

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,2 (1976)

SPLITTING OF PURE SUBGROUPS

Ladislav BICAN, Praha

Abstract: This note gives a structural characterization of torsion-free abelian groups H of finite rank n having the property: if G is a mixed group with $G/T \cong H$ then every pure subgroup of G of rank n splits if and only if G satisfies Conditions $(\infty), (\gamma)$.

Key Words: Splitting group, p-rank, regular subgroup, generalized regular subgroup.

AMS: Primary 20K15 Ref. Z.: 2.722.1 Secondary 20K25, 20K99

By the word "group" we shall always mean an additively written abelian group. The symbol π will denote the set of all primes. If T is a torsion group, then T_p will denote the p-primary component of T and similarly if $\pi' \subseteq \pi'$ then $T_{\pi'}$ is defined by $T_{\pi'} = \sum_{p \in \pi'} T_p$. If G is a mixed group, M a subset of G, $\pi' \subseteq \pi'$ and $T_{\pi'} = 0$ then $\{M\}_{\pi'}^G = \{g \in G \mid mg \in \{M\}\}$ for some non-zero integer m divisible by the primes from π' only $\}$ is the π' -pure closure of M in G.

In the sequel, we shall deal with mixed groups G with the torsion part T = T(G), \overline{G} will denote the factor-group G/T and $\overline{a} = a + T$ for all $a \in G$. If H is a torsionfree group then the set of all elements g of H having infinite p-height

maximal linearly independent set of elements of a torsion-free group H is called basis. It is well-known (see [7]) that if H is a torsionfree group and K its free subgroup of the same rank then the number $r_p(H)$ of summands $C(p^{\infty})$ in H/K does not depend on the particular choice of K and this number is called the p-rank of H. A subgroup K of a torsion-free group H is called regular if every element of K has in K the same type as in H and it is called generalized regular if for every $g \in K$ the characteristic of g in K and in H differ only in finitely many places. Other notation and terminology is essentially that of [4] and we shall freely use the results of [1] and [3].

Now we shall formulate Conditions (α) , (γ) (see [1]). Condition (α) : A mixed group G with the torsion part T satisfies Condition (α) if to any $g \in G - T$ there exists an integer m such that mg has in G the same type as \overline{g} in \overline{G} . Condition (γ) : We say that a mixed group G with the torsion part T satisfies Condition (γ) if it holds: If $\overline{G} = G/T$ contains a non-zero element of infinite p-height, then T_p is a direct sum of a divisible and a bounded group.

Lemma 1: Let G be a mixed group of the form $G = \sum_{i=1}^{\infty} \{b_i\} \oplus H$, where $\{b_i\}$ is a cyclic group of order p^{l_1} , $l_i < l_{i+1}$, $i = 1, 2, \ldots$ and H is a torsionfree group of rank n such that $H[p^{\infty}] \neq 0$. Then G contains a non-splitting pure subgroup of rank n.

Proof: Let $\{a,h_2,\ldots,h_n\}$ be a basis of H such that a is of infinite p-height. Put $K=\{a,h_2,\ldots,h_n\}_{n=\{n\}}^G$

+ $\{h_2, \dots, h_n\}_{\mathcal{D}}^{\mathcal{G}}$ and let $a_i \in H$ be such elements that $p^{\ell}: a_i = a$. Obviously, $H = \{K, a_1, a_2, \dots\}$. Put $s_i = a_i + b_i$, $i = 1, 2, \dots$, $U = \{K, s_1, s_2, \dots\}$ and $S = \{U\}_{\mathcal{H} \cup \{p_i\}}^{\mathcal{G}}$.

First, we shall prove the purity of S in G. It suffices to show that any equatiom $p^k x = u$, $u \in U$, solvable in G is solvable in U, since the equation $p^k x = s$, $s \in S$ is solvable in G then $p^k_{mx} = ms$, $ms \in U$ for a suitable non-zero integer m prime to p. Hence p^ku' = ms for some $u' \in U$ and the equality $p^k g + m f = 1$ yields $s = p^k (gs + fu'), gs +$ + 6 u' ϵ S. So, let the equation $p^k x = u$, $u \in U$, be solvable in G, $x = \sum_{i=1}^{k} (a_i b_i + h)$. Then $p^k x = p^k (\sum_{i=1}^{k} (a_i b_i + h)) =$ = u = h' + $\sum_{i=1}^{\ell} \lambda_i s_i$, h' \in K, hence $p^{\ell_i} \mid (\lambda_i - p^k \mu_i)$ and $p^{k}h = h' + \sum_{i=1}^{k} \lambda_{i}a_{i}$. Thus there are integers ν_{i} , i = 1, 2,...,1, with $\lambda_i = p^k (u_i + p^{\ell_i} v_i)$. Put $v = \sum_{i=1}^{\ell} v_i$. Since h'e K, h' = $h_1 + h_2$, where $mh_1 = \phi + \sum_{i=1}^{m} \phi_i h_i$ for some m prime to p and $p^rh_2 = \sum_{i=2}^{m} \sigma_i h_i$. Hence $mp^{k+r}h =$ = proa + pr = 2 9 ihi + m = 2 oihi + prm = 2 1 2 iai. Since $p^{r} \phi a + p^{r} = \sum_{i=1}^{2} \lambda_{i} a_{i}$ is of infinite p-height, $p^{k+r} v =$ = p^r; \sum_{2}\cap_{1}\hat{h}_{1} + m; \sum_{2}\cap_{2}\cap_{1}\hat{h}_{1}, \text{ v \in K. Put u' = m; \sum_{2}\cap_{4}\cap_{1}\sum_{1}\sum_{1}} + + $p^{k_j-k_k}$ (m ν + φ) s_j + $v \in U$, $l_j \ge k$. Now for $p^k \propto + m\beta = 1$ = 1 we have $h' + i \stackrel{\text{def}}{=} \lambda_i s_i = p^k \propto (h' + i \stackrel{\text{def}}{=} \lambda_i s_i) +$ + $\beta m(h' + i \sum_{i=1}^{k} \lambda_i s_i) = p^k (\infty(h' + i \sum_{i=1}^{k} \lambda_i s_i) + \beta u') \in$ $\in p^k \cup \text{ sime } p^k u' = m \cdot \sum_{i=1}^{k} \lambda_i s_i + \varphi a + \sum_{i=2}^{m} \varphi_i^{h_i} +$ + $mh_2 = m(\frac{2}{\sqrt{2}}, \lambda_i s_i + h')$. The purity of S in G is proved.

Suppose now that S splits, $S = P \oplus B$. Then a = t + b, $t \in P$, $b \in B$, since $a = p^{\ell_1}$ $s_1 \in S$. a is of infinite p-height in G, hence in S and hence t is of infinite p-height. How-

ever, $P \subseteq \sum_{i=1}^{\infty} \{b_i\}$ yields t = 0 and $a \in B$. The purity of B in G guarantees the existence of $c_j \in B$ with $p^{\ell : j}$ $c_j = a$. All c_j , $j = 1, 2, \ldots$ are of infinite p-height, hence $c_j = a_j \in \sum_{j=1}^{\infty} \{b_j\}$ are of infinite p-height and consequently $c_j = a_j$, $j = 1, 2, \ldots$ In particular, we have $a_1 = c_1 \in B \subseteq S$ and hence $b_1 = a_1 \in S$.

By the definition of S, $\text{mb}_1 \in U$ for some integer $\text{m} \neq 0$ prime to p. Thus $\text{mb}_1 = \text{v} + i \sum_{i=1}^{2} \lambda_i s_i$, $\text{v} = \text{v}_1 + \text{v}_2 \in K$, where $\text{m}'\text{v}_1 = \text{pa} + i \sum_{i=2}^{\infty} \text{p}_{i} h_i$ for some m' prime to p and $\text{p}^{\text{r}}\text{v}_2 = \sum_{i=2}^{\infty} \text{p}_{i} h_i$. From the equality $\text{mb}_1 = \text{v} + i \sum_{i=1}^{2} \lambda_i s_i + \sum_{i=1}^{2} \lambda_i h_i$, we get $\text{pl}_1 \mid (\text{m} - \lambda_1)$ and consequently $(\text{p}, \lambda_1) = 1$. Moreover, $\lambda_1 = \text{pl}_i \lambda_i'$ i $= 2, \ldots, 1$. Putting $\lambda = \sum_{i=2}^{2} \lambda_i$ and multiplying by $\text{pl}_1 + \lambda_i'$ we obtain $0 = \text{pl}_1 + \lambda_i'$ sate $\text{pl}_1 + \lambda_i'$ sate pl_1

<u>Lemma 2</u>: Let H be a torsionfree group of finite rank n satisfying the following two conditions:

- (a) $r_p(H) = r(h[p^{\infty}])$ for almost all primes and for all primes p with $r(H[p^{\infty}]) = 0$,
- (b) for every generalized regular subgroup K of H of rank $k \le n$, the torsion part of the factor-group H/K has only a finite number of non-zero primary components. If a mixed group G with $\overline{G} \cong H$ satisfies Conditions $(\infty), (\gamma)$ then every pure subgroup of G of rank k splits.

Proof: Let S be a pure subgroup of G of rank k and P = TOS be its torsion part. By [1, Lemma 6], S satisfies

Condition (∞) and \overline{S} is isomorphic to some regular subgroup of \overline{G} . Moreover, by [1, Lemma 10], S satisfies Condition (γ) . If U is a pure subgroup of H then by [7, Theorem 6] $\mathbf{r}_p(H) = \mathbf{r}_p(U) + \mathbf{r}_p(H/U)$, which together with the obvious inequality $\mathbf{r}(H[p^{\infty}] \leq \mathbf{r}(U[p^{\infty}]) + \mathbf{r}(H/U[p^{\infty}])$ yields $\mathbf{r}_p(U) = \mathbf{r}(U[p^{\infty}])$ for all those primes p for which $\mathbf{r}_p(H) = \mathbf{r}(H[p^{\infty}])$. It follows now easily that $\mathbf{r}_p(\overline{S}) = \mathbf{r}(\overline{S}[p^{\infty}])$ for almost all primes and for all primes p with $\mathbf{r}(S[p^{\infty}]) = \mathbf{r}(H[p^{\infty}]) = 0$. So the set $\pi' = \{p \in \pi; \mathbf{r}_p(\overline{S}) = \mathbf{r}_p(\overline{S}[p^{\infty}]) = \mathbf{r}_p(\overline{S}[p^{\infty}])$ is cofinite and $\mathbf{r}_{\pi_{\perp},\pi'}$ is a direct sum of a divisible and a bounded group by the hypothesis. Hence $S = \mathbf{r}_{\pi_{\perp},\pi'} \oplus S'$. Now $S' \otimes R_{\pi'}$ splits, $S' \otimes R_{\pi'} = P' \oplus S''$, since it clearly satisfies Condition (i) of [3, Theorem]. Moreover, S' is $R_{\pi'}$ -flat so that the map $S' \cong S' \otimes Z \hookrightarrow S' \otimes R = P' + S''$ is monic. Since $P' \subseteq S'$, S' splits as desired.

Lemma 3: Let H be a torsionfree group of finite rank n. If $0 \neq r(H[p^{\infty}]) < r_p(H)$ for every p from an infinite set π' of primes then H contains a regular subgroup K with $H[p^{\infty}] \subseteq K$ for all $p \in \pi'$ and $H/K = \sum_{n \in \pi'} C(p^{\infty})$.

Proof: Obviously, there is a subgroup L of H such that $H [p^{\infty}] \subseteq L$ for all $p \in \pi'$ and $H/L = \sum_{n \in \pi'} C[p^{\infty}]$. If we order all the primes from π' in a sequence p_1, p_2, \ldots and all the elements from H = L in a sequence a_1, a_2, \ldots , then it is easy to see that for every natural integer m there is a subgroup K_m with $\{L, \{a_1\}_{\pi}^H, \ldots, \{a_m\}_{\pi}^H\} \subseteq K_m$ and $H/K_m = C(p_m^{\infty})$. If we put $K = \sum_{n=1}^{M} K_m$ then it is an easy exercise to show that K has all the desired properties.

Lemma 4: Let H be a torsionfree group of finite rank n containing a regular subgroup K with $0 \pm H [p^{\infty}] \subseteq K$ for every prime from an infinite set π' of primes, and $H/K = \sum_{\Lambda \in \Pi'} C(p^{\infty})$. Then there is a mixed group G satisfying Conditions (∞) , (γ) such that $\overline{G} \cong H$ and G does not split.

Proof: Let h_1,h_2,\ldots,h_n be a basis of K. If we order all the primes from σ' in a sequence p_1,p_2,\ldots then for every i, $j=1,2,\ldots$ there are elements $x_j^{(i)}\in H$ such that $p_1^jx_j^{(i)}=\sum_{k=1}^m \lambda_{ir}^{(j)}h_r$ where $(\lambda_{ir}^{(j)})$ $r=1,2,\ldots,n$ are p_1^{-1} adic integers. Let s_i be such that $x_1^{(i)},\ldots,x_{s_i}^{(i)}\in K$ and $x_1^{(i)},\ldots \notin K$. Obviously, $H=\{K,x_j^i,\ i=1,2,\ldots,\ j=s_i+1,\ldots\}$. If we denote $u_{j-s_i}^{(i)}=p_1^{j-k-1}x_j^{(i)},\ j>s_i$ then it is easy to see that $u_j^{(i)}$ are of zero p_i -height in K for all $j=1,2,\ldots$. Further, for every $i,j=1,2,\ldots$, $p_i^{(i)}=p_i^{(i)}=\sum_{k=1}^m (x_i^{(i)}-x_i^{(i)})$ hr $p_i^{(i)}\in K$

Define the groups

$$U = K \oplus \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} i a_{j}^{(i)}, X = \{v_{j}^{(i)} - p_{i}a_{j+1}^{(i)} + a_{j}^{(i)}, i, j = 1, 2, ...\}$$

$$V = \{X, u_1^{(i)} - p_i a_1^{(i)}, i = 1, 2, ... \}, W = \{X, p_i^{s_i^{i+1}} u_1^{(i)} - p_i^{s_i^{i+2}} a_1^{(i)}, i = 1, 2, ... \}.$$

Then G = U/W is a mixed group with the torsion part T = V/W and $G = G/T \cong U/V \cong H$, where the last isomorphism is induced by $h + \sum_{i=1}^{k} \sum_{j=1}^{k_{i,j}} \lambda_{i}^{(i)} a_{i}^{(i)} \longmapsto h + \sum_{i=1}^{k} \sum_{j=1}^{k_{i,j}} \lambda_{i}^{(i)} x_{j+s_{i}}^{(i)}$, $h \in K$ (if the last term is zero then the multiplication by $i \in I$ $i \in I$ gives $p_{i} \mid \lambda_{k}^{(i)}$, $i = 1, 2, \ldots$, k and the induction yields

Ker $\mathcal{G} = \mathbb{V}$). G satisfies Conditions (∞) , (\mathcal{F}) since K is regular in H. Suppose that G splits, $G = T \oplus S$. Then S is naturally isomorphic to H and it is easily seen that $\mathbf{x}_{\mathbf{j}}^{(i)}$, $\mathbf{j} \geq \mathbf{s}_{\mathbf{i}}$ corresponds to the element $\mathbf{y}_{\mathbf{j}}^{(i)}$ of the form $\mathbf{y}_{\mathbf{j}}^{(i)} = \mathbf{a}_{\mathbf{j}-\mathbf{s}_{\mathbf{i}}}^{(i)} + \sum_{k} \lambda_{k} (\mathbf{w}_{\mathbf{l}}^{(k)} - \mathbf{p}_{k} \mathbf{a}_{\mathbf{l}}^{(k)}) + \mathbf{w}$.

Further, if we denote by g_r the elements of S correponding to h_r , then $mg_r = mh_r + W$, r = 1, 2, ..., n, where m is a suitable non-zero integer. Now consider the equality p_i $y_{s_i+1} = \sum_{k=1}^{\infty} \lambda_{ir}^{(s_i+1)} g_r$, $(p_i, m) = 1$. Multiplying by m we get s_i+1 s_i+1

$$= \sum_{k=1}^{s} \lambda_{ir} \quad g_{r}, \quad (p_{i},m) = 1. \text{ multiply and } s_{i}$$

$$= \sum_{k=1}^{s+1} (a_{1}^{(i)} + \sum_{k=1}^{s} \lambda_{k}(u_{1}^{(k)} - p_{k}a_{1}^{(k)}) = m \sum_{k=1}^{s} \lambda_{ir} \quad h_{r} + \sum_{k=1}^{s} (a_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)}) \cdot \frac{s_{k}+1}{s_{k}} (a_{k}^{(k)} - p_{k}^{(k)} - p_{k}^{(k)$$

If we put $g = \prod_{k} p_k^{s_k}$, $g_k = g/p_k^{s_k}$ then multiplying

by go and comparing the coefficients we obtain

$$p_{i}^{s_{i}+1} = \sum_{k} \lambda_{k} \varphi_{k} \lambda_{kr}^{(s_{k}+1)} = m \varphi \lambda_{ir}^{(s_{i}+1)} +$$

+
$$S = (u_k^{p_k} \lambda_{kr}^{(s_k+1)}, p_i^{s_i+1}, p_i^{s_i+1})$$

$$+ S = (u_k^{p_k} \lambda_{kr}^{(s_k+1)}, p_i^{s_i+1})$$

$$+ (s_i+1)$$

Hence $p_i \mid \mu_k p_k$ for all k and so $p_i \mid \lambda_{ir}^{(s_i+1)} = 1$

= 1,2,...,n, a contradiction finishing the proof.

Now we are ready to prove the main result.

Theorem 5: The following are equivalent for a torsion-free group H of finite rank n:

(i) if G is a mixed group with $\widetilde{G}\cong H$ then every pure subgroup of G of rank n splits if and only if G satisfies Conditions (α) , (γ) ,

- (ii) (a) $r_p(H) = r(H[p^{\infty}])$ for almost all primes and for all primes p with $r(H[p^{\infty}]) = 0$,
- (b) for every generalized regular subgroup K of H of the same rank n the factor-group H/K has only a finite number of non-zero primary components.
- Proof: (i) implies (ii). If $r(H[p^{\infty}]) = 0$, then $r_p(H) = 0$ by [3, Lemma 2 and its proof]. Condition (a) follows now from Lemmas 3, 4. As for (b), it follows easily from [3, Lemmas 3, 4].
- (ii) implies (i). Let G be a mixed group with $\overline{G} \cong H$. If G satisfies Conditions (α) , (γ) then every pure sungroup of G of rank n splits by Lemma 2. Conversely, if every pure subgroup of G of rank n splits then G satisfies Condition (α) by [1, Lemma 4]. If G does not satisfy Condition (γ) then for some prime p it is $r(H[p^{\infty}]) = 0$ and T_p is not a direct sum of a divisible and a bounded group. By the hypothesis, G splits, $G = T \oplus A$. Write $T_p = T_p' \oplus D$, D divisible, T_p' reduced. T_p' is unbounded so that it has an unbounded basic subgroup B ([1, Lemma 11]). Hence G contains a pure subgroup of the form of Lemma 1 and an application of this Lemma leads to a contradiction. Hence G satisfies Condition (γ) and the proof is complete.

References

- [1] BICAN L.: Mixed abelian groups of torsionfree rank one, Czech. Math. J. 20(95)(1970), 232-242.
- [2] BICAN L.: A note on mixed abelian groups, Czech. Math. J. 21(96)(1971), 413-417.

- [3] BICAN L.: Splitting in abelian groups (to appear).
- [4] FUCHS L.: Abelian groups, Budapest, 1958.
- [5] FUCHS L.: Infinite abelian groups I, Academic Press, 1970.
- [6] MALCEV A.: Abelevy gruppy konečnogo ranga bez kručenija, Mat. Sb. 4(46)(1938), 45-68.
- [7] PROCHÁZKA L.: O p-range abelevych grup bez kručenija konečnogo ranga, Czech. Math. J. 12(87)(1962), 3-43.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 20.11.1975)

•

•