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A NOTE ON TENSOR PRODUCTS ON THE UNIT INTERVAL

Jan MENU, Antwerpen & Jan PAVELKA, Praha

Abstract: Closedness structures on the unit interval
I viewed as a thin category are considered, in view of
possible apfilications in the calculus of fuzzy sets. The
paper is concerned with the way in which continuity or dis-
continuity of a tensor product on I is affected by the be-
havior of its right adjoint.

&Lgﬂﬂ_ Closedness structure, tensor product, hom=-
product, zzy set.
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I duct o« Fuzzy-set theoretists usually define the
complement of a fuzzy subset A: U —>[0,1] of a universe
U via the formula

~Alx) =1 - alx) .
Although the above definition ensures the validity of de Mor-
gan formulae for fuzzy sets, one loses the useful adjunction

AnBecC 1iff A c~BuC ;

in particular, ~ A 1is not a pseudocomplement in the lattice
of all fuzzy subsets of U . This is due to the fact that
the operations xAy , (1 = x)vy do not constitute a closed-
ness structure on the ordered set (I, £ ) viewed as a small
thin category.

On the other hand, as A. Pultr showed in [4], any closed-
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ness structure on 1 whose unit coincides with the greatest
element 1 jnduces & closedness structure on the category
¢ (1) of all fuzzy sets which satisfies additional condi=
tions enabling us to draw further analogies with set theory
(e.g. to introduce counterparts of power-set functors). More=
over, the correspondence between atructures on (1,£) and
¢ (1) , respectively, 1s one-to-one.

Since the small category (1,4) 1is skeletal, a closed=
ness structure with unit 1 on it is completely determined
by a couple (o,h) where

(1) o (the tensor product, shortly 7p) is an order—
preserving binary operation on I such that (1, a,l) is
a commutative monoid,

(11) h (the hom-product , shortly HP) is a binary oP€~
rationon I , order—reversing in the first and order-preser—
ving in the second variable,

(1ii1) ‘the adjointness formula
(0.1) xayéz iff x4 h(y,z)
holds for any X,7,2€1

By associativity of O We obtain

(0.2) ‘ hixay,z) = hix,hly,2)}

for all X,¥s2€T1 o Also observe that

(0.3) 1 = hiy,z) iff 1&nly,z) iff ¥y = 10y£3Z

From (0.1) it follows that all the increasing functions
- @x preserve suprema (note that preservation of sup @

means x00 = 0 for awy xel ), the increasing functions
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h(x, = ) preserve infima while the decreasing functions
h(- ,x) transfer suprema to infima. A straightilorward diss
cussion of the behavior of g and h on convergent sequen-
ces shows that, as a consequence of the monotonies, the abo-
ve properties are equivalent to o being lower-semiconti=-
nuous and h being upper-semicontimious as real functions
on IxI with the product topology.

On the other hand, since I 1is a complete lattice, any
lower-semicontinuous operation o on I satisfying (i)
and such that x00 =0 for all x can be completed to a
closedness structure on I . The right adjoint h is then
given by the formuls

h(y,z) = Max{x| xayéz % .

We shall say that two TP's 0 and 0’ on I are equi-
valent if there exists a strictly increasing map ¢ of I
onto itself such that

¢(xoy) = gx 0’ gy

holds for gll x,yéI . Given a TP m on I and an auto-
morphism ¢ of (I,£) the formula

(0.4) xa¥ y= cy"'(qax o g:y)

defines a TP u? on I equivalent to o . for the right

adjoint we have
(0.5) 1?(y,2) = ¢ "nlgy,e2)

As stated above, the necessary and sufficient conditi-
on for a commutative and associative operation on I with

zero O and unit 1 to be a TP is lower-semicontinuity.
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Investigating topological semigroups on manifolds with boun=-
dary, P.S. Mostert and A.L. Shields described, in particular,
all topological semigroups on a compact interval with the
endpoints functioning as zero and unit, respectively. Since
W.M. Faucett proved in [1]l that any such semigroup operation
is incressing with respect to the usual order, the (I)-semi-
groups of Mostert and Shields coincide exactly with those
TP's on I which are continuous on Ix1I .

In § 1 we shall review some results of {1] and (3] in
this direction and deseribe the right adjoints of some TP s
including the- general continuous one. It turns out that the
right adjoint of a continuous TP is mostly discontinuous. Ne—
vertheless, we may still ask what corresponds to the distinc—
tion between continuous and discontinuous TP's in terms of
the hom-product. The results of § 2 indicate that such a dias-
tinction cannot be based only on the discontinuity pattern
of h.

§ 1. We start with some examples of TP's. By D we
denote the set of all points of IxI 4in which the HP h is

discontimious.
1 if y<«z ,

1.0 Pt x 0% Y =xXAY . Then hm(y:“ = { z otherwise

p=§(y,7) | yeLo,1L3.

Observe that, whatever the TP O , we always have
xX0y£x0l =x , xay£loy=y

(-]

so that O is the greatest TP on I .

- 74 -



l.1 Let c:"" be the usual ‘multiplication of real numbers.
Then

o) h AR gea N
h ' (y,2) = { , D = £(0,0)3.
z/y if z<y
¥.M. Faucett proved in [1) that any continuous TP on I
with no idempotents other than 0,1 and no nilpotents (i.e.
elements x#0 such that x® =0 for some n where the

power is taken in the semigroup (I,0) ) is equivalent to
(&)
o

1.2 Put x l:r(my=Max(O, x+y=-1%. Then the HP

h(”(y,z) = Min{1,1 = y + z } is continuous. As proved

in [3], any continuous TP on I with no idempotents other

than 0,1 and at least one nilpotent is equivalent to th) .

0 if x+y£1/2
l.3. Put x ncg)y = -{ « Then D(g)

x Ay otherwise

is a discontinuous TP on I with

1 if y<z
h(3) (y,z) = { )
Max {1/2 - y,z } otherwise

&) ]

w) 0 if x+y£1
le4. Put x D'y = { « Again, the pro-
XAy otherwise

duct is discontinuous and we have

1l if yéz
hun (y,2) = { .
Max 1 - y,z otherwise
4)
D( =4{(y,y) |y elo,al} .
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1.5. Now we shall desdribe a construction which was shown
in [3] to generate all continuous TP’s from those equiva~
Jent with either 0(4) or 0(2) .

Let {la, , b L|ce A} be a countable family of
dis joint open subintervals of [0,1] . For every oc € A
let a TP 0% on [a g, by be given. With the family

F =4(ay 40, 0%) | x € A} we associate the operation
O on I defined

xn'“'y if (x,y) e La_,b 12
(1.1) xuy={ ® )T

xny i ny) & U, Lagbgd?

It is easily verified that (1.1) is a correct defini-
tion of a TP on I whose set orf idempotents contains

F=INAJ Jay,b [ . Furthermore, if all o% ‘s are
continuous, so is O .

On the other hand, given a contingous TP on I , deno-
te by E the closed set of all its idempotents and consi-
der the tamily £ Jay ,bC|x€h$ of its complementary
intervals. For any &« & A the restriction 0¥ of O to
[ay rbe 1?2 is a continuous TP on [ay ,be ] with no
idempotents other than a, , by . Thus the ordered semi-—
group (Lay ,byl, &, 0%) is isomorphic to either
(1,£,a“Y) or (1,£,0%) - we sholl speak of type 1
and type 2 components, respectively. Now it is easy to

prove thit x0Oy = xAy whenever (x,y) ¢&k€)A Ca, ’boglz

e conclude that @ coincides with the TP derived from the

emily F =4lag ,b , 0% )| xe€ at (cr.[3), Theorem

£ ). We shall ceall F the decomposition of O .
- TE



l.Sg Let the TP O be obtained from a family

¥

% ={(a,by, O%) | < € 47 by construction 1.5. A

straightforward computation yields the following form of the

HP:
1l if y#4z
z if z<yeIN U, la_,b [ or
h(y,z) = x€A i
z<a < y<b, for some < € A,

h*(y,z) 1if a, £ z<y<b, .

1.7. #Ffrom (1.2) we can now derive the discontinuity pattern
D of the right adjoint to a general continuous TP O . Let
¥ =4(a ,by, 0% ) | « € A% be the decomposition of O .
Assume O has at least one idempotent distinct from 0,1 .
Let Dy = {(y,ap)la,% 0, 0% s a type 2 component,
yelay,b L3 .
Then

(1) 1if there exists o € A with by, =1 we have

D=4(y,y) |0byba 3v D, ,

(2) otherwise

D=4(y,y) |y el0, L3 VL D, .

§ 2.

2.1. Proposition. Let © be a TP on I . For any z €
€ L0,1C, the function h(- ,2) d4s continuous iff its res-
triction h, to [2z,1] is an involutory antiisomorphism

of ([2z,11,4).



Proof. (1) Assume h(- ,2z) is continuous. Since h,
is decreasing it suffices to show that y = hzhz(y) for any
y€ [z,11. Next observe that

(2.1) y <h(h(y,z),2)

holds even without the assumption of continuity. Indeed, (2.1)
is equivalent to yoh(y,z)42z which, by the commtativity
of o , amounts to h(y,z)£h(y,z) . It remains to prove the
reversed inequality. Since h, is continuous with hz(z) =

1, hz(l) =2, any y € [2,1] can be expressed as y =

h,(u) for some u € [z,1] . Then

¥y = hy(u) Zh,h h (u) = hh, (y)

where the middle inequality is obtained by applying the or-
der-reversing function hz to (2.1) with y replaced by u .
(2) Any antiisomorphism of ([ z,1],4) is continuous.

Now recall h(y,z) =1 whenever y4z .

In particular, ho is continuous iff it is an involu-

tory sntiisomorphism of I . As for the fuzzy-set motiva-

tion, this is exactly the case when we have far any ScI ,
beside h,(VS) = Ah(S) , also the other de Morgan formu-
- 5 )
la h(As) = V n(s) .
For instance, the above condition is satisfied by two

of the examples in § 1, namely

@) ) _
h, (x)—ho (x) =1-x.

Moreover, it clearly remains valid for any TP equivalent to

either n“) or |:'.l':‘ﬂ bécause in that case
-1
(2.2) ho(x) = @7 (1 - g (x))
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where @ i1s an automorphism of (I, &) .
Now it is natural to ask which involutory antiisomorph-
1isms of (I,%) can be obtained as h, for some TP on I .

In view of (2.2) this question is settled by the following

2.2. Proposition. For any involutory antiisomorphism
£ of (I,%4) there exists an automorphism ¢ of (1,&)
such that

Q@+ Qo £f=1.

Proof. Given a atrictly decreasing function f: I—>1
such that fof = id , there is exactly one point ael
with f£(a) = a . Clearly O<a<l .

Choose any isomorphism ¢ [0,al 22 [ 0,1/2] and
put
(x) if O£xéa
9 ={ 1~y o £(x) if agx£l

ke

Since f(x)4a iff xZa , and Wy(a) = 1/2 =1 - yo £(a) ,
the definition is correct and it is easy to see that @ is

an automorphism of (I, <) . Finally, for any x €I we have

{xéa then @ (x) + <o £(x) = ypx) +1- ypoforflx) =1
1 - zyof(x)+yf0f(x)=1.

x2a then <f(x) + Qo £(x)

Now we are going to discuss the extent to which the dis-
continuity pattern D of & hom-product h deternines the be-
havior of its left adjoint O .

2.3. Proposition. If h is continuous then O is

continuous and equivalent to nm’ .
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Proof. (a) Since h, 1is continuous, it is an involu-
tion so that
xay = h(h(x0y,0),0) = h(h(x,h(y,0),0)

holds for all x,yeI , and O 18 continuous.

(b) Suppose O has an idempotent a with O<a<l .
let xZ a, y£& . By continuity of O there exists uel
such that y = aou , hence

apy = aplagu) = (agpa)ou=agu=y.

Therefore also

y£agy<xaoy<£lay =7 .

Thus h(x,b) =b for any b<a, x2za , and none of the func-
tions hy , b<a is one-to-one which, by Proposition 2.1,
contradicts the assumption on h . We conclude that O has
no idempotent other than 0,1 and is therefore equivalent
to 0 or 0% , The P h ") 1is, however, disconti-
nuous which completes the proof.

2.4. Proposition. If h is continucus in 12\4(0,0) 3
and discontinuous at (0,0) then O 1is continuous and equi-
valent to 4!:(4)

Proof. (a) First we prove o continuous in all points
(x,y) such that xoy>0 . Take O0< € < X0O7 , then

xny =hg he (xoy) = hih(x,h(y,e)),e) .

In the expression on the right, x#%0 , € 4 0 hence O
is continuous at (x,y) .

(v) h, 1s discontinuous atk O because otherwise the
monotony of h and the fact that h(0, = ) 4as a constant
equal to 1 would render h continuous at (0,0) . Thus
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(2.3) 1= ho(o) > g.]-'-jimo*h°(y) =a

We shall prove a =0 . Suppose that, on the contrary, >0 .
First we show ho(x)<a for any x>0 . Let ho(b) =a
and b>0 . Then we have xQy =0 iff y<a for any O<x<£
£b so that ho(a)?.b while ho(x) =0 for any x>a
which contradicts the comtinuity of h at (a,0) .
Next we claim ho(x)>o iff x<a . Indeed, from
h,(b) =0, b<a we obtain hy(t)&b for any t>0 which
contradicts (2.3). On the other hand, since ho(x)<s for
x>0 we have 20x>0 whenever x>0 , hence ho(a) =0,
Finelly, &Da =a . Indeed, the assumption aga<a
yields ho(aua)>0 , and by repeated use of ho(a) =0 we
obtain

O<ao (auho(ana)) = (aua)nho(aua) =0

which is a contradiction.

The statement ho(a) = 0 together with (a) imply that
the function - Oa is continuous in 10,al . Now the argu-
ment of part (b} in the proof of Proposition 2.3 leads to dis~-
contimuity of h at (a,a) .

Thus a=0 and x0y =0 iff x=0 or y=0. For
any € > 0 we take the open neighborhood U =4{(s,t) | sAt<
<t % of the set 2 =4(x,y)| xoy =0} . We have sot<s A
At< €& for any (s,t)& U which completes the proof that
O is continuous.

(¢) Again we can use part (b) of the proof of the prece-
ding Proposition to show that O has no other idempotents
than 0,1 .

-8l -



Since h is discontimuous at (0,0), O is equivalent to

DM) .

It turns out that D =@ and D =4(0,0)% are the
only discontinuity patterns which appear exclusively for the

adjoints of continuous TP’s. More exactly:

2.5. Propositiop. For any continuous TP o on I
with at least one idempotent distinet from O and 1 the-
re exists a discontinuous TP 0’ on I with the same HP=-
discontinuity pattern.

Proof. (1) If the decomposition 7 ={(a, 1bx s
0% ) <€A} of D contains a type 2 component n*
with b,< 1l we can replace it by a TP ©* on
[a, sbed isomorphic to 0™ and obtain a family F’ .
It is easily seen from 1.4 and 1.7 that Construction 1.5
applied to the family &’ yields a TP 0’ whose HP-dis-—
continuity pattern coincides with that of o .« Furthermo—
re, since D * 1s discontinuous, so is o .

(2) If there are no components of type 2 with
b, < 1 , choose an idempotent O<e<l and a TP § on

3)

[0,e] isomorphic to ©O . Now define

b 4 B’ y for x,y€e
xa y= X0y for x,y2e
xAy otherwise

Again, we obtain a discontinuous TP o’ on I with the
same HP-discontinuity pattern as @

We would like to thank A. Pultr who suggested the to-
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plies and whose comments and encouragement were very much
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