

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,1 (1976)

PARTITIONS OF VERTICES

Jaroslav NEŠETŘIL, Vojtěch RÖDL, Praha
DEDICATED TO EMANUEL GRINBERG ON THE OCCASION OF HIS 65-TH
BIRTHDAY

Abstract: In this note we show how a theorem by Erdős-Hajnal may be used for proving theorems concerned with partitions of vertices of graphs, relations etc.

Key-words: Ramsey theorem, partitions, chromatic number.

AMS: 05A99 Ref. Z.: 8.83

Introduction. In 1966 Erdos and Hajnal [1] proved the following.

Theorem A: For every positive integer $k \ge 2$, $\ell \ge 2$, $n \ge 1$ there exists a hypergraph $f = f(k, \ell, n) = (x, m)$ with the following properties:

- 1) y is a k-uniform hypergraph
- 2) § does not contain cycles of length smaller than ℓ
- 3) x (4) > n

The notation is the following: $\chi(\mathcal{G}) = \text{chromatic number}$ of \mathcal{G} i.e. the minimal number of colours which are necessary for colouring the vertices of \mathcal{G} in such a way that no monocoloured hyperedge occurs; k-uniform means that |M| = k for every $M \in \mathcal{M}$; a cycle of length ℓ is a sequence $x_1, M_P x_2, M_2, \dots, x_\ell, M_\ell$ such that $x_1 \in M_1$, $i \in [1, \ell]$;

 $x_{i+1} \in M_i$, $i \in [1, \ell - 1]$; $x_1 \in M_\ell$ $\{M_i \mid i \in [1, \ell]\} \subseteq M$, $\{x_i \mid i \in [1, \ell]\} \subseteq X$.

To avoid the trivial cycle consisting of only one hyperedge we assume that there are i, j such that $M_{i} + M_{j}$. Theorem A was proved by nonconstructive means. In 1968 L. Lovász proved the same theorem constructively. In this note we show how this theorem implies (using a simple trick) a very general theorem of Ramsey type for partitions of vertices. There are two reasons for publishing of this note: first, the trick provides simpler proofs to known theorems ([2],[3],[4]), secondly, partitions of vertices are used as a tool for proving a Ramsey type theorem for partitions of edges and we shall need a general theorem for partitions of vertices for our forthcoming papers. We apply the Theorem A to partitions of vertices of graphs, hypergraphs, relations and universal algebras. In § 4 we show that given a graph G there exists an infinite set of minimal graphs with the vertext partition property for G . We end this note with a few problems and comments concerning

1. Folkman's theorem. In 1967 J. Folkman [3] proved:
For every positive integer r and for every graph G = (V, E)without complete subgraphs on m vertices there exists a
graph H = (W, F) without complete subgraphs on m vertices
such that for every partition $W = \bigcup_{i=1}^{N} W_i$ there exists an
i and an embedding $f: G \longrightarrow H$ such that $f(V) \subseteq W_i$ (An embedding $f: G \longrightarrow H$ is an 1-1 mapping with the property

infinite graphs.

 $\{f(x), f(y)\} \in \mathbb{F}\langle \Longrightarrow \{x,y\} \in \mathbb{F}$.). We denote by $\mathbb{G} \xrightarrow{\mathcal{V}} \mathbb{H}$ the validity of the above statement for G, H, the negation is denoted by $G \xrightarrow{\mathcal{V}} \mathbb{H}$. This notation has the following sense: Let $G \longrightarrow \mathbb{H}$ denote the fact that there exists an embedding of G into H. Then $G \xrightarrow{\mathcal{V}} \mathbb{H}$ means that there are "so many"embeddings of G into H that even if we partition vertices of H into F parts we still have an embedding in one of the parts. In this way $\xrightarrow{\mathcal{V}} \mathbb{H}$ may be seen as a combinatorially strengthened embedding arrow (see $F(S_1)$).

Folkman gave a direct constructive proof of the above fact.

An another (less elementary) proof is due to the authors of

[7]. However, Theorem A instantly yields a much stronger result.

<u>Definition</u>: Let K be a fixed graph. Denote by Gra (K) the class of all graphs which do not contain K as a subgraph. (I.e. $G \Leftarrow Gra(K) \Longleftrightarrow$ there are sets $V_0 \subseteq V$, $E_0 \subseteq E$ such that $(V_0, E_0) \cong K$.)

If $\mathcal K$ is a set of graphs put $\operatorname{Gra}(\mathcal K) = \bigcap (\operatorname{Gra}(K) \mid K \in \mathcal K)$.

Theorem 1: Let $\mathcal K$ be a finite set of 2-connected graphs. Then for every graph $G \in Gra(\mathcal K)$ there exists a graph $H \in Gra(\mathcal K)$ such that $G \xrightarrow{\mathcal K} H$.

We may assume |K|>2 for every $K \in \mathcal{K}$ as for $|K| \leq 2$ we get either the void class of graphs of the class of all discrete graphs.

<u>Proof</u>: Let G = (V, E) Gra (\mathcal{K}) be fixed. Let $b = \max |K| + 1$, |G| = k. Let us choose $\mathcal{G}(k, \ell, r) = (x, m)$ $K \in \mathcal{K}$ with the properties of Theorem A. For each $M \in \mathcal{M}$ let $f_M: V \longrightarrow M$ be a fixed bijection. Define the graph H = (X,F) such that $\{x,y\} \in F \Longleftrightarrow$ there exist $M \in \mathcal{M}$ and $\{z,t\} \in E$ such that $\{f_M(z),f_M(t)\} = \{x,y\}$. This graph H will be denoted by $(X,\mathcal{M}) * G$.

As $\ell > 2$ we have $|M \cap N| \leq 1$ whenever $M \neq N$, $\{M,N\} \subseteq m$ (see above) and consequently

- 1) $f_M: V \longrightarrow M$ is an embedding of G into H for each $M \in \mathcal{M}$.
- 2) If K' is a subgraph of H , K' \cong K \in \mathcal{H} then K' \subseteq C \subseteq (M,F) , M \in m .

(This follows by the 2-connectivity of K and by the fact that (X, m) does not contain a cycle of length < |K| + 1.)

Finally G \xrightarrow{v} H follows immediately from $\chi(X, m) > r$:

Given a partition $X = \sum_{i=1}^{n} X_i$ there exists $M \in \mathcal{M}$ and $i \in [1,r]$ such that $M \subseteq X_i$. Consequently G is an induced subgraph of (X_i,F) and f_M is an embedding.

This theorem does not hold for graphs with connectivity < 2:
i) If K is disconnected and $K = K' \cup K''$ where $K' \cong K''$ then $H \xrightarrow{\mathcal{N}} K'$ for every $H \in Gra(K)$ as may be seen easily.

ii) If $K = P_n$ is a path of length n then $G \in Gra(P_n) \Longrightarrow \chi(G) \le n$. From this follows that there exists $G \in Gra(P_n)$ such that $G \not \xrightarrow{\kappa} H$ for every graph $H \in Gra(P_n)$ (it suffices to take $G \in Gra(P_n)$ which satisfies $\chi(G) > \frac{m}{2}$; obviously $G \xrightarrow{\kappa} H \Longrightarrow \chi(H) \ge 0$

≥2 x (G) -1).

iii) If $\mathcal K$ is an infinite set then the statement may be false (consider $\mathcal K = \{c_{2k+1} \mid k \neq 1\}$ the set of all odd cycles).

2. Partitions of vertices of relations and hypergraphs. Using the same idea as in 1 we may prove analogous theorems for relations and hypergraphs. We list only statements:

Theorem 2a: Let $\mathcal R$ be a finite set of 2-weakly connected relations (see [51, p.199). Then for every positive integer r and for every $R \in Rel(\mathcal R)$ there exists $S \in Rel(\mathcal R)$ such that $R \xrightarrow{\nu} S$.

Theorem 2b: Let $\mathcal G$ be a finite of hypergraphs which are 2-connected (i.e. $(X,\mathcal M)$ is 2-connected \iff $(X,U)(P_r(M) \mid M \in \mathcal M)$) is a 2-connected graph). Then for positive integer r and for every $(X,\mathcal M) \in \operatorname{Hyp}(\mathcal G)$ there exists $(Y,\mathcal N) \in \operatorname{Hyp}(\mathcal G)$ such that $(X,\mathcal M) \xrightarrow{\mathcal N} (Y,\mathcal N)$.

The definitions of $\Re(\mathcal{R})$ and $\operatorname{Hyp}(\mathcal{G})$ and of symbols $\xrightarrow{\kappa}$ are quite analogous to the definitions $\operatorname{Gra}(\mathcal{K})$ and $\xrightarrow{\kappa}$ for graphs. Again in certain sense these theorems are best possible.

3. Partitions of algebras. Let $\mathcal V$ be the class of all finite universal algebras of given type $\Delta = (n_i \mid i \in I)$.

Let $\mathscr{X} = (X, (\omega_i \mid i \in I))$, $\mathscr{Y} = (Y, (\varkappa_i \mid i \in I))$ be algebras from \mathscr{V} . We write $\mathscr{X} \xrightarrow{\chi} \mathscr{Y}$ iff for every partition $Y = \underset{\chi}{\overset{\omega}{\longrightarrow}} Y_i$ there exists an i and a monomorphism $f: \mathscr{X} \longrightarrow \mathscr{Y}$ such that $f(x) \subseteq Y_i$.

Theorem 3: Let r be positive integer and let $\mathscr{X} \in \mathscr{V}$ and $\omega_1(x,x,\ldots,x) = x$ for every $i \in I$ and $x \in X$ (idempotent algebras). Then there exists $\mathscr{Y} \in \mathscr{V}$ such that $\mathscr{X} \xrightarrow{\times} \mathscr{Y}$.

Proof: Let $|X| = k, \ell = 3$, n = r. Consider $(Y', \mathcal{M}) = \mathcal{G}(k, 3, r)$. Let $y' \in Y'$. For every $M \in \mathcal{M}$ let us choose a bijection $f_M: X \longrightarrow M$. Define $(Y, (\mathscr{L}_1 \mid i \in I))$ by $Y = Y' \cup \{y'\}$ and $\mathscr{L}_1(y_j) \mid j \in [1, n_1]) = f_M(\omega_1(x_j \mid j \in [1, n_1]))$ where $f_M(x_j) = y_j$ if such an M exists, otherwise we put $\mathscr{L}_1(y_j \mid j \in [1, n_1]) = y'$, $i \in I$. It is easy to check that $Q \in \mathcal{V}$, $\mathscr{X} \longrightarrow Q$. Again it is easy to see that, generally, for non-idempotent algebras Theorem 3 fails to be true.

Remark: A very difficult problem seems to be the characterization of those primitive classes of algebras for which the statement analogous to Theorem 3 holds. This is true for example for the class of all finite distributive lattices.

4. Critical Folkman graphs: Let G be a graph. We say that H is an irreducible (r,v)-graph for G if

G N H but G N H for every proper subgraph

H of H.

Theorem 4 a: For every graph G , |G| > 1 there exists a countable set of non-isomorphic irreducible (r,v)-graphs for G .

<u>Proof</u>: A proof follows directly from the * construction in 1. Let G be fixed. We may assume that G is a connected graph (otherwise we consider the complement of G).

It suffices to put

Remark 1: Using a modified proof we may even prove

Theorem 4 b: Let $\mathcal K$ be a finite set of 2-connected graphs. Then for every graph $G \in Gra(\mathcal K)$ there exists a countable set $\{H_1 \ i=1,2,\dots\}$ of non-isomorphic graphs such that

- 1) H₄ ∈ Gra (3C)
- 2) H_i is an irreducible (r,v)-graph for G.

Remark 2: Theorem 4a does not hold for infinite graphs. Every complete graph of infinite cardinality is the only (r,v)-irreducible graph for itself. Theorem 4a fails to be true for |G|=1, too.

Remark 3: Let G = (V, E), H = (W, F) be graphs. We write $G \xrightarrow{\mathcal{E}} H$ if for every partition $F = \bigoplus_{i=1}^{n} F_i$ there exists an embedding $f: G \longrightarrow H$ such that $\{f(x), f(y)\}$ | $\{x,y\} \in E\} \subseteq F_i$ for an $i \in [1,r]$. The existence of an Ramsey graph for every finite graph was proved independently by Deuber, Erdős, Hajnal, Posa and Rödl [9], see also much stronger [7].

Define H to be an (r,e)-irreducible graph for G if $G \xrightarrow{e} H$ but $G \xrightarrow{e} H'$ for all proper subgraphs H'

of H.

<u>Problem 1:</u> Characterize those finite graphs G for which there exists an infinite set of non-isomorphic (r,e)-irreducible graphs for G.

If a graph G contains at most one edge then there exists precisely one (r, e)-irreducible graph H such that G e H, namely G itself.

<u>Conjecture:</u> For a finite graph G the following two statements are equivalent:

1. For G there exists a countable set of (r, e)-irreducible graphs.

The path of length 2 is an example of a graph G for which there exists a countable set of (2, e)-irreducible graphs.

One can take the family of all odd cycles.

More generally, the same is true for every paths of length ℓ , ℓ finite.

Finally let us remark that Theorem 1 shows the power of Erdős-Hajnal theorem for partitions of vertices.

There is no general method known for deriving similar theorems for partitions of edges (see [8] for results in this direction). Let us add a few remarks concerning infinite graphs. In an obvious way we may extend the symbol $G \xrightarrow{\mathcal{N}} H$ for infinite graphs G, H and any cardinal r. The following is then true:

Theorem 5a: For every graph G and every positive integer r there exists H such that G \xrightarrow{v} H .

Theorem 5b: For every finite graph G and every cardinal r there exists a graph H such that $G \xrightarrow{\mathcal{V}} H$. Moreover, if G does not contain a complete graph on m vertices then H may be chosen with the same property. Theorem 5a may be proved by the following construction:

Let G = (V, E), assume without loss of generality r = 2

(this is possible as $G \xrightarrow{v} H \xrightarrow{v} I \Longrightarrow G \xrightarrow{v} I$). Put $H = (V \times V, F)$ where $f(x,y), (x',y') \in F \Longleftrightarrow$ either $x = x' \{y,y'\} \in E$ or $\{x,x'\} \in E$.

Given a colouring c: $V \times V \longrightarrow \{1,2\}$ either there exists

 $x \in V$ such that $c(4x3 \times V) = i$ or there exists i such that for every $x \in V$ there exists y with c((x,y) = i. From this follows easily $G \xrightarrow{v} H$.

Theorem 5b follows from the Erdős-Rado generalization of the classical Ramsey theorem for cardinal numbers and from the representation of finite graphs by type-graphs, see [7],[8]. This is a straightforward application of type-graphs and we ommit the proof.

This leads to the following problems (see also [2]):

Problem 2: Let G be a graph and r a cardinal number. Does there exist a graph H such that $G \xrightarrow{v} H$?

Moreover, providing that G does not contain a complete graph with m vertices is it possible to choose H with the same property?

Not much is known, even the case m=3 and r=2 is unsolved. The purpose of this remark is to show that even dealing with vertex partitions one cannot be overoptimistic.

References:

- [0] P. ERDÖS: Problems and results on finite and infinite graphs, in: Recent advances in graph theory, Academia, Prague (1975), pp.183-192.
- [11 ERDÖS P., HAJNAL A.: On chromatic number of graphs and set systems, Acta Math. Acad. Sci. Hungar. 17 (1966), 61-99.

- [2] ERDÖS P., HAJNAL A.: Problems and results in finite and infinite combinatorial analysis, Ann. of N.Y. Acad. Sci., 175(1970), 115-124.
- [3] FOLKMAN J.: Graphs with monochromatic complete subgraphs in every edge colouring, SIAM J. Appl. Math. 18 (1970), 19-29.
- [4] R.L. GRAHAM, B.L. ROTHSCHILD: Some recent developments in Ramsey theory, in: Mathematical centre tracts, Amsterdam, 57(1974), pp.61-67.
- [5] HARARY F.: Graph theory, Addison-Wesley, Reading (1969).
- [6] LOVÁSZ L.: On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar. 19(1968), 59-67.
- [7] NESETRIL J., RÖDL V.: The Ramsey property for graphs with forbidden complete subgraphs, to appear in Journal of Comb. Theory.
- [8] J. NEŠETŘIL, V. RÖDL: Type theory of partition problems of graphs, in: Recent advances in graph theory, Academia, Prague (1975), 405-412.
- [9] PROCEEDINGS of Set theory conference, Készthély (1973).
- [10] RÖDL V.: The dimension of a graph and a generalized Ramsey theorem, Thesis Charles University Praha (1973).

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo Fakulta jaderné fyziky a inženýrství ČVUT Husova 5, Praha l Československo

(Oblatum 6.11.1975)

