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Abstract: Any free uniform measure on angasub-inver-
sion-closed uniform space is represented by a don measure
with a compact support in the completion of the space.

Relation of free uniform, ¢ —additive and order-bounded
measures is discussed.
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& 1. Introduction. The notion "free uniform measure”
on a uniform space f13,031,0151 provides a common generali-
zation for both the notions nRiesz measure" and ngeparable
Riesz measure" (see § 7 below).

Tt is the aim of this paper to show that the theorem
about representation of these measures by means of certain
Radon measures - proved by Hewitt ({11}, Th. 17) for Riesz
messures and by Haydon [10] for separable Riesz measures =
holds for free uniform measures on any sub-inversion-closed
uniform space (Theor;m 4,3 below).

In §§ 5,6 I discuss the conpections of free uniform me-

asures with order-bounded and € -additive functionals on the

space of uniform func*ions.

- 291 -



Terminology and notation. Basic topics on uniform spa-

ces may be found in the Isbell’s book [12] but here we shall
work rather with pseudometrics than with coverings. All to-
pologies and uniformities are assumed to be Hausdorff.

For a compact topological space C, a Radon measure on
C is a (signed) re-guhr Borel measure on C., All Radon measu-
res on C are in one-to-one correspondence with a&ll norm-con- .
tinuous linear functionals on the Banach space of real-va-
lued functions om C ([17], II - § 2, Ex. 3).

In the whole paper R denotes the reals; X denotes an
arbitrary (Hausdorff) umiform space. ﬁ is the completion of
X. ®(X) is the system of all bounded uniformly continuous
pseudometrics on X. U(X) is the linear lattice of all uni-
form ( = uniformly continuous) real-valued functions on X,
endowed with the topology of pointwise comvergence on X.

A set Sc U(X) is called U,E.,-set iff it is equiuniform
( = uniformly equicontinuous) and pointwise bounded. A line-

ar form @ on the space U(X) is called free uniform measure

iff it is continuous on each U.E.- set in the topology of
pointwise convergence. The reader is referred to [15] for ba-
sic Properties of the space 'ml,(x) of free uniform measures
on X. Here I shall only add that a set ScU(X) is U.E. if
and only if its unigue extension § to 12 is a U,E.-set. Hence
the space mF(X) and mp(fc) are canonically isomorphic.

The Banach space of bounded uniform functions on X will
be denoted U, (X) (the norm is given by || £ll = sup {|£(x)I l xE&
€ X} ). Continuous linear forms on the spaces Uy (X) are call-

ed measures on X . Here I shall call "measure on X" also a
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iinear form on the space U(X) whose restriction to Ub(X).
is measure. Thus & : U(X)—> R is a measure iff o is li-
pear and |@l =sup 41w ()| | £eU(XI& IEN &£ 13 3o
finite. It is easy to see that each free u.niforh measure is
actually a measure.

If {f.d,, is & net of real-valued functions on X in-
dexed by elements of a directed set A then the symbol £, O
means that li;mA £, = O pointwise (i.e. lim £ (x) = 0 for

-4
any xeX) and £ z:fﬁ for x & (3.

§ 2. Sub-inversion-closed umiform spaces. A ‘subset C
of uniform space X is & Coz-set iff there exists a function

fe U(X) such that C = { xe‘X{ £(x)> 0% . A real-valued func-
tion gon X is a Coz-function iff the preimage of any open
subset of R under g is a Coz-set in X,

A space X is called jnversion-closed iff every real-va-
lued Coz-function on X is uniform. The following theorem will
not be used below; it is included here just for the reader s
orientation. The condition (b) explains the name "inversion-
closed" while the conditiom (¢) suggests that this class of
uniform spaces should be important in the theory of 6 -addi-
tive measures.

Theorem. For a uniform space X the three conditions
are equivalent:

(a) X is inversion-closed;

(b) if £feU(X) and £(x)4 0 for each x¢& X then ;4- €

€ U(X);
(¢) iff € U, (X) for n = 1,2,... and £,»0 then the
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set {fn |n=1,2,...¢% is equiuniform. :

Proof will not be repeated here. Implication (a)==> (c)
was proved by Preiss and Zahradnik [19). The other implica=-
tions are proved in Frolik’s papers [61,L7) where slso other
characterizations of inversion-closed spaces are given.

The following property will be used below: any uniform
real-valued function on a subspace of an inversion-closed
space can be extended to a uniform function on the whole spa-
ce [8] (this follows from the fact that a Coz-function defi-
ned on complement of a Coz-set can be extended to a Coz=-func-
tion on the whole space).

A uniform space will be called sub-inversion-closed iff

it is uniformly isomorphic with a subspace of an inversion-
closed space (this class of spaces was pointed out to me by
Zden&k Frolik).

Every inversion-closed space is sub-inversion-closed. Clear-
1y every precompact space is sub-inversion-closed. Moreover,

it can be deduced from ([12], VII.9) that every locally fine

space is sub-inversion-closed.

§ 3. Supparts of uniform measures. Although we shall
work only witi; free uniform measures all results in this pa-
ragraph hold for all uniform measures (with the same proofs).

3.1. Notation. If @& P (X) put gdy(y) =(1-¢ (x,yN7*
for x,ye X; obviously @™ e Uy (X), @z 0. For any @€ I (X)
and any @ e %(X) put S((u.,go) = {x& X| there exists a
function geU(X) such that

0¢cg <« @* and @w(@)*0}t.
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Clearly, if §,% @, then @12 @, and S, @1) 2
> S(, @p)e Put S(@) —@Qms((-c y@)e

Remerk. Consider the associated Radon measure (u. on
the Samuel compactification X of the space X [5]. It is ea~
sy to see that S(w) = XAsuppee

3.2. Proposition. Let 4 € ?p(X), Q€ P (X), £€UX)
end £(x) = 0 for mny xeS(@,@ ). Then @(£) = 0.

Proof. As f = ral

- £ one can assume £z 0. 48 ©l(f) =
= nl_:.,ngo L“‘(f’\ n) one can assume f is bounded. Thus without any
loss of generality we shall assume that 0£f £ 1.

For eny finite set Fc X\S(w,@) put £y = £A (nax e
xeF
Order finite subsets of X% S((u—,gb) by inclusion. Then 1%m 5=

= f pointwise, the set {fp| F finitec X\ S(«,@)} is U.E.,
and hence @ (f) = 1:i1%m (u.(fF). But for any finite set

Fc X\S(w,@) one can write fp =x§rf»‘< where £, € U(X) and

0£f, £ go" for xeF.

Consequently C“'(fr‘) = 0 for eany finite set Fc X S((a—,gb)
and @(f) =0,

Q.E.D.

3.3. Proposition. For any « € Lp(X) we have S() =
= @ S((u, ® © ); consequently the set S(w) is ci'iLosed.

Proof. If x€ INS(u,@) and @ (y,x) =< =3 then y §
¢ S(@,2@). Hence S(e,@)a S((.c,zso).

The following lemma shows that the set S((u.) supports
the measure @ if the set*s S(g,,so) are not "too large"”.
This helps to prove Theoren 4.2 belowe.

3.4. Lemma, Iet X be a comple te uniform space, let
@ € mF(X). Suppose that for any @ € P (X) there exists
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a finite number of sets Rfcx i=1,2,...,0(p ), such( )that
@ -diem Bf.‘. 6 for i = 1,2,...,nl@ ), and S(u,@)c U,' Rf.
Then the set S((u-) is compact and the following holds: if
£ U(X) and £(x) = O for each x& S(w) then «(£) = 0.

Proaf. I. The set S{w) is precompact, hence it is com-
pact according to 3.3.

II. Suppose that fe U(X) and f(x) = 0 for x€ S(@.).
Choose any € > O. I claim that there exists a pseudometric
so‘e $ (X) such that |£(x)l< & for any xeS(w,@) (the
claim is proved below). Put g = " -e) - & -e)": one
has If -gll<g and g(x) =0 for any x€ S(w,@ Yo

Hence |w(f)le @@+ luE-aleelel .
As € >0 was arbitrary, the conclusion follows.

ITI. It remains to prove the claim stated above. Suppo-
se it does not hold, i.e. there exists an € > Q such that
'SE, =8(u,@ )N {ixeX ‘ {£(x)| =2 €3 & f_ for each @ €
€ P (X). Then {E;l @ < P (X)} is a base of a filter and
there exists an ultrafilter § containing it. Now assump-
tion in Lemma implies that for any @ € P (X) there is an
i) such that B )nixeXl J2@ Iz e3e & . Heno
# is a Cauchy filter and N{ F| Fe F7 =4x,} ; clearly
[ex)lze -

On the other hand, x e S(@) and fix,) =

This is the desired contradiction.

§ 4. Free uniform measares on sub-inversion-closed spaces.

The following property of sub-invevsion-clocsed spaces is

exactly what we need in the proof of Theorem 4.2 below.

- 296 -



4.1, Lemma. Given & sub-inve;'sion-clgsed space X, a
pseudometric @ & ® (X) end a countable set Yc X such that
@ (x,y)z 3 for x,yeY, x+y . Suppose further that for each
ye Y we are given a function fye U(X) and a re;al numbex* Ky
such that 04 fyé Ky . @y. Then the functiom %§y fy is uni-
form on X.

Procf. Find an inversion-clesed space Z such that X is
a subspace of Z. fy's and @ may be extended over Z: find
’f;s U(Z) and @’ e B (2) such that ’f; extends fy for any ye Y,
@’ extends @ , and 04—?;!.-. §y. I% for ye ¥ (this certain-
ly can be done: if necessary, -take ('f;A Ky . 5y)+ instead of
£).

y

Then %%Y 'f'; is a Coz-function on an inversion-closed
spacg Z, hence it is uniform and its restriction %.g.y fy is.
uniform on X,

Q.E.D.

4.2. Theorem. Let X be a complete sub-inversion-closed
uniform space and let w & mF(X). Then there exists a compact
set .Cc X and & Radon measure m on C such that @ (£) =j;_: fdm
for any f£e U(X).

Proof. Put C =S(w). _

I. At first observe that the condition stated in 3.4
hoXs. Indeed, if it does not then there exists a pseudomet-
ric @ € ® (X) .such that the set S((u.,go) is not covered by
any finite number of sets of ® ~diameter £ 6. Hence one can
inductively construct an infinite countable set Y = { F11Tpe e
... tc S(@,p) such that @ (g3, )z 3 for k4 £ . For any
4 =1,2,... there exists a function g, € U(X) such that
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Q4g, £ goy and @ (gp )#0. Choose real numb?’rs Kp
AL =1,2,..., such that | Ky .(to(gz)l_ SlKk.(u.(gk)l
and put f’z =Kp 89 » f =‘§4f£ .

Lemma 4.1 implies that the set 4 Z: L = 1,250 8
is U,E., hence (w(f) lm (u_( é. fk).

On the other hand, for L=1 2,... we have

[Qué4 g 2z [ Kp o teg) ]| -‘fz;::lxk.ycgknz L
a contradiction.

II. Thus 3.4 applies and we have (w(f) = 0 whenever
£(x) = O for each xeC.

For any f£e€U(X) denote % its restriction to C: if £, g€
€ U(X) and T = ¥ then ulf) = «(g), hence the formula
(u«(f) @ (f) defines a continuous linear form on the Banach
space Ub(C) = the Banach space of all continuous functions
on C. Consequently (a«' is represented by a Redon measure I
on C, Q.E.D.

4.3. Reformulation, If X is any wniform space, denote
by mc(x) the space of "Radon measures with a compact sup-
port in X": ue W (X) iff there exists a compact set Cc X

and a Radon measure m on C such that (u.(f) = f fdm for any
function f€ U(X).

»

Now if X is any sub-inversion-closed space then the com-
A
pletiom X of X is sub-inversion-closed as well and according

to 4.2 we have mF(X) = mr(i) = @?ZC(}'E).

§ 5. Order-bounded functionals. ’

Wy, (X) will denote the space of order-bounied linear
functionals on the space U(X). Thus we Wb, (X) iff for any
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£eU(X), & is bounded on the set {geU(X) | lgle £3. It
is well-known ([171, V-l.l,. 1.4) that « € mob(X) if and
only if w is a difference of two positive linear functio-
nals on U(X). If this is so then (« = & - @ vhere

@ (2) =swp { @(g) | g €UX) & 04gsfy for feU(X), T2
20 .

It is readily seen that any element of mob(x) is a
measure in the sense of § 1.

5.1. Proposition. If @€ We(X) is order-bounded then
the linear functional (u.+(defined by (a,"'(f) = sup 1 (u(g) | o0&
cgsf & geU(X)§ for £eU(X), £ 0) belongs to the space
W (X)

Proof. See ([31, T.1).

5.2, Corollary. For any uniform space X, the inclusion
'mF(X) c 9, (X) holds if and only if the Space We(X) is
spanned by its positive cone.

Remark. If R denotes the real line with the usual uni-
formity then the space MF(R) is pot included in wob(R)
(151, 3.3).

On the other hand, for sub—inversion-closed spaces we
have the following result:

5.3. Proposition. Iet X be a sub-inversion-closed uni-
form space. Then @p(X) c W, (X) and the space Wp(X) is
spanned by its positive cone.

Proof. Wp(X) = mc(ﬁ) according to 4.3 and mc(ﬁc
c mob&) = mob(x) obviously. Thus 5.2 applies.
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§ 6, 6-additive functionals on U(x)

Denote by  Wyg(X) the linear space of those lirear
functionals @ on the space U(X) that satisfy the following
condition: -

if £ € U(X) for n = 1,2,... and £ 0 then 13;1! ‘w(fn) = 0.

6.1. Lemma. Let X be any uniform space, let @€ W (X)

Then:
eUX) it h = i

a) for any ge& U(X) olds (u(g) mllqu -fa(gr\n)
b) @ is a measure.

Proof. &) is obvious,.
As for b), assume that w is not a measure in the sense o:?
§ 1, i.e. @ is not norm-continuous: for n = 1,2,... there
exist functions g€ Ub(x) such that lgn <1 and (“'(gn)> 4,

+ =
As g, = g, = 8, oOne can assume 0£g,£1; if thi: is the case

. & 4 . . 1
then the function g =m_§1 o &y 18 wmiform, m“__24 - g, '8

N 1
N—> +00 1 f‘( — ) 3 ol °
as and %‘.4 o™ g,)> N, a contradiction

6.2. Proposition. For any uniform space X we have
Weg (X) € W, (XD

Proof. Assume (a.emé.‘(x)\ Wy, (X). Then there ex-
jsts a functionm fe U(X) such that @ is not bounded on the
set {geU(X) | | gl £ £} . Using the decomposition g = gt -
- g and 6.1 (a) one sees that « is not bounded on the set
{ ge U (X) | osgeti.

Construct inductively functioms g€ Uy (X), n = 0,1l5c00,
such that g, = 0 and 04 g £F, | «(g)) |>2 Nl .
. g,y +nforn=1,2,... .

Puth, =g v (lg _j4Af) forn =1,2,.00
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Then h € U, (X) and (£ - %)\O.

On the other hand, we shall see that |w(h,)|> n for
n=1,2,... - this will be the contradiction.

In fact, one has (& (hy) + w(gyA g, 1) = ulegy) +

+ @(lg, lAg), hence [@m)l Zz |l gl -2 Tk .
. llgyyll > n as claimed.

The proposition is proved.

For the converse inclusion, we must restrict ourselves;
even the class of sub-inversion-closed spaces is too rich.
However, for inversion-closed spaces it is true; in fact, the
proaf is well-kmown ({21, 3.1.1).

6.3. Proposition. If a space X is inversion-closed then

mob(X) c ’ng‘(x).

Proof. It suffices to show that w & Wlgg (X) whenever
@& U(D* and @ 2 0 - let it be the case. Choose £,%0
and e > 0.

The sequence of Coz-sets -(xeXl fn(x)< €% 50 = 1,25000
© %
covers X. Hence the sum £ = = (£, -¢)* is finite.
nw=4 "N
Consider any a,beR , a<b:
© .
then {xeX|f(x)>a3=), {xeX lm_é.‘ (£, (x) ~e)>al is
& Coz-set and {xeX| f(x)<b} =‘§24{ xeX|f(x)< € &
= . & PR
&mgq(fn(x) -e)<bi= Uy4 xeX| 2 (x) <€ & 2y Ep(x) -
- a)+< b } is & Coz-set as well.
Thus £ is a Coz-function on an inversion-closed space
+y =
and f e U(X). Consequently mli_n’twy:((fn- e)’) =0 and as
@(£)) € £ @(1) + @£y -¢)") and ¢ > O was arbitrary,
we get lim (a(fn) = 0, Q.E.D.
n
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6.4. Let me sum up for the later use:
Theorem. For any inversion-closed space X we have
A z -
MG(X) & WUL(X) e WL, (X) = Wye (X)e
6.5. Bemark. The inclusion Wp(X) e Wy (X) for in-
version-closed spaces can be proved directly by the method of

the proof of 4.2 in [15], using Theorem from § 2 above.

§ 7. Riesz and separable Riesz measures

Let us begin with the following lemma.

7.1. Iemma (cf.[9], § 5). Let X be a umiform space such
that countable uniform covers form a basis of its umiform co-
vers. Then Wlge(X) © PLyp(X).
. Proof. Let (@ € Wgg(X). Then = (a.+ - @ &nd stan-
dard ergument shows that @o*, @« € M gsq (X); hence we can
and shall assume that « = 0. ILet {fcl , e a net such that
the set £ £, [x & A% is U.E. amd lim £, = O pointwise. One
must prove that lim « (£, ) = 0.

Put g = ﬁsgp&lfﬁi for any oc « A; the set{g |oc € AS
is U.E. and gd\ 0.

It follows from the assumption that there exists a count-
able set DcX such that

(x) Ye>0 Vzex Jaed Vae algy(x) - g (@<
<e .

By diagonal method one finds an increasing sequence
- 3 2 = D.
o (n) of indices such that @h.’;‘mgx(n)(d) 0 for any d &
Now (> ) implies that 8 (n)30 for n—> @ and
];;1':!;“ © (gx(n)) = 0 because w is & -additive.
Hence lim | w (£, )| £ Um w(lg 1) =0, Q.E.D.

-
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Now we are going 1;.0 see howe the results of preceding
paragraphs yield known facts for the space of Riesz measures,
resp. separable Riesz ‘measures (denoted M, , Te€SPe M by
French authors and M, resp. Mg by Kirk).

Besides f‘r;e uniform measures we shall need here so cal-

1ed uniform measures (see e.g. [41,[151). Below I use the ca-

nonical one-to-one map Trg:d MF(X) — ’ch(X); its proper-
ties are described in 115].

7.2, Notation. Given a Hausdorff completely regular to-
pological space T, consider two uniformities on the underly-
ing set: t,T is the fine uniform space associated with T (2T
is the finest uniformity agreeing with the topology of T), cT
denotes the uniform space projectively generated by all real=
valued functions continuous on T (eT has the coarsest unifor-
mity such that all functions continuous "on T are uniform).

One has U(t,T) ‘= U(eT) = the space of real-valued func-
tions continuous on T, and consequently both the uniform spa-
ces th eand cT are inversion-closed.

The elements of the space mu(tf'r) are called gseparab—
1e measures on T (see e.g. [181). The elements of the space

MWiopte?) = Moy, (cT) are called Riesz measures on T by Ber=
ruyer and Ivol [21.

7.3. Riesz measures. Iet me motice that oT is just the
Hewitt realcompactification of the space T; 6.4 and 7.1 yield
the equalities

By (eD) = Blgglen) = Byl = WG (D) (see [2], 3.1
and (11], T. 14, 17).
7.4, As for the space tpl we get the following result:
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Proposition. Let T be any Hausdorff completely regular
space. Then
Py
a) [10] We have mr(tfl‘) X M(teT);
b) ([13], 9.4) Free uniform measures on the space t,T
are just the separable Riesz measures on T.
More exactly: Consider the canonical one-to-one maps in

the commuting diagram

My (r,1) —> W (cm)

‘ Tr r
T tf‘l' T cT

Wo(t,r) ———= W (cT)

(horizontal arrows are induced by the identity map th —_—
-——)CT).

Identify the spaces _mU(th), MF(th) and 9 (cT) with

linear subspaces of MU(cT) by means of these maps. Then
Wp(tyD) = W(1,T) A PhpleT).

Proof. a) follows from 4.3.

b) Obviously MF(th) c mm(th) n mF(cT). Conver-
sely, if we My(t,T) N My(eT) then @ e WL (tpT)
and finite '&ng w ((-M)v (£A M)) exists for any fe U(cT)
= U(t,T); ([151, 4.5) implies that (w e WL (t,T).
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