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: In this note we show how a theorem by Erdos-
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Iptroduction. In 1966 Erdos and Hajnal [1) proved the
follov_ring.

Theorem A : For every positive integer kz2 , £z2,
nz1 there exists a hypergraph J = 9(k, £ ,n) = (X, M)
with the following properties:

1) ¥ 4s a k-uniform hypergraph

2) ¢ does not contain cycles orf length smaller then 2
3). % ($)>n .

The notation is the following: g, (&) = chromatic number
of § 4i.e. the minimal number of colours which are necessa-
ry for colouring the vertices of ¥ in such a way that no
monocoloured hyperedge occurs; k-uniform means that | M| =
=k for every M e M ; a cycle of length £ 1is a sequen-
ce X ,MpXy,MpyjeeeyXg, My such that x;€M; , & ell,2];
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{M;|iell, £13c M y {x;|iel1, 213X .

To avoid the trivial cycle consisting of only one hyperedge
we assume that there are i, j such that My% Mj .

Theorem A was proved by nonconstructive means. In 1968 L.
Lovész proved the same theorem constructively.

In this note we show how this theorem implies (using a simp-
le trick) a very general theorem of Ramsey type for parti-
tions of vertices. There are two reasons for publishing of
this note: rirst, the trick provides simpler proofs to known
theorems ([21,03),(4]), secondly, partitions of vertices are
used as a tool for proving a Ramsey type theorem for parti-
tions of edges and we shall need a general theorem for par-
titions of vertices for our forthcoming papers.

We apply the Theorem A to part itions of vertices of graphs,
hypergraphs, relations and universal algebras. In § 4 we show
that given a graph G there exists an infinite set of mini-
mal graphs with the vertext partition property for G . We

end this note with a few problems and comments concerning

infinite graphs.

1. Folkman’s theorem. In 1967 J. Folkman [3] proved:
for every positive integer r and for every graph G = (V,E)
without complete subgraphs on m vertices there exists a
graph H = ('-.'I,F) without complete subgraphs on m vertices
such that for every psrtition W = 4.“.’:'4 Wi there exists an
i nnd an embedding £: G- H such that £(V)S Wy (An em—
bedding i G=—»H is an 1-1 mapping with the property
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{£(x),£(y)} € Pe==>{x,y} € B o). We denote by G —lf-» B

the validity of the above statement for G, H, the negation
is denoted by G —,Li:-:—a H . This notation has the following

sense: Let G —> H denote the fact that there exists an em

bedding of G into H . Then G —";——> H means that the-

re are "so many"embeddings of G into H that even if we
partition vertices of H into r parts we still have an em-

bedding in one of the parts. In this way —l’:——b may be

seen as a combinatorially strengthened embedding arrow (see
[sl) .

Folkman gave a direct constructive proof or the above fact.
An another (less elementary) proof is due to the authors of
[7). However, Theorem A instantly yields a much stronger re-

sult.

Definition: Let K be a fixed graph. Denote by Gra (x)
the class of all graphs which do not contain K as a sut-
graph. (I.e. G & Gra (K)¢==> there are sets VeV, EsE
such that (vo,no)':é K.)

I£ % 4is a set of graphs put Gra (X) = N (Gra K| xeX).

Theo : Let % be a finite set of 2-comnected
graphs. Then for every graph GeGra (X) there exists a

graph HeGra (¥) such that G --—';—:—9- H.

We may assume |K[»2 for every KeX as for 1Kle 2 we
get either the void class of graphs of the class of all dis-
crete graphs.

Proof: Let G = (V,E) Gra (X) be fixed. Let b =

=mex |K|+1, |G|=k.Let us choose ¥ (k,£,r) = (X,M)
Kex - 87 -



with the properties of Theorem A. For each M e M 1let

yt V—>M be a fixed bijection. Define the graph H =

= (X,F) such that {x,y3} &€ F¢===> there exist Me” and
{z,t3 € E such that {fM(z),fM(tH =4{x,y? . This graph H
will be denoted by (X,M) % G .

As A4 >2 we have |MNN|& 1 whenever MN%N, {M,N3c M
(see above) and consequently

1) £y V—UM is an embedding of G into H for each
Mem.

2) If X’ 1is a subgraph of H , K2K € % then K'gc

c (M,F) ,MeM .

(This follows by the 2-conmectivity of K and by the fact

that (X,7) does not contain a cycle of length <| K|+ 1 o)

Finally ¢ ———> H follows imediately from % x,m) >

>r

n
Given a partition X = .U/ Xy there exists M e 7 end

P
1elfl,r] such that MeX; . Consequently G 1is an indu-

ced subgraph of (Xi,.E‘) and fy is an embedding.

This theorem does not hold for graphs with connectivity <2 3
i) If K 4s disconnected and K = K'L K” where K'z= K”

ay

then H ——5—> K’ for every HeGra (K) as may be seen
easily.

1i) If K =P, is a path of length n then G eGra (Pn)==>

== 4, (G)£n . Ffrom this follows that there exists G €

eGra (Py) such that G #,:—» H for every graph H €
eGra (P)) (it suffices to take GeGra (Pp) which satis-

ties  7,(6) > 22 ; obviowsly © > H=— ) =
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z2 4@ -1).
44i) If % is an infinite set then the statement may be
false (consider KX =4{Cy ., | k413 the set of all odd

cycles).

2, Part o v relations and hyper=
graphg. Using the same ideaas in 1 we may prove analo-
gous theorems for relations and hypergraphs. We list only
statements:

Theorem 28 : Let R be a finite set of 2-weakly con-
nected relations (see [5] , p.199) . Then for every positi-
ve integer r and for every R € Rel (R) there exists
S € Rl (R) such that R ——‘:——> S .

Theorem 2b: Let % be a finite of hypergraphs which
are 2-comnected (i.e. (X,M) is 2-connected <=—=>
== (X (P, (M) | M € M )) is a 2-connected graph).
Then for positive integer r and for every (x,Mm)e Hyp (¥F)
there exists (Y,M)eHyp (¥) such that

x,m) —=——> (,N) .
The definitions of Rel (R) and Hyp(¥) and of symbols

. i (X) and
—JL_> are quite analogous to the derinitions Gra an

-—T—b—b for graphs. Again in certain sense these theorems are

best possible.

3, Partitions of algebras. Let 2 be the class of
all finite universal algebras of given type A = (n; |ieI S
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Let %= (X,(w |16D)) , Y= (Y,(2 | 1eI)) be algebras
from 7 . We write 3?@_ 1ff for every partition

Y= ;‘k;,‘ Yi there exists an 1 and a monomorphism £:
X —> q such that f(x)SYi °

Theorem 3: Let r be positive integer and let ¥ €
€V and wy(x,x,e00 x) =x for every 1€l and x €
e X (idempotent algebras). Then there exists Y & 7 such

that & ——> Y%

Ppoof: let |Xl=k, £ =3,n=1r . Consider
(¥, M) = Pk,3,r) . Let y eI . Por every MeT let
us choose a bijection f£: X—»M . Define (Y,(2y | 4€X))
by Y=Y ufy'} and oe(yy |Jellng1) =

= £l “i(xd |3 €L1l,n;1)) where fu(xd) =73y if such an

M exists, otherwise we put ati(yd \J € [1,n1]) =y, 1€I.

It is easy to check that Y eV, % —f> Y

Again it is easy to see that, generally, for non-idempotent
algebras Theorem 3 fails to be true.

Remark: A very difficult problem seems to be the cha-
racterization of those primitive classes of algebras for
which the statement analogous to Theorem 3 holds. This is

true for example for the class of all finite distributive
latti“‘.

4. Critical Folkmap graphs: Let G be a graph. We

say that H is an irreducible (r,v)-graph for G if

v .
G —_ H but G +%> H® for every proper subgraph
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H of H.

s

Theorem 4 a: For every graph G , 1G] >1 there ex-
ists a countable set of non-isomorphic irreducible (ryv)=
graphs for G .

Eroof: A proof follows directly from the x construc-
tion in 1. Let G be fixed. We may assume that G 1is a con—
nected graph (otherwise we consider the complement of G) .

It suffices to put

H = Y(lGl, 3,r)x G
= Y(lel, |5l ,*) X% G

Hy = ¢ (1G], 1H], k@

G —{—-» H, holds for every 1 . Let H, be an irreducib-

le (r,v)-graph for G contained in H; , 1 = 1,25000 o
Obviously lﬂil <| HJ' for all 1, J satisfying i<J .
Assume ii“-"ij for i<j . As ?I'JSHJ y Hy=

= d0lal, 15, ,0) ¥ , and IHJ_llZIHj_I we have
l-ﬁileg*G where ?EE?(IGl,lHJ_ll,r) is a
hypergraph which does not contain any cycle. But in this
case 2 (F % G) = 2,(G) . This contradicts

Ay -—
G _;" Hi .
Remark 1: Using a modified proof we may even prove
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Theoren 4 b: Let ¥ be a finite set of 2-commected
graphs. Then for every graph GeGra (&) there exists a
countable set {Hy 1 =1,2,... 3 of non-isomorphic graphs
such that

1) HyeGra ()

2) Hy 1s an irreducible (pyv)=graph for G .

Remark 2: Theorem 4a does not hold for infinite graphs.
Every complete graph of infinite cardinality is the only
(r,v)=-irreducible graph for itself. Theorem 4a fails to be

true for |G|l =1, too .

Remark 3: Let G = (V,E) , H= (w,#) be graphs. We
n
write G -—i——» H 4if for every partition F = ;\JJ, Fy the-

re exists an embedding $£: G—»H such that ££2(x),2(y) 3 )
|{x,y} e E3S F; for an 1le C1,r ] . The existence of an
Ramsey graph for every finite graph was proved independently
by Deuber, Erdos, Hajnsl, Posa and Rodl [ 9], see also much
atronger L7].

Define H to be an (r,e)-irreducible graph for G if

G _:T,_’ H but G -7‘%» H® for all proper subgraphs H’

of H.

Problem 1: Characterize those finite graphs G for
which there exists an infinite set of non-isomorphic (r,e)-
irreducible graphs for G .

If a graph G contains at most one edge then there exists

precisely one (r, e)-irreducible graph H such that

. e
G ——’:-9 H , namely G itself.
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t : For a finite graph G the following two
statements are equivalent:
1. For G there exists a countable set of (r, e )=-irredu-
cible graphs.
2. 8—4>> G.
The path of length 2 is an example of a graph G <for which
there exists a countable set of (2, e)-irreducible graphs.
One can take the family of all odd cycles.
More generally, the same is true for every paths of length
£ , £ finite.
Finally let us remark that Theorem 1 shows the power of Erdos=
Hajnal theorem for partitions of vertices.
There is no general method known for deriving similar theorems
for partitions of edges (see [8] for results in this direct-
ion). Let ws add a few remarks concerning infinite graphs. In

an obvious way we may extend the symbol G —%’:—-» "H for in-

finite graphs G , H and any cardinal r . The following is

then true:

Theorem 5a : For every graph G and every positive in-

teger r there exists H such that G —%» H.

Theorem 5b: For every finite graph G and every cardi-

nal r there exists a graph H such that G —';:-» H . More-

over, if G does not contain a complete graph cn m verti-
ces then H may be chosen with the same property.
Theorem 5a may be proved by the following construction:

Let G = (V,E) , assume without loss of generality r =2
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Vv
(this is possible as G Jz"" E —“"5_—>1 -6 71 )e

Put H = (V=V,F) where £(x,y),(x",y )jeFcm=> either x =
=x" {y,y1€E or {x,x’3eE.
Given a colouring ¢: VxV—>{1,2% either there exists

x€V such that c(4x3xV) =1 or there exists 1 ‘such
that for every x€V there exists y with cllx,y) =4 .
From thias follows easily G %»n .

Theorem 5b follows from the Erddos-Rado generalization of the
classical Ramsey theorem for cardinal numbers and from the
representation of finite graphs by type-graphs, see I71,[81.
This is a straightforward application of type-graphs and we
ommit the proof.

This leads to the following problems (see also [2]1):

Problem 2: Let G be a graph and r a cardinal number.
Does there exist a graph H such that G —1;—-> H?

Moreover, providing that G does not contain a complete graph
with m vertices is it possible to choose H with the same
property?

Not much is known, even the case m=3 and r =2 1is un-
solved. The purpose of this remark is to show that even dea—

ling with vertex martitions one cannot be overoptimistice.
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