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ON CONTINUOUS IMAGES OF EBERLEIN COMPACTS

Petr SIMON , Praha

Abstract: J. Lindenstrauss (LL1) has raised the ques-
tion, whether each Hausdorff continuous image of an Eberlein
compact is an Eberlein compact again. The aim of the present
paper is to prove that the answer is affirmative in two par-
ticular cases. Since the nature of the problem is purely to-
pological, nothing about the relationship with the theory of
Banach spaces will be mentioned, the reader is recommended
to (L) and [AA), where he can find also further references.

Key words and phrases: Eberlein compact, dispersed spa-
ce, point-finite collection, weakly separating collection.

AMS: 54D30 Ref. Z.: 3.961.1

O, Conventions and notations. In the whole paper, the
word "space" will mean "topological Hausdorff space", simi-

larly, "continuous image of a space X " will be a Hausdorff
space ¥ which is an image of ¥ wunder a continuous onto

mapping. The closed unit interval [0,11 will be denoted by
I, the two-point set (aud the discrete two-point topologi-

cal space) will be denoted by 2 and its elements by O and
1 . The symbols Open (x) (resp. Clopcn(X) , resp. Coz(X) )
denote the set of all open (resp. clopen, TesSDe cozero) sub-

gsets of a space X .

1, Definition (tL1). A compact space X will be cal-
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led an Eberlein compact, if there exists an embedding of X
into some cube I such that for every xeX and for eve~
ry real r>0 the set of all indices e I' with x(p¥>9
is finite. .

H.P. Rosenthal has proved that Eberlein compacts can be
characterized using the special covering property:

2, Proposgition (LR1). A compact space X 1s an Eberlein
compact if and only if there existe 2 & -point finite system
¢ c Coz(X) which weakly separates points of X , i.e. for
any two different x , yeX there is a2 C e ¢ such that
{x,y3n C+¥ and ix,yt - C#d .

Strengthening the condition in Proposition Z one obtains
the following definition:

. De jop. A compact space ¥ will be called &
strong Eberlein compact, if there exists a point-finite sy=—
tem ¢ ¢ Coz(X) , weakly separating points of X .

4, Convention. When dealing with an Eberlein compact X ,
which is embedded inmto I (resp. imto 2" ), we shall al-
ways sssume that the embedding satisfies the condition descri-
bed in Definition 1 (resp. in Proposition 8), i.e. that for
each xeX is true that card{yeT |x(y)>r3<w, for
each r>0 (resp. card{yeT |x(y) =13< o, J.

We want to prove that the continuous image of a strong
Eberlein compact is again a strong Eberlein compacte To this
end, we need some propositions. Let us recall that a space X

is called to be dispersed, if X does not contain a non-void
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perfect subspace, that means, each subspace Z of X has

st least ome point isolated in Z .

5, Propogition. Every strong Eberlein compact 1is disper-
sed.
» Proof. Suppose the comtrary, jet ZcX be a non-void
perfect closed subspace of X , let ¢ c Coz(X) be the
point-finite system weakly separating points of X . Let us
choose a point x;€Z . The set C = N {Ce€|lxeC?
is é cozero set by point-finiteness of € , let F, De 8o
me closed perfect set, sueh that x € Re G Z » Since Fy
is compact and perfect, there is some point X5 in B dif-
ferent from x; , let Cy = A $Ce ¥ \xzec} . € weskly
separates points, thus x €0, . Let us choose closed per—
fect cm czn Fy with x,€ Fz. ; proceeding by the obvious
induction we can f£ind a atrictly decreasing sequence of clo-
sed non-empty subsets -{Fn} . The space X 1s compact, thus
the intersection M{F % 1is non-void, each point of this
intersection belongs to infinitely many ¢’ s - a contradic—
tion with point-finiteness of € .

6. Proposition. Every non-void compact dispersed space is
O-dimensional.

Proof. We must show that each point has arbitrarily small
clopen neighborhood. Let X be the space in question, since
X 4is dispersed, one can write X = U{X, |L<x} where
X_ 1s the set of all isolated points of UiX, lLer<x?,
and o« 1s suitable ordinal.
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The proof goes by transfinite induction. For . =0,
let xeXo . Tt means that x is isolated in X , thus {x}
is the clopen neighborhood of x .

Jet L < o and let for every ee < L and for every
yeX,, be true that y has a clopen neighborhood base. Let
U be a neighborhood of x , x€X_ . Since x 1is isolated
in U 4{¥Xgq |L&® < «}.  and since X 1is regular, there
is some neighborhood V of x with the following properties:
Ve U, el VA ULXy|Lep=< x3}=4x% . Thus the boundaﬁ
bd V is contained in U{X,, ‘%c L%

For a point yebd V 1let Wy be a clopen neighborhood of ¥
which does not contain x (by the induction hypothesis such
a neighborhood does exist). The boundary bd V 1is compact

and so some finite collection {wyl,wyz,...,wyn} covers it.
It is self-evident that the set V -U {wyi\ i =1,2,.0.,n%

is the clopen neighborhood of =x , contained in U.

7. Proposition. Let X be O-dimensional (resp. strong)
Eberlein compact. Then there exists a 6 -point-finite (resp.
point-finite) system & < Clopen(X) , which weakly separa=
tes pointse.

The proof is routine. One needs only to realize that
every cozero set in O-dimensional compact space is a union

of a point-finite collection of clopen sets.
8, Pro tion. Every strong Eberlein compact can be

embedded imto 2V for some set of indices T in such a man-

ner that for every xe&X the set {yeT \x(—r) =1% is fi-
nite.

- 182 =



Proof. Let ¢ c Clopen(X) be = point-finite system,
which weakly separates points of X . For Ce¥ let fc:
: X—>2 be the mapping which maps C ontol , X~-C on-

to O . Let y:X—>2°

be defined by the rule ¥ (x)(C) =
= fc(x) . Then the mapping ¥ 1is the desired embedding.

(Eaay- )

. Propo . Let X be compact space and let there
exist a point finite system 0" c Open(X) , which weakly se-=
parates points of X ., Then X 1is a strong Eberlein compacte

Proof. For xeX , denote O = M {1 0e 0| xe0d,
let C; be a non-empty cozero set with xe Cye Og « Then
€ = {¢|xexic Cox(X) 1s a point-finite system weakly
separating points of X.

Remark. Proposition 9 cannot be generalized to the case
of & & -point-finite collection and general Eberlein compact,
as the following example shows: For every xel denote by
{qu(x)} some sequence of rational numbers in I , converg-
ing to x 4in usual topology. Let .Q = {qy(x)| xeI , n €
ew,% . Let Y be the space, whose underlying set is a dis=
joint union of I amd Q, and whose topology 18 defined as
follows: each q€Q 1s isolated, and the neighborhood base
of xelI has members of form {q(x), qkﬂ_(x), qk’z(x),...
eeey X}, with k naturale. Let X be the one-point compacti-
Pication of Y . Then: X 1is not an Eberlein compact, but X
admits a 6 -point-finite collection of open sets, which weak=
ly separates points. The verification of both properties may
be left to the reader.
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10, Defi n. Let Xc 2T  be a strong Eberiein com=
pact, let Y be its continuous image under the mapping £ .
For xeX let us define

dg x = cerd §yeT |x(9) = 1%

and for ye&Y define
dg y = min {dg x\xef-l(y)} .

1l, Lepma: Let Xc 2" be a strong Eberlein compact,
xecX , and {x,t a sequence of points converging to X,
Xp¥ X for all n . Then dg x,> dg x holds for all but f£i-
nitely many n .

The proof is easy - the set {yeX|x(g) =1 =
=>y(g) = 1% is a neighborhood of x and thus contains

almost all b S

12, Lepma. Let X¥c2T be a strong Eberlein compact, Y
its continuous image under the mapping £, Yy € Y . Then the
set

Uity | yet, agy£dgy, s It
is closed.

Proof., Let dgy, =1 denote by M the set above.
Pick a point xecl M. Since each Eberlein compact is a
Fréchet space, there is a sequence i{x,% ranging in M,
which converges to x . If ijnfinitely many members of {xn}
_belong to some f-l(y) , then xe f-l(y) and 8o xX€ M .

In other case we may assume without loss of generality
that x je £ (yy) , all 3, being distinct, and that the

sequence {yn} converges to y = £(x) . Let us choose a
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point t € f-l(yn) with dg tn =dg y, - Again we may assu-
me that the sequerice £t,% converges; denote by t its 1i-
mit point. Since dg tnén , when applying Lemma 11 we ob-

tain that dg t<n . It follows that xeU{ £y | yey,

dg y<dg yoi c M, thus, x having been chosen from cl M

arbitrarily, cl McM.

13. Theorem. ‘A continuous image of a strong Eberlein
compact is a strong Eberlein compact, too.

Proof. Suppose Xc 2™  pe a strong Eberlein compact,
£ & continuous mapping from X onto Y . Denote by Oy the
set {yeX|x(y) =1=>y(7) =13, let o =40.| xeXi.
The system @ is point-finite, comsists r')f clopen sets and
weakly separates points.

For a point xeX the set U 4 f-l(y) | ag y4ag £(x) ,
y4£(x)} is closed by Lemma 12, and the point x is not its
member. Thus we can find a neighborhood Vx of x , disjoint
with the set U o f-l(y) | ag y«deg £(x) , yE£(x) % .

Let us denote Uy =0,nVy., U= {0, xeX?}. The collec—
tiom U 1is point-finite and weakly separating, because the
collection O is.

For every YyE€Y let us choose a finite family

-1
{ U., getea sl 3c U such that x;6f (y) and
le, X' R () 1
Uiu, | 1=1,2,...,0(¥2 £1(y) . Let us denote the
s p 1
last union by ue ) .

a) The system {U(£1(y))| yeY} is point-finite:
If a point x belongs to infinitely many U(f-l(y))'s, then
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by the definition of U(f’l(y)) it must belong to infinitely
meny different Uxi's , which is impossible, because U 1is
point-finite.

b) For any two 31,7,€Y , N1 ¥7p » either
setgnt g =8 or £ AU ) =4

Suppose dg y;Z dg ¥, . Then for all x€ f_l(yl) ,
v, n(U{fl(y)\dg y<dgy, , y¥N3=6¢,
hence U, nt” (Yz) =¢ ., Thus U4iU |xef” l(yl)}n £ (32)
= ¢ , consequently U(f l(ylllnf (yz) =g .

Now it suffices to define for each ye Y the set (:y
by the equality €, =¥ - £(X - v(£1(y))] end to denote

€= i¢ | ye¥3 . € consists of open sets, a) implies its

point-finiteness, according to b) ¢ weakly separates points
of Y, and it remains to apply Proposition 9 to obtain that
Y is a strong Eberlein compact.

There is snother special case, when I can prove that a
continuous image of an Eberlein compact is an Eberlein com—
pact. I am very sorry that the proof of the following theo~-
rem is very technical and long, but I don’t know any better.

14. Theorem. Let X be an Eberlein compact, Kc X its
closed subset. Then the quotient X/K 4is an Eberlein compacte

Proof. By Proposition 2 it will suffige, if one can find
in X some 6-point-finite collection € c Coz{X) with
the following properties:

a) ¢ weakly separates points of X - K

p) UL is disjoint with K

¢) € covers ¥ -K.
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We may assume that X is embedded into 17  and the
embedd_ing gatisfies Definition 1, and that the point O (=
the point, whose all coordinates equal to zero) belongs to
the set X . The sets’of the form Dg*,j,n =

= :tr;j [3%7 5 3+Q4n. []J]A X (where mmy 1is the 7~ -th pro=

Jection) are cozero sets and it is easy to check that the sys=
tem {Dysym |YeT, mews 1e j ¢m-1% 18 -
point-finite, weakly separates points of X and covers X =
- 40%. Fix n for a moment, and let D, be a collection
of all intersections of finitely meny Do 4,m 3 D, 1is
point-finite and D = Uid, ]fru € w, ¥ weakly separa-
tes points.

for D & &,  let us introduce the following notation:
It F=A9, B Vi e T , 0= Adwdayes dogt
finite collection of natural numbers satisfying the inequali-
tw
1)y 4 n-1 for @ll 4, and if D

N4 Dz:;,ér_;,n ]

4 =1,2,000,k } , then let us denote D = Dg’p .

Call a set G of indices to be remarkable with respect
n

to DF’p s 1t
(1) GAF =¢

(11) there exists a point xg€cl D?\ AK such that
1P

xty) > Q'/m. for all e G, and Xg{y) & 2/,  for
all yeT - (F G, fls

(41i) 1if there is some ye cl D’;‘,an such that the
set H={yel -F|yly) > 2/,",} is contained in G , then
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H=G .
(The case G =@ dis not excluded.)
Now, some more notation.
m (og p) Will be the set {G cT | G is remarkable
’
n n oy _ n
with respect to DF,p} , and L(DF,p) = U M (DF,p) o
Lemma A. For every Do _ , the set 'm«(D}.l ) is fi-
F,p sP
nite. Of course, as a corollary, the set L(Dg’p) is fini-

te, too.

-1 2 & m
Fos c?,p = D?,p” M {m’r [[D; w7 e L<DP,11) 3 . Denote

= n n i =
Qem‘"{chplDF)pe@m’ ! Dﬁsp‘*‘ﬁ’ c‘;,an_di °

Lemma B. For every x € X - K and for each D?\,p con-
taining x , there exist mn;, F;, Py such that

By

n
b & CFl’pl c D

!

F,P and cFl)pl & ‘e”v .

Then € = U{%, |mew,} is the desired system, sin-
ce its members are cozero sets, point-finiteness of Dy, im-
plies point-finiteness of <, ~and thus <€ 1is 6 -point-
finite.

For x%+y , both belonging to X - K , we can find a
DI} . B n . —
e ,p separating them Supioee xeDF,p ’ y*DF’p Accor
1

ding to Lemma B the set C

El’pl belongs to % and separa-

tes x and y .

All the members of € are disjoint with K = see the
definition of <, -

Finally, since each point of X = K is distinct from
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the origin O , there must be some D?. P containing it.
b4

Again we may apply Lemma B to obtain that € covers X -K .
Thus the conditions a), b), c) are verified and it remains
to show the validity of both Lemmas, then the proof will be
complete.

Proof of Lemma ‘A, Suppose the contrary. Let Dg’p be-
long to Dy end let for this particular Dg’p the collec-

tiom m(n‘;, (denote it by 7 ) be infinite. For every

,P)
GeMm let us choose a point Xg having the properties
from (i1). Since (by (iii)) the members of M are distinct,
the set {x;|G e M3 is infinite, let z be its accumu-
lation point ( X is compact! Yo The point z belongs to

el D2 _AK because all Xg belong to this intersection.
Fp

Let us denote H =44eT-F ]z(*y) > 2/,,1, ¥ . Choose

real r>0 ,r < 1/2,,,, and define an open neighborhoed U

of a point 2z by the following:

o, - (34.+2), + 1
]?r,/ o

m ’ “ for o; € F

ay LU ]2/,,1,4] for y'& B

:lra,['u.] =100,11 for yeT-(FUH) .

By (iii) there is at most one Xg with G=H and 2
is an accumulstion point, so there must be some Xg with
G#H , which belongs to U ; then obviously GoH . But by
(11i) the sharp inclusiom Gg E contradicts to the assu-
med remarkebility of G . Thus M 1is finite. As a conse-
quence (all members of '”L(DE’p) are finite), the set of
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indices L(D2 ) 4is finite, too.
F,p

Proof of Lemma B. Pick a point xeX - K and g set
Dp 5 = 2, which is a neighborhood of x .
2

Only two cases may occur:
1) ’There are n’, F', p’, such that =xe Dg,’p‘c D?.’p
and ¢l D‘;,’p,nlc =8 s

Then the only set of indices remarkable with respect to
D?.:,p, is the empty set and thus an:,p’ = D?\:’p, . It remains
to write n) =n, F=F, p1=p' .

2) For every triple n’, F’, p_' satisfying xe D}‘.,:p,c
€ D?’p the set cl D;:’p,n K is always non-void.

In this case, let Z be the intersection of all such
cl D?.:,p, « One can immediately observé that 2 = 4 yeX‘l if
x(%)%0 , then y(o) =x()3% .

For GeT -4y |x(y)=>03% and for real r>0
let ‘lg = {yeX|ye G=>y(y)&r ? . Because Z N Vé =
= {x? as may be easily checked (the intersection is taken
over all r>0 and all G finite, G c T = <o | x(3*) >
> 0% ), the intersection Z A M wénK is empty. Since X
is compact, Wg are closed, there exist some r>0 and some
finite G ¢ { ¥ €T | x(») =03 such that angnK=¢ .

The set Z is an intersection of a centered system: using

n

the same argument, we obtain that there is some D.E‘o,p such
o) v %o n °e

that ¢l DFo’poh cnK=0, and xeDEo’poc DF,p .

Let n; be a natural number, satisfying the following ine-
qualities:
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1 1 . 4
/m1< /2 Mim 4 dist (x (), I—ara.,[Dz:ﬂa])lrefgi ’
Iﬂo,, = rno ) 4//,1_ ’L/Z .
Denote F; = {,7[ x(y) > /m. % . Then there is a fini-

te sequence of natural numbers, pl ’ 1ndexed by members of

ny By -
Fy, such that xeD and D cDp » Construct
]!‘11 F1s pl F» pl ForPo
By
cFl'pl , obviously xecF . We must show that cFl , be-

longs to ‘6,,11 ; to this end it is sufficient to verify that

o1
cFl Dy

Before it, let us show that the empty set of indices

NnK=d.

4s not remarkable with respect to D?‘id’l « Supps e the con-
trary. Then by (ii) there is a point Xy belonging teo

nl
ol Dg p " K, for which x4(7) & 2/, forall yeT -

-Fl,thus xﬁewr,because GeTl 'Fl and r>2/m1.
By -

It follows that xecl Dp oW faXc ol DF p " AWK =0,

a contradiction.

1
Thus 1.(DF Y0 .
1'P1
oy

We want to prove that C NnX =@ , suppose the con=
F10P

trary. let ye CF By A K . From the previous we know that

nl no

oy
= K :
cl DF WIGAK g, cFl’pl D‘Fo’po and Y€ CF1 plr\

o’po
it follows that ytwg , and consequently, the set of indices
H= {£yeT | () > 2/,,,_13 is non-void. Now, since Yy €
€cl Dn:L A K , we may use (iii), there is some H,cH , re-

n
markable with respect to DFi’pl . Because @ is not remark-
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n.
1
able, H %@ . By the definition of cFl’pl , for o €

n.
1 n

€ L(Dpl,pl and for all zecFl’pl it is true that z(gr)<

2 F1
< /,n_1 . But assuming ye cFl’pl we see that H, N

n
A L(Dpi’pl) = f , which contradicts to the definition of

iy B
L(Drl’pl) : Hy is remarkable, disjoint with L(Drl’pl) .

nevertheless L(D:i’pl) was defined as the union of all re-

marksble sets.

The proof of Theorem 14 i1s complete.

Finally, the following theorem about the general case of
Lindenstrauss’ problem may - by the suthor’s opinion = show
that there is some relationship between Theorem 13 and the

general case.

15. Theorem. The following statements are equivalent:

(a) Every continuous imsge of an Eberlein compact is an

Eberlein compact.

(b) Every contimious image of a countable product of strong

Eberlein compacts is an Eberlein compact.

Proof. (a)==>(b) is obvious.
For the reverse implication, let X be an Eberlein comm ct,
Y & compmct space, f: X—=>Y a continuous onto map. Suppo-
se X to be embedded into some cube I' . Since the Cantor
disecontinuum D can be mapped continuously onto I , there
is a compact subset ZcD" and a mapping h from Z onto

X , moreover h and Z can be defined in such a way that Z |
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when considered with identicsl embedding D' into I is
again an Eberlein compact by Definition 1, Z is =ero-dimen-
sional, thus there is a family € =U%, c Clopen(Z) ,
which weakly separates points of Z , with each <, point-
finite (Proposition 7). Define an embedding of 2 into 2t
as in the proof of Proposition 8 and denote it ¥ . Now,
consider the projection 3T ¢ 2‘———> 2%'“ o Then

o LyLZ11=2, is a strong Eberlein compact since
¢, 1is point-finite, and, obviously, w(Z)cT{ Z“’mdﬁ),;o

One may easily define a map & and a comma ct Hausdorff
space Y’ , such that Ye Y , gl M2z, =Y’ and
g/w (21 =tegey " . Findly, if (b) holds, ¥ 1s en
Eberlein compact and Y , as a compact subspace of : of , 1s

an Eberlein compact, too.

Problem. Every strong Eberlein compact is dispersed. Is
it true that each dispersed Eberlein compact is strong?

Added ip proof. After this paper was submitted for the
publication, the author received a letter by Y. Benyemini,
where he ammounced similar results (not published yet)e
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