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STRUCTURE OF TRIABELIAN QUASIGROUPS
Tomé8 KEPKA, Preha

Abstract: A quesigroup is called triabelian if every
its subquasigroup which is generated by at most three ele-
ments is abelian. In the present psper, some basic struc-
tural theorems on triabelian quasigroups &are proved.
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As it is well known, the class of distributive quasi-
groups has a large number of nice algebraic properties, It
is the purpose of this paper to show that the structure of
triabelian quasigroups is very similar to that of distribu-
tive quasigroups. In certain sense, this paper is a continu-
ation of the last section from [1]. First we recall some de-
finitions . A quasigroup Q is called an RF-quasigroup (LF-
quasigroup) if it satisfies the identity be.a. = bf(a).ca
(a.be = ab.e(a)e), where f(a) and e(a) is the left and the
right local unit of a, resp. It is called an F-quasigroup
if it is both an LF and RF-quasigroup. Further, a quasi-
group @ is said to be a WA-guasigroup if sa.bc = ab.ac and
bc.aa = ba.ca for all a,b,ce Q. If moreover ab.ca = ac.ba

then we shall say that Q is a WAD-quasigroup. Finally, =
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abelian quasigroup is a quasigroup satisfying the identi-
ty ab.cd = ac.bd. Let Q be a quasigroup end x€ Q. Then I‘k
and Ry is the left and the right translation by x, respe
IfQ is a commitative Moufang loop, then j is the jdentity
of Q, N(Q) is the nucleous of Q and & mapping g of Q into
Q is said to be mclear s xt.g(x) € N(Q) for each xeQ.
The following lemma is implicitly contained in [21.
Lemma 1, let Q be & commtative loop and h be a map-
ping of Q into Q. Then the following are equivalent:
(i) (a.h(a))(be) = (ab)(n(a)e) for all a,b,c €Q.
(ii) Q is a Moufang loop and h is nuclear.
Theorem 1. The following conditions are equivalent for
every quasigroup Q:
(i) Qis a WA-quasigroup and there exists a€ @ such that
ab.ca = ac.ba for all b,c€Q.
(ii) Qis a WA-quasigroup and Q is isotopic to a commuta~
tive Moufang loop.
(iii) Q is = WA-quasigroup and Q is isotopic to 2 Moufang
loop.
(iv) There are 2 commutative Moufang 1opp Q(o ), g,h €
€ Aut Q(o ) end x€Q such that gh = hg, gh"l is nuclear and
ab = (g(a)o h(b)}o x for all a,beQ.
(v) Qis = WAD-quasigroup.
Proof. (i} implies (ii). If b,ceQ then (aa.ab)(ac.aa) =

(aa.ab) (aa.ca) = (am.aa) (ab.ca) = (ag.a8)(ac.ba) =

(am.ac) (aa.ba) = (ag.ac) (ab.aa). Hence (am.x)(y.aa) =

(aa.y) (x.aa) for all x,¥y¢& Q end we can use [1, Propositi-

on 4.8] and Lemma l.
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(iii) implies (iv). Let x€Q and &ob = F;;(a).L;i(b)
for all a,be Q.

As it is proved in [1], Propositions 4.1 and 4.8, Q(o ) is
& CI-loop. However, Q(o ) is a Moufang loop, and hence it

is t;ommutative. The rest follows from [1 , Proposition 4.8
and Theorem 4.91.

(iv) implies (v). Since gh—l is a nuclear mapping amnd
gh = hg, g?n~? = gh—lgh-l is nuelear. According to Lemms 1,
abuca = (((g2(a)o gh(b)) o g(x)} o ((ng(e)o b (a))o h(x)))ox =
= (((g2(a)o gh(b)))o (ghle)o n2(a))) o (g(x) e h(x)))o x =
= ((Qsz(n)o ghe)))o glx)) o ((hg(b) o n2(a))oh(x)))ox =
= ac.ba for all a,b,c€Q.

Iet Q be a WAD-quasigroup. A tetrad (Q( o ),8,h,x)is
called an arithmetical form of Q if the condition (iv) from
Theorem 1 is satisfied.

The following lemma is implicitly proved in [11, Theo-
rem 4.9.

lemma 2, let Q@ be a WAD-quasigroup and x€ Q. Then the-
re exists an erithemtical form (Q(o ),g,h,y) of Q such that
XX XX = Jo

lemma 3. Let Q be a WAD-quasigroup with an arithmeti-
cal form (Q(e ),g,h,x). Then xeN(Q(o )) and aoc g(a), aohlale
eN(Q(o0 )) for every aeQ, provided at least one of the fol~-
lowing conditions holds:

(i) Q is an LF-quasigroup.
(ii) Q is an RF-quasigroup.
(iii) (a.sa)(be) = (ab)(as.c) for ell &,b,ce Q.
(iv)  (be)(aa.a) = (b.as)(ca) for all a,b,c Q.
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Proof. (i) As it is easy to see, he(a) =
= (a o;’l) ° g(a-l) for each a€ Q. Since Q is an LF-quasi-
group,
(g(a) o ((hg(b)oh 2(c))o h(x)))ox = a.be = ab.e(a)e =
= (((g%(a) o (b)) 0 £(x)) © ((((g(a) o g(x™ Vo g%(a™ D)) o
o h2(x)) o h(c)))o x,
and hence
(1) o ((boe)oh(x)) = ((gla)o bo glx))o ((((acglx™ )0
o gla~1))o e¢)o h(x))
for all a,b,c,e Q. If we substitute a = j in (1), we obtain
the equality

h(x)o (boe) = (bog(x))o ((e og(x‘l)) oh(x)).
Multiply ing the last equality by h(x1)o g(x) and teking in-
to account that this element belongs to N(Q(o)) (since & =
= hg and gh'l is nuclear), we get the equality (boc)og(x) =
= (bo g(x))o ¢ for all b,ce Q. Thus g(x)& N(Q(e )), and con-
sequently h(x), xe N(Q(o )). Now the equality (1) yields
ao(boc) = (g(a)ob)o ((aog(al))oc) and
(aob) ° ((a 1o g l(a))o c) =g l(a) o(boe) =
= (-O(a og ~1(a)) o (bo ¢) for all a,b,ce Q. By Lemma 1, & 1o
a~lo g ~l(a)e N(Q(o )). However ac ac as N(Q(o )) (since Q(o )
is a commutative Moufang loop), so that ao g"l(a) eNQ(o)).
As N(Q(o )) is invariant under automorphisms, ac g(a) &
€ N(Q(eo )). Finally, a~ls gh-l(a) is contained in N(Q(o )),
and therefore g(a)o 5h-1(a)¢ N(Q(¢ )), aoh ~1(a) e N(Q(o ))
and ao h(a)e N(Q(o )).

(ii) Similarly as for (i).

(iii) After some arrangements (using ILemma 1 and the

fact that gh~t is nuclear), we can write the identity
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(a.aa)(be) = (ab)(aa.c) as (aOh((achg'l(a))cg(x))) °
o(boc) = (aob)o (a((achg (a))o g(x))ec).
If a = j then hg(x) o (boec) =bo (ng(x)o ¢), and hence
£ eN(Q(0)). Then (moh(alohg >(a)))o (boc) =
- (aob)o ((h(aohg l(a) oc) and a o n(achg t(a)) €
€ N(Q(e )) by Lemma 1, However, gh-l is nuclear, therefo-
re hg’l is so and h(ao hg-l(a-l))s N(Q(o )). Thus
e 1o h(aca)e N(Q(o)). Finally, n(a™to a~to a~1)e N(Q(o )),
so that ac h(a) € N(Q(o )). Similarly as in the proof of (i),
we can show that aoc g(a)e N(Q(e M.

(iv) Similarly as for (iii).

lemma 4, Let & WAD-quasigroup Q have an arithmetical
form (Q(e ),g,h,x) such that xe N(Q(o )) and &o gla),
ao h(a)e N(Q(o )) for every a€& Q. Then
(i) Q is an F-quasigroup.
(ii) If a,b,c,d€Q and ab.cd = ac.bd then ab.(c(dd.dd)) =
ac.(b(dd.dd)).

Proof. (i) It is an easy exercise.

(ii) Since ab.cd = ac.bd and x¢& N(Q(e)),

(2) (g2(a)o ga(d)) o (hgle)o n3(@)) = (g%(a)o gn(e)) o
o (hg(b)o h2(a)).
Put u = (gz(d)c n2(d)) o (hg(d)o hg(d)). We shall prove that
a=Lo weN(Q(o0)). Indeed, d Yo g(d™h), gla)e gh(d),
g(d)o g2(a), @Yo n(a™!) and h(d)e n2(a) belong to N(Q(o ).
Hence a-Yo g2(d), a~Yo gn(a) and d 7o n2(a) are contained
in N(Q(o )). Since do dodeN(Q(e)), de (gh(d)e gh(d)) e
e N(Q(o)). However, d Lo ((dcd)e (gh(d)o ga(d))) =
= do (gh(d)a gh(d)) by the aiasssociativity of Q(o ) and
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alo g?@), @~ n2(d)e N(Q(o )). Thus d"lo ueN@(e ),

and so h2(a"Lo u) e N(Q(o )). Multiplying (2) by h2(d™To u),

we obtain the equality

(g2(a)o gh(b)) o (hg(e)o b2 (w)) = (g2(a)o gh(c))o (hg(b)e h3(w),
and it is not so difficult to see that ab.c(c(dd.dd)) =

= ac,(b(dad.dd)).

M.v Let Q be an IF-quasigroup (RF-quasigroup) and
x,a,be Q. Then
(i) ef(x) = fe(x),

(if) LR, = R, iff e(b) = f£(a).

Proof. (i) x(ef(x).e(x)) = f(x)x.ef(x) e(x ) =
= £(x).xe(x) = x = xe(x).

(if) If LR, = R,L then ba = R L (e(b)) = LR (e(D)) =
= b.e(b)a. Conversely, if e(b) = f£(a) then b.ya = by.e(bla =
= by.a for each y€ Q.

Iemma 6. Let Q be an F-guasigroup smd a,beQ. Suppose
that LR, = BRI, md E1(x). 5 () = Bl(y).Ig (x) for all
x,y€ Q. Then Q is = WAD-quasigroup.

Proof, Put xoy = B;l(x) .Igl(y). Clearly, Q(o ) is a
commtative loop. Tet k(x) = RRp(,)Rp (x) and t(x) =
= LbLe(b)L;l(x) for every xe Q. As it is easy to see,

R (xoy) = Ry MR ITI(Y) = ki(x)o R (y) ma Lylxoy) =

= Ly(x)o t(y) for all x,ye Q. Hence k(xo y)o R (j) =

= k(x) o (k(y) o R (J)) and L (j)o tlxoy) = (L (§)o t(x)Io t(y).
Now we can write

By(x)o (IR, (y) o tL (2)) = R, o L (R (y) o Ly (2)) = x.3y2z =

= xy.e(x)s = R, (R (x) o L (y)Do L (R (e(x)) @ L, (z)) =

= (kR (x)o R L, (7))o (L Ree(x) o t1, (2))
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for all x,y,z € Q. Hence

xo (yo z) = (k(x)ey)o (LbRae(R;l(x)))o z),

(xey)e (LbRaeR;J‘k'l(x)o z) = K X(x)o (yoz),

¥ 1(x) = xo LbRaeR;]'k'l(x)
for all x,¥,z€ Q. According to Lemma 1, Q(© ) is a commuta-
tive Moufang loop, LDRaeR;]'k'l(x) = x 1o x™1(x) and

1, x 1 ¥ 1(x)e N(Q(o)). Therefore xo - l(x)e N(Q(o ))

x
for every xe€ Q. Similarly we can prove that xo +1x) e
€ N(Q(e )) for every xe& Q. Further, k(x)o Ra(y) = RE(IOy) =
= R (yox) = k(y) o R (x), X0 R&k'l(y) = chak'l(x) and Ry(J) =
= k(3) o R (j). Hence k(j) = J, R is a middle regular
permutation of Q(o ) and Ry(J) = nak‘lcj)e N(Q(o )). Simi-
larly, Iy(j)e N(Q(o )). Now it is obvious that both k and t
are automorphisms of Q(e ) and Xy = (k(x)o t(y))o (Ra(‘.'i) ]
o L, (j)) for all x,y€ Q. Since 1o x(x™1), k(x)o xt™l(x) e
¢ B(Q(o )) for every x€Q, xt~! is a nuclear mapping. Fin-
ally, tk(x)o tR (j)e L.(3) = tRa(x) ° I.D(j) = LbRa(x) =
= R L (x) = kt(x)o kL (J) o R (). Thus tR,(§) o L,(J) =
= kLij)c Ra(j) and tk = kt. An application of Theorem 1
completes the proof.

Theorem 2., The following conditions are equivalent
for every quasigroup Q:
(i) Q is a WAD—quasigroup amd Q is an LF-quasigroupe.
(ii) Q is a WAD-quasigroup and Q is an RF-quasigroup.
(iii) Q is a WAD-quasigroup and Q is an F-quasigroup.
(iv) Q is a WAD-quasigroup and (a.aa)(be) = (ab)(aa.c)
for all a,b,c&Q.
(v) Q is a WAD-quasigroup and (be) (a@.a) = (b.aa)(ca) for
all a,b,ce® -
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(vi) There are a commutative Moufang loop Q(e ), g,h €

€ Aut Q(o ) md xeN(Q(o )) such that gh = hg, ao g(a),
ach(a)e N(Q(o )) and ab = (g(a)e h(b))o x for all a,be Q.
(vii) If a,b,c,deQ &nd ab.cd = ac.bd, then the subquasi-
group generated by these elements is abelaan.

(viii) Q is a triabelian quasigroup.

(ix) Every subgroupoid of Q which is generated by at most
three elements is abelian,

(x) Q is an F-quasigroup and there exists z e Q such that
£(z)a.be(z) = £(z)b.ee?(z) for all a,be Q.

(xi) Q is an F-quasigroup and there exists z & Q such that
fz(z)a.be(z) = £2(z)b.ae(z) for all a,beQ.

Proof. The implications (i) implies (vi), (ii) implies
(vi), (iii) implies (vi), (iv) implies (vi) and (v) implies
(vi) follow from Lemma 3 and Theorem 1.

(vi) implies (vii). As it is easy to see, gx'l is & nuc-
lear mapping. By Theorem 1 and Lemma 4, Q is an F-quasigroup
-nd a WAD-quasigroup. With respect to Lemma 2 and Lemma 3, we
may assume that j = dd.dd. Then (by Lemma 4(ii)) ab.cj =
= ac.bj and (g%(a)e gn(b))e ghlc) = (g2(a)e ghlc)) o gu(b).
Let G(o ) be the subloop of Q(o ) generated by N(Q(o)) v
v -(.gz(a), gh(b), gh(e)? . According to the well-known Mou-
fang theorem, G(o ) is an abelian group. Since x e N(Q(o ))
and z0g(z), zo0h(z), zo g'l(z), z0 h™1(z)e N(Q( o )), &(@) =
= h(G) = G, G is an abelian subquasigroup in Q and a,b,ce G.
Finally, (g%(a)o gh(a))e (ga(a)e n%(a)) = x Lo g(x™1) o h(x"De
€ N(Q(0 )) and g2(a™1)o a1, n2@ Lo a1, en@ e al,
dododeN(Q(e ), Thus a”te N(Q(o )) and deG.
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(vii) implies (viii). This implication is obvious, sin-
ce ab.be = ab.bc. The implications (viii) implies (ix) and
(ix) implies (iv), (v) are trivial and the implication (vi)
jmplies (i), (ii), (iii) follows from Theorem 1 and Lemma
e F

(x) implies (i), Put x = fe(z) and y = ez(z). By lemma
5, e(x) = £(y) end %I‘k = I.ny According to the hypothesis,
:t(z)Ryl(a) b= :l’(z)ny (b).a for all a,be Q. Hence
K1 @) IgHb) = g, J @R (@).b) = B (b). 1;1(a) and we
can use Lemma 6.

Similarly we can prove that (xi) implies (i).
The remaining implication (viii) implies (x),(xi) is trivial.

Corollary 1. A quasigroup Q is triabelian iff it se~
tisfies the identity ((aa.bc)(xy.zz))((uv.w)((r.rr)(st))) =
= ((ab.ac)(xz.yz)) ((uw.vu)((rs)(rr.t))) for all a,b,C,X,¥,2,
u,v,w,r,s,t€ Q.

Corollary 2. Triabelian quesigroups are finitely based.

Corollary 3. Every commutative F-quasigroup is triabe-
lian.

" Proof. let Q be a commutative F-quasigroup and z& Q.
Then f£(z)a.be2(z) = e(z)a.e (z)b = e(z).ab = e(z).ba =
= £(z)b.ae?(z) for all a,beqQ.

Corollary 4. Every triasbelian quasigroup is isotopic
to a totally symmetric triabelian qguasigroup with at least
one idempotent element.

Corollary 5. Every totally symmetric quasigroup isoto-
pic to a Monfang loop is triabelian.

Proof. Let Q be a totally symmetric quasigroup isoto~
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pic to a Moufang loop, 3€Q, & = L, end aob = g(a).g(d) for
all a,be Q. Then G(o ) is a commutative Moufang loop (Q(e )
is clearly commutative and every loop jsotopic to a Moufang
loop is Moufang) and n(a)o n(h(a)o h(b)) = b for all a,be Q
end h = g-l. For a = g(j) we obtain the equality nZ(b) = b.
Hence h(a)o h2(a) =h(a)o a = h(a)oh(n(ayoh(y)) =y for all
acQ and y = g(j). Thus h(a) = ye° a~l and we can write

xo (a"lo (x‘lo (sob))) = a.ab = b for all a,be Q and x =

= yoy. Now it is visible that a~to (x"to (a0 b)) =

= x"1o (a'lo (aob)) and xLle N(Q(o )). Consequently X €

€ N(Q(o )) and we can use Theorem 2(vi).

let Q be a quasigroup. A mapping g of Q into Q is cal-
led left regular if there is a mepping h such that glxy) =
= h(x).y for all x,y€Q.

Theorem 3., Let Q be a triabelian quasigroupe. Define a
binary relationr on Q by ar d iff a = t(b) for some left
regular mapping t. Then
(i) 1If (Q(e), g,h,x) is an erithmetical form of Q end a,
beQ then a r b iff b = ao y for some yeNQ(e)).

(ii) 7T is a normal congruence relation of Q.

(iii) The factorquasigroup Q/r is an idempotent totally sym~
metric triabelisn quasigroup.

(iv) The set {z|z r a} is an abelian subquasigroup in @
for every a€Q.

Proof. (i) Iet a = t(b) for a left regular mapping te.

Then there is a mapping s such that t((g(e)e n(d)o x) =
= (gs(c)oh(d))o x for all c,deQ. Substituting nix™1) for
4 we obtain the equality tg(c) = gs(c). Hence t((ceo d)ex) =
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= (t(c)od)ox for all c,deAQ, so that t(cox) = t{c)o x.
Consequently t(d) = t(jlo d and t&j)eN(Q(‘o )} The rest
is obvious.

(ii) can be proved easily using (i)e

(iii) Iet (Q(o ),g,h,x) be an arithmetical form of Q
and ae Q. Then (lemma 3) @° g(a),‘ao h(a), x & N(Q(o)). Hen=
ce the elememnts e=3a ((ao gla))o (ao h(a))) =
= 830 ((aoca)o (gla)o g(a))) = a~lo (g(a)o nh(a)) and x(a) =
= a~lo ((g(a)o h(a))o x) belong to N(Q(o )}. Further,
ao k(a) = ag, 8 =8aao (k(a);-l and a T aa by (i). Thus Q/r
is an idempotent quasigroupe. The rest is &n easy consequence
of the fact that ac ao aeN(Q(e )) for every a€Q.

(iv) follaws from (i), (i1ii) end Lemm’ 2.

Corollary 6. Every gimple triabelian quasigroup is abe-
lian.

Proaf. Let Q be a simple triabelian quasigroup with an
arithmetical form (Q(o ),g,h,x). Consider the normal congru=
ence relatiom r defined in Theorem 3, If r = Q=xQ, then Q is
abelien by Theorem 3({iv). Let r+Qx Q. Then r is the identi=
cal relation (since Q is simple) and Q is jdempotent and to-
tally symmetric as jt follows from Theorem 3(iii). In this
case, g(a) = h(a) = o=l for every a and x = Jo It is easy to
see that every congruence of Q(e ) is a congruence of Q, and
consequently Q(o ) is simple. Howevef, every simple commute-

tive Moufang loop is a group.
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