

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log30

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,2 (1976)

FREE UNIFORM MEASURES ON SUB-INVERSION-CLOSED SPACES

Jan PACHL, Praha

Abstract: Any free uniform measure on any sub-inversion-closed uniform space is represented by a Radon measure with a compact support in the completion of the space. Relation of free uniform, \(\sigma -\text{additive}\) and order-bounded measures is discussed. measures is discussed.

Key Words: Free uniform measures, order-bounded and 6-additive functionals, sub-inversion-closed uniform spaces, separable Riesz measures, Riesz measures.

AMS: Primary 28A30 Secondary 54E15,60B05 Ref. Z.: 7.518.126

§ 1. Introduction. The notion "free uniform measure" on a uniform space [1],[3],[15] provides a common generalization for both the notions "Riesz measure" and "separable Riesz measure" (see § 7 below).

It is the aim of this paper to show that the theorem about representation of these measures by means of certain Radon measures - proved by Hewitt ([11], Th. 17) for Riesz measures and by Haydon [10] for separable Riesz measures holds for free uniform measures on any sub-inversion-closed uniform space (Theorem 4.3 below).

In §§ 5,6 I discuss the connections of free uniform measures with order-bounded and 6 -additive functionals on the space of uniform functions.

Terminology and notation. Basic topics on uniform spaces may be found in the Isbell's book [12] but here we shall work rather with pseudometrics than with coverings. All topologies and uniformities are assumed to be Hausdorff.

For a compact topological space C, a Radon measure on C is a (signed) regular Borel measure on C. All Radon measures on C are in one-to-one correspondence with all norm-continuous linear functionals on the Banach space of real-valued functions om C ([17], II - § 2, Ex. 3).

In the whole paper R denotes the reals; X denotes an arbitrary (Hausdorff) uniform space. \hat{X} is the completion of X. $\mathcal{P}(X)$ is the system of all bounded uniformly continuous pseudometrics on X. U(X) is the linear lattice of all uniform (= uniformly continuous) real-valued functions on X, endowed with the topology of pointwise convergence on X.

A set $S \subset U(X)$ is called U.E.-set iff it is equiuniform (= uniformly equicontinuous) and pointwise bounded. A linear form μ on the space U(X) is called <u>free uniform measure</u> iff it is continuous on each U.E.- set in the topology of pointwise convergence. The reader is referred to [15] for basic properties of the space $\mathcal{M}_{\mathbf{F}}(X)$ of free uniform measures on X. Here I shall only add that a set $S \subset U(X)$ is U.E. if and only if its unique extension \hat{S} to \hat{X} is a U.E.-set. Hence the space $\mathcal{M}_{\mathbf{F}}(X)$ and $\mathcal{M}_{\mathbf{F}}(\hat{X})$ are canonically isomorphic.

The Banach space of bounded uniform functions on X will be denoted $U_b(X)$ (the norm is given by $||f|| = \sup \{|f(x)| \mid x \in X\}$). Continuous linear forms on the spaces $U_b(X)$ are called measures on X. Here I shall call "measure on X" also a

linear form on the space U(X) whose restriction to $U_b(X)$ is measure. Thus $\mu: U(X) \longrightarrow R$ is a measure iff μ is linear and $\|\mu\| = \sup \{|\mu(f)| \mid f \in U_b(X) \& \|f\| \leq 1\}$ is finite. It is easy to see that each free uniform measure is actually a measure.

If $\{f_{\alpha_{\alpha\in A}}^3$ is a net of real-valued functions on X indexed by elements of a directed set A then the symbol $f_{\alpha} > 0$ means that $\lim_{\alpha \in A} f_{\alpha} = 0$ pointwise (i.e. $\lim_{\alpha \in A} f_{\alpha} > 0$ for $f_{\alpha} > 0$ for $f_{\alpha} > 0$ and $f_{\alpha} > 0$ for $f_{\alpha} < 0$.

§ 2. Sub-inversion-closed uniform spaces. A subset C of uniform space X is a Coz-set iff there exists a function $f \in U(X)$ such that $C = \{x \in X \mid f(x) > 0\}$. A real-valued function g on X is a Coz-function iff the preimage of any open subset of R under g is a Coz-set in X.

A space X is called <u>inversion-closed</u> iff every real-valued Coz-function on X is uniform. The following theorem will not be used below; it is included here just for the reader's orientation. The condition (b) explains the name "inversion-closed" while the condition (c) suggests that this class of uniform spaces should be important in the theory of 6-additive measures.

Theorem. For a uniform space X the three conditions are equivalent:

- (a) X is inversion-closed;
- (b) if $f \in U(X)$ and $f(x) \neq 0$ for each $x \in X$ then $\frac{1}{f} \in U(X)$;
 - (c) if $f_n \in U_b(X)$ for n = 1, 2, ... and $f_n > 0$ then the

set $\{f_n \mid n = 1, 2, ...\}$ is equiuniform.

<u>Proof</u> will not be repeated here. Implication (a) \Longrightarrow (c) was proved by Preiss and Zahradník [19]. The other implications are proved in Frolík's papers [6],[7] where also other characterizations of inversion-closed spaces are given.

The following property will be used below: any uniform real-valued function on a subspace of an inversion-closed space can be extended to a uniform function on the whole space [8] (this follows from the fact that a Coz-function defined on complement of a Coz-set can be extended to a Coz-function on the whole space).

A uniform space will be called <u>sub-inversion-closed</u> iff it is uniformly isomorphic with a subspace of an inversion-closed space (this class of spaces was pointed out to me by Zdeněk Frolík).

Every inversion-closed space is sub-inversion-closed. Clearly every precompact space is sub-inversion-closed. Moreover, it can be deduced from ([12], VII.9) that every locally fine space is sub-inversion-closed.

- § 3. Supports of uniform measures. Although we shall work only with free uniform measures all results in this paragraph hold for all uniform measures (with the same proofs).
- 3.1. Notation. If $\varphi \in \mathcal{P}(X)$ put $\varphi^{\mathsf{Y}}(y) = (1 \varphi(x,y))^+$ for $x,y \in X$; obviously $\varphi^{\mathsf{X}} \in U_{\mathsf{D}}(X)$, $\varphi^{\mathsf{X}} \geq 0$. For any $\varphi \in \mathcal{P}(X)$ and any $\mu \in \mathcal{M}_{\mathsf{F}}(X)$ put $S(\mu, \varphi) = \{x \in X \mid \text{there exists a function } g \in U(X) \text{ such that}$

 $0 \le g \le p^x$ and $\mu(g) \ne 0$.

Clearly, if $\varphi_1 \leq \varphi_2$ then $\varphi_1^{\mathsf{x}} \geq \varphi_2^{\mathsf{x}}$ and $S(\mu, \varphi_1) \supset S(\mu, \varphi_2)$. Put $S(\mu) = \bigcap_{\varphi \in \mathcal{P}(\mathsf{x})} S(\mu, \varphi_2)$.

Remark. Consider the associated Radon measure μ on the Samuel compactification \tilde{X} of the space X [5]. It is easy to see that $S(\mu) = X \cap \text{supp} \tilde{\mu}$.

3.2. Proposition. Let $\mu \in \mathcal{M}_{\mathbf{F}}(X)$, $\varphi \in \mathcal{P}(X)$, $\mathbf{f} \in U(X)$ and $\mathbf{f}(\mathbf{x}) = 0$ for any $\mathbf{x} \in S(\mu, \varphi)$. Then $\mu(\mathbf{f}) = 0$.

<u>Proof.</u> As $f = f^+ - f^-$ one can assume $f \ge 0$. As $\mu(f) = \lim_{n \to \infty} \mu(f \land n)$ one can assume f is bounded. Thus without any loss of generality we shall assume that $0 \le f \le 1$.

For any finite set $F \subset X \setminus S(\mu, \varphi)$ put $f_F = f \wedge (\max_{x \in F} \varphi^x)$. Order finite subsets of $X \setminus S(\mu, \varphi)$ by inclusion. Then $\lim_{F \to F} f_F = f$ pointwise, the set $\{f_F \mid F \text{ finite } c \mid X \setminus S(\mu, \varphi)\}$ is U.E., and hence $\mu(f) = \lim_{F \to F} \mu(f_F)$. But for any finite set $f \subset X \setminus S(\mu, \varphi)$ one can write $f \in X \setminus S(\mu, \varphi)$ where $f \in U(X)$ and $0 \neq f_X \neq \varphi^X$ for $x \in F$.

Consequently $\mu(f_F) = 0$ for any finite set $F \in X \setminus S(\mu, \varphi)$ and $\mu(f) = 0$,

Q.E.D.

3.3. Proposition. For any $\mu \in \mathcal{M}_{\mathbf{F}}(\mathbf{X})$ we have $S(\mu) = \frac{1}{2}$ $S(\mu, \varphi)$; consequently the set $S(\mu)$ is closed.

Proof. If $\mathbf{x} \in \mathbf{X} \setminus S(\mu, \varphi)$ and $g(\mathbf{y}, \mathbf{x}) < \frac{1}{2}$ then $\mathbf{y} \notin S(\mu, 2\varphi)$. Hence $S(\mu, \varphi) \supset \overline{S(\mu, 2\varphi)}$.

The following lemma shows that the set $S(\mu)$ supports the measure μ if the sets $S(\mu, \phi)$ are not "too large". This helps to prove Theorem 4.2 below.

3.4. Lemma. Let X be a complete uniform space, let $\mathcal{M}_{\mathbf{F}}(X)$. Suppose that for any $\rho \in \mathcal{P}(X)$ there exists

a finite number of sets $R_i^{\emptyset} \subset X$, $i = 1, 2, ..., n(\varphi)$, such that φ -diam $R_i^{\emptyset} \neq 0$ for $i = 1, 2, ..., n(\varphi)$, and $S(\mu, \varphi) \subset \iota_{\psi}^{n(\varphi)} \cap R_i^{\emptyset}$. Then the set $S(\mu)$ is compact and the following holds: if $f \in U(X)$ and f(x) = 0 for each $x \in S(\mu)$ then $\mu(f) = 0$.

Proof. I. The set S(\mu) is precompact, hence it is compact according to 3.3.

II. Suppose that $f \in U(X)$ and f(x) = 0 for $x \in S(\mu)$. Choose any $\varepsilon > 0$. I claim that there exists a pseudometric $\varphi \in \mathcal{P}(X)$ such that $|f(x)| < \varepsilon$ for any $x \in S(\mu, \varphi)$ (the claim is proved below). Put $g = (f^{\dagger} - \varepsilon)^{\dagger} - (f^{\dagger} - \varepsilon)^{\dagger}$: one has $||f - g|| < \varepsilon$ and g(x) = 0 for any $x \in S(\mu, \varphi)$.

Hence $|\mu(f)| \le |\mu(g)| + |\mu(f-g)| \le E \|\mu\|$. As $\varepsilon > 0$ was arbitrary, the conclusion follows.

III. It remains to prove the claim stated above. Suppose it does not hold, i.e. there exists an $\varepsilon > 0$ such that $\widetilde{S}_{\mathcal{C}} = S(\mu, \mathcal{C}) \cap \{x \in X \mid |f(x)| \geq \varepsilon\} \neq \emptyset$ for each $\mathcal{C} \in \mathcal{D}(X)$. Then $\{\widetilde{S}_{\mathcal{C}} \mid \mathcal{C} \in \mathcal{D}(X)\}$ is a base of a filter and there exists an ultrafilter \mathcal{F} containing it. Now assumption in Lemma implies that for any $\mathcal{C} \in \mathcal{D}(X)$ there is an $i(\mathcal{C})$ such that $R_{i(\mathcal{C})}^{\mathcal{C}} \cap \{x \in X \mid |f(x)| \geq \varepsilon\} \in \mathcal{F}$. Hence \mathcal{F} is a Cauchy filter and $\bigcap \{\overline{F} \mid F \in \mathcal{F}\} = \{x_0\}$; clearly $|f(x_0)| \geq \varepsilon$.

On the other hand, $x_0 \in S(u)$ and $f(x_0) = 0$. This is the desired contradiction.

§ 4. Free uniform measures on sub-inversion-closed spaces.

The following property of sub-inversion-closed spaces is exactly what we need in the proof of Theorem 4.2 below.

4.1. Lemma. Given a sub-inversion-closed space X, a pseudometric $\varphi \in \mathcal{F}(X)$ and a countable set $Y \subset X$ such that $\varphi(x,y) \geq 3$ for $x,y \in Y$, $x \neq y$. Suppose further that for each $y \in Y$ we are given a function $f_y \in U(X)$ and a real number K_y such that $0 \neq f_y \neq K_y$. φ^y . Then the function $f_y \in Y$ is uniform on X.

<u>Proof.</u> Find an inversion-closed space Z such that X is a subspace of Z. f_y 's and φ may be extended over Z: find $\widetilde{f}_y \in U(Z)$ and $\widetilde{\varphi} \in \mathfrak{F}(Z)$ such that \widetilde{f}_y extends f_y for any $y \in Y$, $\widetilde{\varphi}$ extends φ , and $0 \neq \widetilde{f}_y \neq \widetilde{\varphi}^{y}$. K_y for $y \in Y$ (this certainly can be done: if necessary, take $(\widehat{f}_y \wedge K_y \cdot \widetilde{\varphi}^{y})^+$ instead of \widehat{f}_y).

Then $\sum_{y\in Y} \widetilde{f_y}$ is a Coz-function on an inversion-closed space Z, hence it is uniform and its restriction $\sum_{y\in Y} f_y$ is uniform on X,

O.E.D.

4.2. Theorem. Let X be a complete sub-inversion-closed uniform space and let $\mu \in \mathcal{M}_F(X)$. Then there exists a compact set $C \subset X$ and a Radon measure m on C such that $\mu(f) = \int_C f dm$ for any $f \in U(X)$.

<u>Proof.</u> Put $C = S(\mu)$.

I. At first observe that the condition stated in 3.4 holds. Indeed, if it does not then there exists a pseudometric $\varphi \in \mathcal{P}(X)$ such that the set $S(\mu, \varphi)$ is not covered by any finite number of sets of φ -diameter $\neq 6$. Hence one can inductively construct an infinite countable set $Y = \{y_1, y_2 \cdots \} \in S(\mu, \varphi)$ such that $\varphi(y_k, y_k) \geq 3$ for $k \neq k$. For any $k = 1, 2, \ldots$ there exists a function $g_k \in U(X)$ such that

 $0 \neq g_{\ell} \neq \emptyset \quad \text{and} \quad (u(g_{\ell}) \neq 0. \text{ Choose real numbers } K_{\ell},$ $\ell = 1, 2, \dots, \text{ such that } | K_{\ell} \cdot (u(g_{\ell}))| \geq \ell + \sum_{k=1}^{\ell-1} |K_{k} \cdot (u(g_{k}))|$ and put $f_{\ell} = K_{\ell} \cdot g_{\ell}, f = \sum_{k=1}^{\infty} f_{\ell} \cdot g_{\ell}$

Lemma 4.1 implies that the set $\{\sum_{k=1}^{\ell} f_k \mid \ell = 1, 2, ... \}$ is U.E., hence $\mu(f) = \lim_{k \to \infty} \mu(\sum_{k=1}^{\ell} f_k)$.

On the other hand, for $\ell = 1, 2, ...$ we have

On the other hand, for $\ell = 1, 2, ...$ we have $| \mu(\sum_{k=1}^{\ell} f_k) | \ge | K_{\ell} \cdot \mu(g_{\ell}) | - \sum_{k=1}^{\ell-1} | K_{k} \cdot \mu(g_{k}) | \ge \ell ,$ a contradiction.

II. Thus 3.4 applies and we have $\mu(f) = 0$ whenever f(x) = 0 for each $x \in C$.

For any $f \in U(X)$ denote \widetilde{f} its restriction to C: if f, $g \in U(X)$ and $\widetilde{f} = \widetilde{g}$ then $\mu(f) = \mu(g)$, hence the formula $\widetilde{\mu}(\widetilde{f}) = \mu(f)$ defines a continuous linear form on the Banach space $U_b(C) =$ the Banach space of all continuous functions on C. Consequently $\widetilde{\mu}$ is represented by a Radon measure m on C, Q.E.D.

4.3. Reformulation. If X is any uniform space, denote by $\mathcal{M}_{\mathbb{C}}(X)$ the space of "Radon measures with a compact support in X": $\mu \in \mathcal{M}_{\mathbb{C}}(X)$ iff there exists a compact set $\mathbb{C} \subset X$ and a Radon measure m on C such that $\mu(f) = \int_{\mathbb{C}} f dm$ for any function $f \in U(X)$.

Now if X is any sub-inversion-closed space then the completion \hat{X} of X is sub-inversion-closed as well and according to 4.2 we have $\mathcal{M}_{F}(X) \cong \mathcal{M}_{F}(\hat{X}) = \mathcal{M}_{C}(\hat{X})$.

§ 5. Order-bounded functionals.

 $\mathcal{M}_{ob}(X)$ will denote the space of order-bounded linear functionals on the space U(X). Thus $\mu \in \mathcal{M}_{ob}(X)$ iff for any

feu(X), μ is bounded on the set $\{g \in U(X) \mid |g| \leq f\}$. It is well-known ([17], V-1.1, 1.4) that $\mu \in \mathcal{W}_{ob}(X)$ if and only if μ is a difference of two positive linear functionals on U(X). If this is so then $\mu = \mu^+ - \mu^-$ where $\mu^+(f) = \sup \{\mu(g) \mid g \in U(X) \ 0 \leq g \leq f\}$ for $f \in U(X)$, $f \geq 0$.

It is readily seen that any element of $\ensuremath{\mathfrak{M}}_{ob}(X)$ is a measure in the sense of § 1.

5.1. Proposition. If $u \in \mathcal{M}_F(X)$ is order-bounded then the linear functional $u^+(\text{defined by } u^+(f) = \sup \{u(g) \mid 0 \le g \le f \& g \in U(X) \}$ for $f \in U(X)$, $f \ge 0$) belongs to the space $\mathcal{M}_F(X)$.

Proof. See ([3], T.1).

5.2. Corollary. For any uniform space X, the inclusion $\mathcal{M}_{F}(X) \subset \mathcal{M}_{ob}(X)$ holds if and only if the space $\mathcal{M}_{F}(X)$ is spanned by its positive cone.

Remark. If R denotes the real line with the usual uniformity then the space $\mathscr{Al}_{\mathbb{F}}(\mathbb{R})$ is not included in $\mathscr{Al}_{ob}(\mathbb{R})$ ([15], 3.3).

On the other hand, for sub-inversion-closed spaces we have the following result:

5.3. Proposition. Let X be a sub-inversion-closed uniform space. Then $\mathcal{M}_{\mathbf{F}}(X) \subset \mathcal{M}_{\mathrm{ob}}(X)$ and the space $\mathcal{M}_{\mathbf{F}}(X)$ is spanned by its positive cone.

Proof. $\mathcal{M}_{\mathbf{F}}(\mathbf{X})\cong\mathcal{M}_{\mathbf{C}}(\widehat{\mathbf{X}})$ according to 4.3 and $\mathcal{M}_{\mathbf{C}}(\widehat{\mathbf{X}})\subset \mathcal{M}_{\mathbf{Ob}}(\widehat{\mathbf{X}})\cong\mathcal{M}_{\mathbf{Ob}}(\mathbf{X})$ obviously. Thus 5.2 applies.

§ 6. \(\sigma\)-additive functionals on U(X)

Denote by $\mathfrak{M}_{66}(X)$ the linear space of those linear functionals μ on the space U(X) that satisfy the following condition:

If $f_n \in U(X)$ for n = 1, 2, ... and $f_n \ge 0$ then $\lim_{n} \mu(f_n) = 0$.

6.1. Lemma. Let X be any uniform space, let $u \in \mathcal{M}_{\overline{00}}(X)$. Then:

- a) for any $g \in U(X)$ it holds $\mu(g) = \lim_{n \to \infty} \mu(g \wedge n)$
- b) u is a measure.

Proof. a) is obvious.

As for b), assume that μ is not a measure in the sense of § 1, i.e. μ is not norm-continuous: for $n=1,2,\ldots$ there exist functions $g_n \in U_b(X)$ such that $\|g_n\| \le 1$ and $\mu(g_n) > 2^n$. As $g_n = g_n^+ - g_n^-$ one can assume $0 \le g_n \le 1$; if this is the case then the function $g = \sum_{m=1}^{\infty} \frac{1}{2^m} g_n$ is uniform, $\sum_{m=1}^{N} \frac{1}{2^m} g_n / g$ as $N \to +\infty$ and $\mu(\sum_{m=1}^{N} \frac{1}{2^m} g_n) > N$, a contradiction.

6.2. Proposition. For any uniform space X we have $\mathfrak{M}_{66}(X) \subset \mathfrak{M}_{ob}(X)$.

<u>Proof.</u> Assume $\mu \in \mathcal{M}_{66}(X) \setminus \mathcal{M}_{ob}(X)$. Then there exists a function $f \in U(X)$ such that μ is not bounded on the set $\{g \in U(X) \mid |g| \leq f\}$. Using the decomposition $g = g^{+} - g^{-}$ and 6.1 (a) one sees that μ is not bounded on the set $\{g \in U_{b}(X) \mid 0 \leq g \leq f\}$.

Construct inductively functions $g_n \in U_b(X)$, n = 0,1,..., such that $g_0 = 0$ and $0 \neq g_n \neq f$, $| \mu(g_n) | > 2 | \mu|$.

. $||g_{n-1}|| + n$ for n = 1,2,....

Put $h_n = g_n \vee (\| g_{n-1} \| \wedge f)$ for $n = 1, 2, \dots$

Then $h_n \in U_b(X)$ and $(f - h_n) \ge 0$.

On the other hand, we shall see that $|\mu(h_n)| > n$ for n = 1, 2, ... - this will be the contradiction.

In fact, one has $\mu(h_n) + \mu(g_n \wedge \|g_{n-1}\|) = \mu(g_n) + \mu(\|g_{n-1}\| \wedge f)$, hence $\|\mu(h_n)\| \ge \|\mu(g_n)\| - 2\|\mu\|$. $\|g_{n-1}\| > n$ as claimed.

The proposition is proved.

For the converse inclusion, we must restrict ourselves; even the class of sub-inversion-closed spaces is too rich. However, for inversion-closed spaces it is true; in fact, the proof is well-known ([21, 3.1.1).

6.3. Proposition. If a space X is inversion-closed then $\mathfrak{M}_{ob}(X) \subset \mathfrak{M}_{ob}(X)$.

<u>Proof.</u> It suffices to show that $\mu \in \mathfrak{M}_{66}(X)$ whenever $\mu \in U(X)^*$ and $\mu \geq 0$ - let it be the case. Choose $f_n \geq 0$ and $\epsilon > 0$.

The sequence of Coz-sets $\{x \in X \mid f_n(x) < \epsilon \}$, n = 1, 2, ..., covers X. Hence the sum $f = \sum_{n=1}^{\infty} (f_n - \epsilon)^+$ is finite.

Consider any a,b $\in \mathbb{R}$, a < b: then $\{x \in X \mid f(x) > a\} = \bigcup_{k=1}^{\infty} \{x \in X \mid \sum_{n=1}^{\infty} (f_n(x) - \epsilon)^+ > a\}$ is a Coz-set and $\{x \in X \mid f(x) < b\} = \bigcup_{k=1}^{\infty} \{x \in X \mid f_k(x) < \epsilon\}$ $\{x \in X \mid f(x) < b\} = \bigcup_{k=1}^{\infty} \{x \in X \mid f_k(x) < \epsilon\}$ $\{x \in X \mid f_k(x) < \epsilon\} = \bigcup_{k=1}^{\infty} \{x \in X \mid f_k(x) < \epsilon\}$ $\{x \in X \mid f_k(x) < \epsilon\} = \bigcup_{k=1}^{\infty} \{x \in X \mid f_k(x) < \epsilon\}$

Thus f is a Coz-function on an inversion-closed space and $f \in U(X)$. Consequently $\lim_{n \to \infty} \mu((f_n - \varepsilon)^+) = 0$ and as $\mu(f_n) \neq \varepsilon$. $\mu(1) + \mu((f_n - \varepsilon)^+)$ and $\varepsilon > 0$ was arbitrary, we get $\lim_{n \to \infty} \mu(f_n) = 0$, Q.E.D.

6.4. Let me sum up for the later use:

Theorem. For any inversion-closed space X we have $\mathfrak{M}_{\mathbb{C}}(\hat{X})\cong \mathfrak{M}_{\mathbb{F}}(X)\subset \mathfrak{M}_{\mathrm{ob}}(X)=\mathfrak{M}_{\mathfrak{F}}(X).$

6.5. Remark. The inclusion $\mathcal{M}_{F}(X) \subset \mathcal{M}_{66}(X)$ for inversion-closed spaces can be proved directly by the method of the proof of 4.2 in [15], using Theorem from § 2 above.

§ 7. Riesz and separable Riesz measures

Let us begin with the following lemma.

7.1. Lemma (cf.[9], § 5). Let X be a uniform space such that countable uniform covers form a basis of its uniform covers. Then $\mathcal{M}_{66}(X) \subset \mathcal{M}_{F}(X)$.

<u>Proof.</u> Let $\mu \in \mathcal{M}_{66}(X)$. Then $\mu = \mu^+ - \mu^-$ and standard argument shows that μ^+ , $\mu^- \in \mathcal{M}_{66}(X)$; hence we can and shall assume that $\mu \geq 0$. Let $f_{\infty}^2 \in A$ be a net such that the set $f_{\infty} \mid \infty \in A$; is U.E. and $\lim_{n \to \infty} f_{\infty} = 0$ pointwise. One must prove that $\lim_{n \to \infty} \mu \in A$.

Put $g_{\infty} = \sup_{\beta \ge \infty} |f_{\beta}|$ for any $\infty \in A$; the set $f_{\infty} | \infty \in A$? is U.E. and $g_{\infty} \ge 0$.

It follows from the assumption that there exists a countable set DC K such that

(*)
$$\forall x > 0 \quad \forall x \in X \quad \exists d \in D \quad \forall x \in A \mid g_{\infty}(x) - g_{\infty}(d) \mid x \in A$$

$$< \varepsilon .$$

By diagonal method one finds an increasing sequence $\alpha(n)$ of indices such that $\lim_{n\to\infty}g_{\alpha(n)}(d)=0$ for any $d\in D$. Now (*) implies that $g_{\alpha(n)}>0$ for $n\to\infty$ and $\lim_{n\to\infty}(\mu(g_{\alpha(n)})=0$ because μ is $\mathscr E$ -additive. Hence $\lim_{n\to\infty}|\mu(f_{\alpha})|\leq \lim_{n\to\infty}\mu(f_{\alpha(n)})=0$, Q.E.D.

Now we are going to see howe the results of preceding paragraphs yield known facts for the space of Riesz measures, resp. separable Riesz measures (denoted M_{\odot} , resp. M by French authors and $M_{\rm C}$, resp. $M_{\rm SC}$ by Kirk).

Besides free uniform measures we shall need here so called <u>uniform measures</u> (see e.g. [4],[15]). Below I use the canonical one-to-one map r_X : $\mathcal{M}_F(X) \longrightarrow \mathcal{M}_U(X)$; its properties are described in [15].

7.2. Notation. Given a Hausdorff completely regular topological space T, consider two uniformities on the underlying set: tfT is the fine uniform space associated with T (tfT is the finest uniformity agreeing with the topology of T), cT denotes the uniform space projectively generated by all real-valued functions continuous on T (cT has the coarsest uniformity such that all functions continuous on T are uniform).

One has $U(t_f^T) = U(cT) = the space of real-valued functions continuous on T, and consequently both the uniform spaces <math>t_f^T$ and cT are inversion-closed.

The elements of the space $\mathcal{M}_{\mathbf{U}}(\mathbf{t_fT})$ are called <u>separable measures on</u> T (see e.g. [18]). The elements of the space $\mathcal{M}_{ob}(\mathbf{t_fT}) = \mathcal{M}_{ob}(\mathbf{cT})$ are called <u>Riesz measures on</u> T by Berruyer and Ivol [2].

7.3. Riesz measures. Let me motice that $\widehat{\text{cT}}$ is just the Hewitt realcompactification of the space T; 6.4 and 7.1 yield the equalities

 $\mathfrak{M}_{\mathrm{ob}}(\mathrm{cT}) = \mathfrak{M}_{\mathrm{eff}}(\mathrm{cT}) = \mathfrak{M}_{\mathrm{F}}(\mathrm{cT}) \cong \mathfrak{M}_{\mathrm{C}}(\widehat{\mathrm{cT}}) \text{ (see [2], 3.1}$ and [11], T. 14, 17).

7.4. As for the space tfT we get the following result:

<u>Proposition</u>. Let T be any Hausdorff completely regular space. Then

- a) [10] We have $\mathscr{M}_{\mathbb{F}}(\mathbf{t}_{\mathbf{f}}^{\mathrm{T}}) \cong \mathscr{M}_{\mathbb{C}}(\widehat{\mathbf{t}_{\mathbf{f}}^{\mathrm{T}}});$
- b) ([13], 9.4) Free uniform measures on the space t_f^T are just the separable Riesz measures on T.

More exactly: Consider the canonical one-to-one maps in the commuting diagram

(horizontal arrows are induced by the identity map $t_fT \longrightarrow cT$).

Identify the spaces $\mathcal{M}_{\mathbf{U}}(\mathbf{t_fT})$, $\mathcal{M}_{\mathbf{F}}(\mathbf{t_fT})$ and $\mathcal{M}_{\mathbf{F}}(\mathbf{cT})$ with linear subspaces of $\mathcal{M}_{\mathbf{U}}(\mathbf{cT})$ by means of these maps. Then $\mathcal{M}_{\mathbf{F}}(\mathbf{t_fT}) = \mathcal{M}_{\mathbf{U}}(\mathbf{t_fT}) \wedge \mathcal{M}_{\mathbf{F}}(\mathbf{cT}).$

Proof. a) follows from 4.3.

b) Obviously $\mathcal{M}_{\mathbf{F}}(\mathbf{t}_{\mathbf{f}}\mathbf{T}) \subset \mathcal{M}_{\mathbf{U}}(\mathbf{t}_{\mathbf{f}}\mathbf{T}) \cap \mathcal{M}_{\mathbf{F}}(\mathbf{c}\mathbf{T})$. Conversely, if $\omega \in \mathcal{M}_{\mathbf{U}}(\mathbf{t}_{\mathbf{f}}\mathbf{T}) \cap \mathcal{M}_{\mathbf{F}}(\mathbf{c}\mathbf{T})$ then $\omega \in \mathcal{M}_{\mathbf{U}}(\mathbf{t}_{\mathbf{f}}\mathbf{T})$ and finite $\lim_{\mathbf{M} \to \infty} \omega((-\mathbf{M}) \vee (\mathbf{f} \wedge \mathbf{M}))$ exists for any $\mathbf{f} \in \mathbf{U}(\mathbf{c}\mathbf{T}) = \mathbf{U}(\mathbf{t}_{\mathbf{f}}\mathbf{T})$; ([15], 4.5) implies that $\omega \in \mathcal{M}_{\mathbf{F}}(\mathbf{t}_{\mathbf{f}}\mathbf{T})$.

Acknowledgments. The results were presented in the Zdeněk Frolík Semirar Abstract Analysis (Prague 1975).

I want to thank Zdeněk Frolík whose suggestions during the preparation of this paper were of great help for me.

References

[1] BEREZANSKIJ I.A.: Measures on uniform spaces and mole-

- cular measures (Russian), Trudy Moskov. mat. obšč. 19(1968), 3-40; English transl.:Trans. Moscow Math. Soc. 19(1968), 1-40:
- [2] BERRUYER J. and IVOL B.: Espaces des mesures et compactologies, Publ. Dépt. Math. Univ. Iyon 9-1(1972), 1-35.
- [3] FEDOROVA V.P.: Linear functionals and Daniel integral on spaces of uniformly continuous functions (Russian), Mat. Sb. 74(116)(1967),191-201.
- [4] FROLIK Z.: Mesures uniformes, C.R. Acad. Sci. Paris 277 (1973), A 105-108.
- [5] FROLÍK Z.: Représentation de Riesz des mesures uniformes, C.R. Acad. Sci. Paris 277(1973), A 163-166.
- [6] FROLÍK Z.: Uniform maps into normed spaces, Ann. Inst. Fourier (Grenoble), 24-3(1974), 43-55,
- [7] FROLÍK Z.: Three uniformities associated with uniformly continuous functions, to appear in Proc. Conf.

 "Algebras Cont. Functions" (Rome 1973).
- [8] FROLÍK Z.: Four functors into paved spaces, Seminar Uniform Spaces 1973-74, Publ. Math. Inst. ČSAV, Prague 1975,pp.27-72.
- [9] FROLÍK Z., PACHL J., ZAHRADNÍK M.: Examples of uniform measures, to appear in Proc. Conf. "Topology and Measure" (Zinnowitz 1974).
- [10] HAYDON R.: Sur les espaces M(T) et M ** (T), C.R.Acad.Sci. Paris 275(1972), A 989-991.
- [11] HEWITT E.: Linear functionals on the spaces of continuous functions, Fund. Math. 37(1950), 161-189.
- [12] ISBELL J.R.: Uniform spaces, Math. surveys of A.M.S., Providence 1964.
- [13] KIRK R.B.: Complete topologies on spaces of Baire measures, T.A.M.S. 184(1973), 1-29.
- [14] LeCAM L.: Note on a certain class of measures (unpublished).

- [15] PACHL J.: Free uniform measures, Comment. Math.Univ. Carolinae 15(1974), 541-553.
- [16] RAJKOV D,A.: Free locally convex spaces of uniform spaces (Russian), Mat. Sb. 63(105)(1964), 582-590.
- [17] SCHAEFER H.H.: Topological vector spaces, MacMillan 1966.
- [18] WHEELER R.F.: The strict topology, separable measures and paracompactness, Pac. J. Math. 47(1973), 287-302.
- [19] ZAHRADNÍK M.: Inversion-closed space has Daniel property, Seminar Uniform Spaces 1973-74, Publ. Math. Inst. ČSAV, Prague 1975, pp. 233-234.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 18.12.1975)