

## Werk

**Label:** Article **Jahr:** 1976

**PURL:** https://resolver.sub.uni-goettingen.de/purl?316342866\_0017|log12

### **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

# COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,1 (1976)

#### EXACTNESS OF THE SET-VALUED COLIM

J. ADÁMEK, J. REITERMAN, PRAHA

Abstract: It is well-known that, in the category of sets, filtered colimits commute with finite limits; thus, if K is a filtered small category then the functor colim:  $Set^K \longrightarrow Set$  is exact (i.e. preserves regular epis and finite limits). The converse is proved in the present note and other properties of colim are investigated and compared with these of colim:  $Ab^K \longrightarrow Ab$  for the category Ab of Abelian groups.

Key words: Exact colimits, category of sets.

AMS: 08A10, 18B05 Ref. Z.: 2.726

#### I. Formulation

I.2. (a) colim preserves monics iff every diagram (\*)



in K is a part of commutative square (\* \*)

(b) colim preserves equalizers iff K has filtered components, i.e. iff K fulfils the condition of (a) and for every pair f, g of parallel morphisms there is k with kf = kg,



- (c) colim is exact iff K is filtered, i.e. iff K fulfils the conditions of (a),(b) and for every pair A, B of K-objects there is C with  $Hom(A,C) \neq \emptyset + Hom(B,C)$ .
- I.3. This characterization is rather simple in comparison with the Ab case. Colim:  $Ab^K \longrightarrow Ab$  is exact iff the following category aff K has filtered components: objects of aff K are just the objects of K; morphisms from A to B are those elements  $\Sigma \propto_{\bf i} f_{\bf i}$  of the free Abelian group over  $\operatorname{Hom}_K(A,B)$  for which  $\Sigma \propto_{\bf i} = 1$ , see [3].
- I.4. It is easily seen that 1) aff K has filtered components provided that K has, 2) if aff K has filtered components then K fulfils the condition of (a). Thus,

denoting  $A = \text{colim} : Ab^{K} \longrightarrow Ab$ ,  $S = \text{colim} : Set^{K} \longrightarrow Set$  we get

S is exact > S preserves equalizers > A is exact > S preserves monics

None of these implications can be reversed. The counterexamples are easy (according to I.2, I.3) except that to the second implication: for the category K or finite ordinals and order preserving injections, A is proved to be exact in [3] but the only component of K is not filtered.

## II. Relation to indecomposable functors

posability: a functor  $F: K \longrightarrow Set$  is indecomposable if whenever  $F = F_1 \lor F_2$  then  $F_1$  or  $F_2$  is the constant functor to  $\emptyset$ . Notice that F is indecomposable iff colim F is a singleton set.

Let us observe that each non-trivial functor  $F: K \longrightarrow$  Set can be decomposed into a sum of its components, i.e. maximal indecomposable subfunctors,  $F = \coprod_{i \in I} F_i$ . If  $\mu: F \longrightarrow F'$  is a transformation and  $F' = \coprod_{i \in I} F_i$  is a decomposition of F' into components then for every iel there is  $c(i) \in J$  with  $\mu(F_i) \subset F_{c(i)}$ . We have colim F = I, colim F' = J, colim F' = J. Set .

- II.2. (a) colim preserves monics iff each non-trivial subfunctor of an indecomposable functor F: K→ Set is indecomposable, too.
  - (b) colim preserves equalizers iff indecomposable

functors from K to Set have always the following "agreement property": for each couple  $\mu$ ,  $\nu$ :  $F \longrightarrow F'$  of transformations there is M and  $x \in FM$  with  $\mu_M x = \nu_M x$ .

- (c) colim preserves finite products iff the product of two indecomposable functors from K to Set is indecomposable, too.
- II.3. The exactness of colim in the Ab case can be also characterized analogously [1]: colim:  $Ab^K \longrightarrow Ab$  is exact iff the agreement property from (b) holds for all couples of endo-transformations of indecomposable functors from K to Set; equivalently, iff each endotransformation  $\mu$ :  $F \longrightarrow F$  of an indecomposable functor  $F: K \longrightarrow Set$  has a fixed point (i.e. x in some FM with  $\mu_M x = x$ ).

### III. Proof

- III.1. Necessities in I.2 follow from II.2 if we take into account that
- (a) the subfunctor F of Hom(M,-) generated by f:

  :  $M \longrightarrow C$ , g:  $M \longrightarrow D$  must be indecomposable (then we have f':  $C \longrightarrow E$ , g':  $D \longrightarrow E$  with f'f = g'g),
- (b) the transformations  $\operatorname{Hom}(f,-)$ ,  $\operatorname{Hom}(g,-)$ :

  :  $\operatorname{Hom}(N,-) \longrightarrow \operatorname{Hom}(M,-)$  must coincide at some  $k \in \operatorname{Hom}(N,C)$ ;
  and all monics are equalizers in  $\operatorname{Set}^K$ ,
- (c) the product  $\operatorname{Hom}(M,-) \times \operatorname{Hom}(N,-)$  must be non-trivial.
- III.2. Sufficiencies. (a) Let  $F: K \longrightarrow Set$  be an indecomposable functor. To prove that all subfunctors of F

are indecomposable it suffices, for given  $x \in FM$ ,  $y \in FN$ , to find  $h: M \longrightarrow Z$ ,  $k: N \longrightarrow Z$  with Fh(x) = Fk(y). Fix  $x \in FM$ .

For every object T put HT = {tefT; there are h:  $: M \longrightarrow Z$ , k:  $T \longrightarrow Z$  with Fh(x) = Fk(t); we shall prove that H = F. First, H is a subfunctor of F: given teHF and given a morphism  $p: T \longrightarrow T_1$  we have h:  $M \longrightarrow Z$ , k:  $: T \longrightarrow Z$  with Fh(x) = Fk(t); since p, k have a common domain there exist p', k' with p'p = k'k. This proves  $Fp(t) \in HT_1$ , because F(k'k)(x) = Fp'(Fp(t)).



Second, F - H (defined by (F - H)T = FT - HT) is a subfunctor of F, as is easily seen. Since F is indecomposable and  $F = H \vee (F - H)$ , either F = H or F = F - H. The latter cannot occur, since  $x \in HM$ .

- (b) Let  $(\mu, \nu): F \longrightarrow F'$  be transformations between non-trivial indecomposable functors. Choose  $z \in FM$  arbitrarily and put  $x = (\mu_M z)$ ,  $y = \nu_M z$ . Via the previous part of the proof there exist  $h, k: M \longrightarrow Z$  with F'h(x) = F'k(y). Choose  $p: Z \longrightarrow T$  with ph = pk and put t = F(ph)(x). Then  $(\mu_T t) = F'(ph)(z) = F'(pk)(z) = \nu_T t$ .
  - (c) is well known.

This concludes the proof.

#### IV. A corollary

IV.1. Let T be a cocomplete category which has a full subcategory D isomorphic to Set and closed under colimits and finite limits. Then we have

colim:  $T^K \longrightarrow T$  is exact  $\longrightarrow K$  is filtered.

Indeed, if colim:  $T^K \longrightarrow T$  is exact so is colim:  $D^K \longrightarrow D$ , the latter being a restriction of the former one. As  $D \sim Set$ , K is filtered by I.2c.

- IV.2. The above corollary applies e.g. to the category
- topological (resp. uniform) spaces,
- graphs,
- unary algebras of a given type and to  $\mathbb{T}^L$  for any such  $\mathbb{T}$  and any small L . In all of these examples filtered colimits commute with fini-

colim:  $T^K \longrightarrow T$  is exact  $\longleftrightarrow$  K is riltered.

te limits (as is easily seen) so that we have

### References

- [1] J. ADÁMEK, J. REITERMAN: Fixed points in representations of categories, Trans. Amer. Math. Soc. 211(1975), 239-247.
- [2] J.R. ISBELL: A note on exact colimits, Canad. Math. Bull. 11(1968), 569-572.
- [3] J.R. ISBELL and B. MITCHELL: Exact colimits, Bull. Amer. Math. Soc. 79(1973), 994-996.

Elektrotechnická rakulta

čvut

Suchbátarova 2,16627 Praha 6

Československo

Fakulta jaderná a fyzikálně

inženýrská ČVUT

Husova 5, 11900 Praha 1

Československo

(Oblatum 2.6. 1975)