

Werk

Label: Article **Jahr:** 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0017|log10

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,1 (1976)

A NOTE ON TENSOR PRODUCTS ON THE UNIT INTERVAL Jan MENU, Antwerpen & Jan PAVELKA, Praha

Abstract: Closedness structures on the unit interval I viewed as a thin category are considered, in view of possible applications in the calculus of fuzzy sets. The paper is concerned with the way in which continuity or discontinuity of a tensor product on I is affected by the behavior of its right adjoint.

Key words: Closedness structure, tensor product, hom-product, fuzzy set.

AMS: 18D15, 22A15 Ref. Z.: 2.726, 2.721.67

<u>Introduction</u>. Fuzzy-set theoretists usually define the complement of a fuzzy subset A: U \longrightarrow [0,1] of a universe U via the formula

$$\sim A(x) = 1 - A(x) .$$

Although the above definition ensures the validity of de Morgan formulae for fuzzy sets, one loses the useful adjunction

An BcC iff Ac~ BuC;

in particular, \sim A is not a pseudocomplement in the lattice of all fuzzy subsets of U. This is due to the fact that the operations $x \wedge y$, $(1-x) \vee y$ do not constitute a closedness structure on the ordered set (I, \leq) viewed as a small thin category.

On the other hand, as A. Pultr showed in [4], any closed-

ness structure on I whose unit coincides with the greatest element 1 induces a closedness structure on the category $\mathcal{G}(I)$ of all fuzzy sets which satisfies additional conditions enabling us to draw further analogies with set theory (e.g. to introduce counterparts of power-set functors). Moreover, the correspondence between structures on (I, \leq) and $\mathcal{G}(I)$, respectively, is one-to-one.

Since the small category (I, \(\perp}\) is skeletal, a closedness structure with unit 1 on it is completely determined
by a couple (D,h) where

- (i) [(the tensor product, shortly TP) is an orderpreserving binary operation on I such that (I, I, I) is
 a commutative monoid,
- (ii) h (the hom-product, shortly HP) is a binary operation on I, order-reversing in the first and order-preserving in the second variable,
 - (iii) the adjointness formula

(0.1)
$$x = y \le z \text{ iff } x \le h(y,z)$$

holds for any x,y,zeI .

By associativity of a we obtain

$$h(x \square y, z) = h(x, h(y, z))$$

for all x,y,z ∈ I . Also observe that

for all
$$x,y,z \in I$$
. Also observe
(0.3) $1 = h(y,z)$ iff $1 \le h(y,z)$ iff $y = 1 \cap y \le z$.

From (0.1) it follows that all the increasing functions
- $\Box x$ preserve suprema (note that preservation of sup \emptyset means $x\Box 0 = 0$ for any $x \in I$), the increasing functions

h(x, -) preserve infima while the decreasing functions h(-,x) transfer suprema to infima. A straightforward distrussion of the behavior of and h on convergent sequences shows that, as a consequence of the monotonies, the above properties are equivalent to a being lower-semicontinuous and h being upper-semicontinuous as real functions on I×I with the product topology.

On the other hand, since I is a complete lattice, any lower-semicontinuous operation \square on I satisfying (i) and such that $x\square 0 = 0$ for all x can be completed to a closedness structure on I. The right adjoint h is then given by the formula

$$h(y,z) = Max \{x \mid x \cap y \neq z \}.$$

We shall say that two TP's \square and \square' on I are equivalent if there exists a strictly increasing map φ of I onto itself such that

$$\varphi(x \square y) = \varphi x \square' \varphi y$$

holds for all $x,y \in I$. Given a TP \square on I and an automorphism φ of (I, \neq) the formula

$$(0.4) x p^{\varphi} y = \varphi^{-1}(\varphi x p \varphi y)$$

defines a TP $\Box^{\mathbf{g}}$ on I equivalent to \Box . For the right adjoint we have

(0.5)
$$h^{\varphi}(y,z) = \varphi^{-1}h(\varphi y, \varphi z)$$

As stated above, the necessary and sufficient condition for a commutative and associative operation on I with zero O and unit 1 to be a TP is lower-semicontinuity.

Investigating topological semigroups on manifolds with boundary, P.S. Mostert and A.L. Shields described, in particular, all topological semigroups on a compact interval with the endpoints functioning as zero and unit, respectively. Since W.M. Faucett proved in [1] that any such semigroup operation is increasing with respect to the usual order, the (I)-semigroups of Mostert and Shields coincide exactly with those TP's on I which are continuous on I×I.

In § 1 we shall review some results of [1] and [3] in this direction and describe the right adjoints of some TP's including the general continuous one. It turns out that the right adjoint of a continuous TP is mostly discontinuous. Nevertheless, we may still ask what corresponds to the distinction between continuous and discontinuous TP's in terms of the hom-product. The results of § 2 indicate that such a distinction cannot be based only on the discontinuity pattern of h.

§ 1. We start with some examples of TP's. By D we denote the set of all points of IxI in which the HP h is discontinuous.

1.0 Put
$$x = 0^{(0)} y = x \wedge y$$
. Then $h^{(0)}(y,z) = \begin{cases} 1 & \text{if } y \leq z \\ z & \text{otherwise} \end{cases}$

$$D^{(0)} = \{(y,y) \mid y \in [0,1]\}.$$

Observe that, whatever the TP \Box , we always have $x \Box y \le x \Box 1 = x$, $x \Box y \le 1 \Box y = y$

so that D(0) is the greatest TP on I.

1.1 Let $\Box^{(4)}$ be the usual multiplication of real numbers. Then

$$h^{(4)}(y,z) = \begin{cases} 1 & \text{if } y \leq z \\ z/y & \text{if } z < y \end{cases}, \quad D^{(4)} = \{(0,0)\}.$$

W.M. Faucett proved in [1] that any continuous TP on I with no idempotents other than 0,1 and no nilpotents (i.e. elements $x \neq 0$ such that $x^n = 0$ for some n where the power is taken in the semigroup (I, \square) is equivalent to $\square^{(4)}$.

1.2 Put x = (2) $y = Max \{0, x + y - 1\}$. Then the HP

 $h^{(2)}(y,z) = Min \{1,1-y+z\}$ is continuous. As proved in [3], any continuous TP on I with no idempotents other than 0,1 and at least one nilpotent is equivalent to $u^{(2)}$.

1.3. Put
$$x = \begin{pmatrix} 0 & \text{if } x + y \le 1/2 \\ x \wedge y & \text{otherwise} \end{pmatrix}$$
. Then $= \begin{pmatrix} 3 \end{pmatrix}$

is a discontinuous TP on I with

$$h^{(3)}(y,z) = \begin{cases} 1 & \text{if } y \le z \\ \max \{1/2 - y, z\} \text{ otherwise} \end{cases}$$

1.4. Put
$$x n^{(4)}y = \begin{cases} 0 & \text{if } x + y \neq 1 \\ x \wedge y & \text{otherwise} \end{cases}$$
. Again, the pro-

duct is discontinuous and we have

$$h^{(4)}(y,z) = \begin{cases} 1 & \text{if } y \neq z \\ \text{Max } 1 - y, z & \text{otherwise} \end{cases}$$

$$D^{(4)} = \{(y,y) \mid y \in]0,1[]\}$$
.

1.5. Now we shall desdribe a construction which was shown in [3] to generate all continuous TP's from those equivalent with either $\Box^{(1)}$ or $\Box^{(2)}$.

Let $\{]a_{\infty}$, $b_{\infty} [] \infty \in A \}$ be a countable family of disjoint open subintervals of [0,1]. For every $\infty \in A$ let a TP \square^{∞} on $[a_{\infty}, b_{\infty}]$ be given. With the family $\mathcal{F} = \{(a_{\infty}, b_{\infty}, \square^{\infty}) \mid \infty \in A \}$ we associate the operation \square on \square defined

(1.1)
$$x = \begin{cases} x = \alpha & \text{if } (x,y) \in [a_{\infty},b_{\infty}]^2 \\ x = x & \text{if } (x,y) \notin \bigcup_{\alpha \in A} [a_{\alpha},b_{\infty}]^2 \end{cases}$$

It is easily verified that (1.1) is a correct definition of a TP on I whose set of idempotents contains $F = I \setminus \bigcup_{\alpha \in A} a_{\alpha}, b_{\alpha}[$. Furthermore, if all \square^{α} 's are continuous, so is \square .

On the other hand, given a continuous TP on I, denote by E the closed set of all its idempotents and consider the family $\{] a_{\alpha}, b_{\alpha} [] \alpha \in A \}$ of its complementary intervals. For any $\alpha \in A$ the restriction $a_{\alpha} = a_{\alpha} = a_{\alpha$

1.6 Let the TP \Box be obtained from a family $\mathcal{F} = \{(a_{\alpha}, b_{\alpha}, \Box^{\infty}) \mid \alpha \in A\}$ by construction 1.5. A straightforward computation yields the following form of the HP:

$$h(y,z) = \begin{cases} 1 & \text{if } y \neq z \\ z & \text{if } z < y \in I \setminus_{\alpha \in A} 1 a_{\alpha}, b_{\alpha} I & \text{or} \\ z < a_{\alpha} < y < b_{\alpha} & \text{for some } \alpha \in A, \\ h^{\alpha}(y,z) & \text{if } a_{\alpha} \neq z < y < b_{\alpha}. \end{cases}$$

1.7. From (1.2) we can now derive the discontinuity pattern D of the right adjoint to a general continuous TP \square . Let $\mathcal{F} = \{(a_{\infty}, b_{\infty}, \square^{\infty}) \mid \infty \in A\}$ be the decomposition of \square . Assume \square has at least one idempotent distinct from 0,1. Let $D_2 = \{(y, a_{\infty}) \mid a_{\infty} \neq 0, \square^{\infty} \text{ is a type 2 component,} y \in J_{a_{\infty}}, b_{\infty} [\]$.

Then

- (1) if there exists $\infty \in A$ with $b_{\infty} = 1$ we have $D = \{(y,y) \mid 0 \le y \le a_{\infty} \} \cup D_2,$
- (2) otherwise

$$D = \{(y,y) \mid y \in [0,1[] \cup D_2].$$

§ 2.

2.1. <u>Proposition</u>. Let c_1 be a TP on I. For any $z \in \{0,1\}$, the function h(-,z) is continuous iff its restriction h_z to $\{z,1\}$ is an involutory antiisomorphism of $(\{z,1\}, \pm)$.

<u>Proof.</u> (1) Assume h(-,z) is continuous. Since h_z is decreasing it suffices to show that $y = h_z h_z(y)$ for any $y \in [z,1]$. Next observe that

$$(2.1) y \leq h(h(y,z),z)$$

holds even without the assumption of continuity. Indeed, (2.1) is equivalent to $y \square h(y,z) \neq z$ which, by the commutativity of \square , amounts to $h(y,z) \neq h(y,z)$. It remains to prove the reversed inequality. Since h_z is continuous with $h_z(z) = 1$, $h_z(1) = z$, any $y \in [z,1]$ can be expressed as $y = h_z(u)$ for some $u \in [z,1]$. Then

$$y = h_z(u) \ge h_z h_z h_z(u) = h_z h_z(y)$$

where the middle inequality is obtained by applying the order-reversing function $h_{\rm z}$ to (2.1) with y replaced by u .

(2) Any antiisomorphism of ([z,1], \leq) is continuous. Now recall h(y,z)=1 whenever $y \neq z$.

In particular, h_0 is continuous iff it is an involutory antiisomorphism of I. As for the fuzzy-set motivation, this is exactly the case when we have for any ScI, beside $h_0(VS) = \bigwedge h_0(S)$, also the other de Morgan formula $h_0(\Lambda S) = V h_0(S)$.

For instance, the above condition is satisfied by two of the examples in § 1, namely

$$h_0^{(2)}(x) = h_0^{(4)}(x) = 1 - x$$
.

Moreover, it clearly remains valid for any TP equivalent to either 0 (2) or 0 (4) because in that case

(2.2)
$$h_0(x) = Q^{-1}(1 - q_1(x))$$

where φ is an automorphism of (I, \angle).

Now it is natural to ask which involutory antiisomorphnisms of (I, \leq) can be obtained as h_0 for some TP on I. In view of (2.2) this question is settled by the following

2.2. <u>Proposition</u>. For any involutory antiisomorphism f of (I, \angle) there exists an automorphism g of (I, \angle) such that

$$\varphi + \varphi \circ f = 1$$
.

<u>Proof.</u> Given a strictly decreasing function $f: I \rightarrow I$ such that $f \circ f = id$, there is exactly one point $a \in I$ with f(a) = a. Clearly 0 < a < 1.

Choose any isomorphism $\psi: [0,a1 \xrightarrow{\sim} [0,1/2]$ and put

$$\varphi(x) = \begin{cases} \psi(x) & \text{if } 0 \le x \le a \\ 1 - \psi \circ f(x) & \text{if } a \le x \le 1 \end{cases}$$

Since $f(x) \neq a$ iff $x \geq a$, and $\psi(a) = 1/2 = 1 - \psi \circ f(a)$, the definition is correct and it is easy to see that φ is an automorphism of (I, \neq) . Finally, for any $x \in I$ we have $\begin{cases} x \neq a & \text{then } \varphi(x) + \varphi \circ f(x) = \psi(x) + 1 - \psi \circ f \circ f(x) = 1 \\ x \geq a & \text{then } \varphi(x) + \varphi \circ f(x) = 1 - \psi \circ f(x) + \psi \circ f(x) = 1. \end{cases}$

Now we are going to discuss the extent to which the discontinuity pattern D of a hom-product h determines the behavior of its left adjoint D.

2.3. Proposition. If h is continuous then \square is continuous and equivalent to $\square^{(2)}$.

<u>Proof.</u> (a) Since h_0 is continuous, it is an involution so that

x = y = h(h(x = y,0),0) = h(h(x,h(y,0),0)

holds for all $x,y \in I$, and \Box is continuous.

(b) Suppose \Box has an idempotent a with 0 < a < 1. Let $x \ge a$, $y \le a$. By continuity of \Box there exists $u \in I$ such that $y = a \Box u$, hence

any = an (anu) = (an a) n u = anu = y .

Therefore also

y = ady = xdy = ldy = y .

Thus h(x,b) = b for any b < a, $x \ge a$, and none of the functions h_b , b < a is one-to-one which, by Proposition 2.1, contradicts the assumption on h. We conclude that \Box has no idempotent other than 0,1 and is therefore equivalent to $\Box^{(1)}$ or $\Box^{(2)}$. The HP $h^{(1)}$ is, however, discontinuous which completes the proof.

2.4. <u>Proposition</u>. If h is continuous in $I^2 \setminus \{(0,0)\}$ and discontinuous at (0,0) then \square is continuous and equivalent to \square

<u>Proof.</u> (a) First we prove \Box continuous in all points (x,y) such that $x\Box y>0$. Take $0<\varepsilon< x\Box y$, then

 $x \square y = h_{\varepsilon} h_{\varepsilon} (x \square y) = h(h(x,h(y,\varepsilon)),\varepsilon)$.

In the expression on the right, $x \neq 0$, $\epsilon \neq 0$ hence \Box is continuous at (x,y).

(b) h_0 is discontinuous at 0 because otherwise the monotony of h and the fact that h(0,-) is a constant equal to 1 would render h continuous at (0,0). Thus

(2.3)
$$1 = h_0(0) > \lim_{y \to 0^+} h_0(y) = a$$

We shall prove a = 0 . Suppose that, on the contrary, a>0 .

First we show $h_0(x) < a$ for any x > 0. Let $h_0(b) = a$ and b > 0. Then we have $x \circ y = 0$ iff $y \le a$ for any $0 < x \le a$ so that $h_0(a) \ge b$ while $h_0(x) = 0$ for any a > a which contradicts the continuity of a > a at a > a.

Next we claim $h_0(x)>0$ iff x<a. Indeed, from $h_0(b)=0$, b<a we obtain $h_0(t) \le b$ for any t>0 which contradicts (2.3). On the other hand, since $h_0(x) < a$ for x>0 we have $a \cap x>0$ whenever x>0, hence $h_0(a)=0$.

Finally, and = a. Indeed, the assumption and a < a yields $h_0(a \cap a) > 0$, and by repeated use of $h_0(a) = 0$ we obtain

 $0 < a \square (a \square h_0(a \square a)) = (a \square a) \square h_0(a \square a) = 0$ which is a contradiction.

The statement $h_0(a) = 0$ together with (a) imply that the function - $\square a$ is continuous in $\exists 0,a \exists$. Now the argument of part (b) in the proof of Proposition 2.3 leads to discontinuity of h at (a,a).

Thus a = 0 and $x \square y = 0$ iff x = 0 or y = 0. For any $\epsilon > 0$ we take the open neighborhood $U = \{(s,t) \mid s \wedge t < \epsilon\}$ of the set $Z = \{(x,y) \mid x \square y = 0\}$. We have $s \square t \leq s \wedge t < \epsilon$ for any $(s,t) \in U$ which completes the proof that \square is continuous.

(c) Again we can use part (b) of the proof of the preceding Proposition to show that a has no other idempotents than 0,1.

Since h is discontinuous at (0,0), D is equivalent to

It turns out that $D = \emptyset$ and $D = \{(0,0)\}$ are the only discontinuity patterns which appear exclusively for the adjoints of continuous TP's. More exactly:

2.5. Proposition. For any continuous TP 0 on I with at least one idempotent distinct from 0 and 1 there exists a discontinuous TP 0 on I with the same HP-discontinuity pattern.

Proof. (1) If the decomposition $\mathscr{F} = \{(s_{\alpha}, b_{\alpha}, s_{\alpha}, s_{\alpha}, s_{\alpha}, s_{\alpha}, s_{\alpha}, s_{\alpha}\}$ of s_{α} contains a type 2 component s_{α} with $s_{\alpha} < s_{\alpha}$ we can replace it by a TP $s_{\alpha} < s_{\alpha}$ on $s_{\alpha} > s_{\alpha}$ isomorphic to $s_{\alpha} > s_{\alpha}$ and obtain a family $s_{\alpha} > s_{\alpha}$. It is easily seen from 1.4 and 1.7 that Construction 1.5 applied to the family $s_{\alpha} > s_{\alpha} > s_{\alpha}$ whose HP-discontinuity pattern coincides with that of $s_{\alpha} > s_{\alpha} > s_{\alpha} > s_{\alpha}$ is discontinuous, so is $s_{\alpha} > s_{\alpha} >$

(2) If there are no components of type 2 with $b_{\prec} < 1$, choose an idempotent 0 < e < 1 and a TP $\widetilde{\Omega}$ on [0,e] isomorphic to $\Omega^{(3)}$. Now define

$$x c' y = \begin{cases} x \tilde{c} y & \text{for } x, y \neq e \\ x c y & \text{for } x, y \geq e \\ x \wedge y & \text{otherwise} \end{cases}$$

Again, we obtain a discontinuous TP \mathbf{Q}' on I with the same HP-discontinuity pattern as \mathbf{Q} .

We would like to thank A. Pultr who suggested the to-

pics and whose comments and encouragement were very much appreciated.

References

- [1] FAUCETT W.M.: Compact semigroups irreducibly connected between two idempotents, Proc. Amer. Math. Soc. 6(1955), 741-747.
- [2] MACLANE S.: Categories for the working mathematician, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
- [3] MOSTERT P.S. and SHIELDS A.L.: On the structure of semigroups on a compact manifold with boundary, Annals of Math. 65(1957), 117-143.
- [4] PULTR A.: Closed categories of L-fuzzy sets, to appear.

University of Antwerpen 2020 - Antwerpen Middleheimlaan 1 Belgium Matematicko-fyzikální fakulta Karlovy university Sokolovská 83 18600 Praha 8 Československo

(Oblatum 9.9. 1975)

·e