that each uniform cover has a uniform refinement which is the finite union of uniformly discrete families, we may

assume $\mathcal{U} = \cup \mathcal{U}_i$, where i ranges over a finite set. The proof of 1.1 now proceeds unaltered to the conclusion that $\{\cos f_t\}$ is a uniform cover, since it is uniform on each member of the finite uniform cover $\{H_i\}$.

Note (i): The uniformly locally bounded assumption in 1.2 cannot be replaced by uniformly locally finite. The referee points out that if φ is the usual metric on R and is the fine uniformity on R, then $\varphi \vee p\alpha$ satisfies the conditions in 1.2 for uniformly locally finite, but each such cover is not uniform (since $\alpha + \varphi \vee p\alpha$).

Note (ii): Theorems 1.1 and 1.2 remain valid (using the preceding proofs) if one replaces coz (uX) by Baire (uX) and metric-fine by measurable.

Theorem 2.1: These statements are equivalent.

- (i) uX is cozero-fine and locally fine
- (ii) uX is cozero-fine and hyper coz (uX) = coz (uX)
- (iii) uX is proximally fine and each uniformly locally finite cozero cover is a uniform cover.

<u>Proof</u>: Using 1.1 and the fact that cozero-fine is equivalent to metric-fine and proximally fine ([Hl], 5.3 or [Fr], Theorem 5), one easily establishes the implications (i) \rightarrow (ii) \rightarrow (iii). Assume that (iii) is satisfied. Let $ux \xrightarrow{f} M$ be a cozero function to the metric space M. Since ux is proximally fine, f is uniformly continuous once it is shown that $f^{-1}\{H_i\} \in u$ for each finite open cover $\{H_i\}$ of M. But each $H_i \in coz$ (M), so $f^{-1}\{H_i\}$ is a finite cozero cover; hence $f^{-1}\{H_i\} \in u$ by (iii). Thus ux is cozero-fine and

has a basis of point-finite uniform covers.

To show that uX is locally fine, it suffices to show that $p(u^{(1)}) = pu$, for uX is proximally fine and $u^{(1)}$ is a uniformity since uX has a point-finite basis. Choose $\mathcal{U} \in ep(u^{(1)})$. There exists $\mathcal{V} = \{V_g \cap U_t^S \} \in u^{(1)}$ and a finite cover $\{H_i\}$ such that $\mathcal{V} < \{H_i\} < \mathcal{U}$. Define $S_{s,i} = U \in U_t^S : V_g \cap U_t^S \subset H_i\}$ and set $\mathcal{C}_s = \{S_{s,i}\}$. Each \mathcal{C}_s is a finite uniform cover (since $\{U_t^S\} < \mathcal{C}_s$); hence $\mathcal{W} = \{V_s \cap S_{s,i}\} \in pu/u$ and $\mathcal{W} < \mathcal{U}$. Since uX is metric-fine we may assume that $\{V_s\}$ is a uniformly locally finite cozero cover, so by (iii) \mathcal{W} , and hence \mathcal{U} , is a uniform cover and $p(u^{(1)}) = pu$.

Theorem 2.2: These statements are equivalent.

- (i) uX is Baire-fine and locally fine.
- (ii) uX is Baire-fine and hyperBaire (uX) = Baire (uX).
- (iii) uX is proximally fine and each uniformly locally finite Baire cover is a uniform cover.
- (iv) uX is proximally fine and each 6 -uniformly locally finite Baire cover is a uniform cover.

<u>Proof</u>: The equivalence of (i) - (iii) may be established using the comments following 1.2 and the proof technique of 2.1. To establish (i) \longrightarrow (iv), let $\mathcal{U} = \cup \mathcal{U}_i$ be a Baire (= cozero) cover, where \mathcal{U}_i is uniformly locally finite with respect to $\mathcal{V}_i \in \mathfrak{u}$. Define $B_i = \cup \{ \mathbf{U} \in \mathcal{U}_i \}$. Then one easily shows that B_i is a cozero set since uX is locally fine (if $\mathbf{U} = \cos(f_{\mathbf{U}})$, then $B_i = \cos(f)$, where $\mathbf{f} = \sum f_{\mathbf{U}}$). Also \mathcal{U}_{i/B_i} is a uniform cover of B_i (for its restriction to

each member of \mathcal{V}_i has a finite Baire refinement and uX is measurable and locally fine). Hence uX measurable implies $\mathcal{U} = \{B_i \cap U \colon U \in \mathcal{U}_i\} \in u/eu = u.$

The reader should compare (i) and (ii) of 2.2 with Theorem 3 of $[Fr]_7$. It has been mentioned that there exist Baire-fine spaces that are not locally fine $([R]_{2,3})$. In fact, the smallest measurable uniformity u satisfying hyper-Baire (uX) = Baire (uX) which contains the product uniformity of X = D^{ω_1} , where D is uniformly discrete and $[D] = \omega_1$, is not locally fine ($[Fr]_2$, p. 246). On the other hand, ($[R]_2$, 2.6) establishes that if the smallest measurable uniformity u containing a metric uniformity satisfies hyper Baire (uX) = Baire (uX), then uX is locally fine.

References

- [Fr] Z. FROLÍK: Measurable uniform spaces, Pacific J. Math. 55(1974),93-105.
- [Fr]₂ Z. FROLÍK: Locally e-fine measurable spaces, Trans.
 Amer. Math. Soc. 196(1974), 237-247.
- [Fr] 3 Z. FROLÍK: Baire sets and uniformities on complete metric spaces, Comment. Math. Univ. Carolinae 13(1972), 137-147.
- [Fr]₄ Z. FROLIK: Basic refinements of uniform spaces,
 Proc. 2nd Pittsburgh Topological Symposium,
 Pittsburgh, Penn., 1972, Lecture Notes in
 Math. 378(1974), 140-148.
- [Fr]₅ Z. FROLÍK: Interplay of measurable and uniform spaces, Proc. 2nd Symposium on Topology, Bud-va, Yugoslavia, 1972 (Beograd 1973), 98-101.
- [Fr]₆ Z. FROLIK: A note on metric fine spaces, Proc. Amer. Math. Soc. 46(1974), 111-119.

- [Fr] Z. FROLIK: Topological methods in measure theory and the theory of measurable spaces, Proc. 3rd Prague Symp. on General Topology, 1971 (Academia, Prague, 1972), 127-139.
- [Fr] Z. FROLÍK: Seminar in Uniform Spaces (Directed by Z. Frolík), Czechoslovak Academy of Sciences, 1973-1974.
- [H]

 A.W. HAGER: Some nearly fine uniform spaces, Proc.

 London Math. Soc. 28(1974), 517-546.
- [H]₂ A.W. HAGER: Measurable uniform spaces, Fund. Math. 77(1972), 51-73.
- [H]₃
 A.W. HAGER: Uniformities induced by proximity, cozero, and Baire sets, to appear Trans.
 Amer. Math. Soc.
- [I] J.R. ISBELL: Uniform sp ces, Amer. Math. Soc., Providence, 1964.
- [P] D. PREISS: Completely additive disjoint systems of Baire sets are of bounded class, Comment. Math. Univ. Carolinae 15(1974), 341-344.
- [R] M.D. RICE: Metric-fine uniform spaces, to appear Proc. London Math. Soc.
- [R]_{2,3} M.D. RICE: Uniformities in the descriptive theory of sets I,II, to appear Amer. J. Math.
- [R] M.D. RICE: Finite dimensional covers of metric-fine spaces, to appear Czech. J. Math.
- [R], M.D. RICE: Covering and function-theoretic properties of uniform spaces, Doctoral dissertation, Wesleyan University, June, 1973.

George Mason University
Department of Mathematics
Fairfax, Virginia 22030

(Oblatum 26.7. 1974-)