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WEAK AND STRONG CONVERGENCE OF PROJECTION METHODS
IN NONREFLEXIVE BANACH SPACES
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. Abstract: In this paper, two theorems are proved, concer-
ning weak (or strong resp.) convergence of projgction'methods
for solving the operator equation Ax = £ in a Banach space
X ('11'.1:] A:X—X in general nonlinear and X in general non-
refiexlve?. Further, there are proved three lemmas enabling
us to verify the assumptions in these theorems.
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Introduction. W.V. Petryshyn, F.E. Browder and other au-
thors (see references in [4]) have studied, by help of func-
tional analytic methods, the convergence problem for projec-
tion methods applied to operators (in general nonlinear) in
Banach spaces having certain approximation and compacticity
properties, and also the use of projection methods for a con-
structive proof of existence and unicity of solutions to ope-
rator equations in these spaces.

This paper, starting from the above mentioned results

contained in [4] and from the author s papers [1],[2],[3] gi-
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ves sufficient conditions for the existence, unicity and
approximative construction of solutions to operator equa-
tions in Banach spaces for the case that we know further
informations concerning the operators in these equations.
Similarly as in [1),[2] the assumptions imposed to the ope-
rators are stronger than in [4], but the assumptions cone-

erning the space in which the operator equation is conside-

red are somewhat weakened.

§1
Notations. Let us denote X a real or complex Banach
space (in general nonreflexive), X* the corresponding
dual or antidual space, A: X— X an operator (in general
nonlinear) mapping X into X , and <ar,u) , the value
of the functional a € X* applied to the element 4« & X .

Let m,4 €N  where N denotea the index set of positive

integers.
We shall study the problem of existence, unicity and
approximative construction of the solution x & X to the o-

perator equation in the space X [4],[2]

(1.1)  Ax=f, A:X—X, feX

.

It is clear that, for obtaining an affirmative answer, suit-
able assumptions must be made concerning the space X and
the operator A .

Definition 1.1 [4]: We say that the space X has the
property (m)p , iff 3 a sequence {Xn3} of finite di-

mensional subspaces X cc X ,dim X,=m ,a sequence



{Ppt of linear projections Py = P,,f defined on X and

a constant C > 0 such that we have
0
(1.2) P X=X, ,X,cX, , for VmeN, UX =X

" (1.3) IR I&C for VWGN,T;WP& =P for m 24eN.

Now let {A,:X— X3, m=14,2,... be a sequence of approxi-
mative operators and let for each 4 e N there exist an
index m; € N and an element £; ¢ X  such that f; e

€A, (X). Let us consider the approximative equation
Vv

A

(1.4) Ay % = £,
4

Then the following definition is useful:

Definition 1.2 [4] : We say that the equation (1.1) is
projectionally strongly solvable or PS-solvable (projection~
ally weakly solvable or PW-aolvablev, resp.), if the follow-
ing three propositions are valid:

i) the equation (1.1) has the unique solution. X € X, Ax =

=f for YfelX

ii) 3N e N  such that for Vm, = N eand for VfieAm (X

the approximative equation (1.4) has the unique solution
X, € Am&(m p Am&x'b = £
iii) £, - f=Xy—x ,Ax=¢ (PS-solvability)

g, £ =5 X; — X, Ax> = <, £) for Yo € X; = X*

(PW-solvability) resp.
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In Petryshyn’s paper [41, there is solved the follow-
ing :
grg‘ blem A: To find sufficient conditions for PS-solva-
bility (PW-solvability resp.) of the operator equa'tion (1.1)
in reflexive Banach spaces X .

With respect to the fact that, in practice, one often
knows further informations concerning the operators Am, A

resp., it seems to be useful to formulate the following two

problems:

Problem B ([11,(2]) : We know that the approximative
equation (l.4) has the unique solution X; € & _L(JC) for
V£, € Am (X)) and for Ymj; 2N e N . We have to seek
for sufficient conditions ensuring that f£; — feX=>u,
converges to X € X (weakly or strongly) and that this X

is the unique solution (weak or strong) to the operator equa-

tion (L.1l).

Problem C ({21): Let { By : X—> X3 be a sequence of
operators in X . We know that the equation (1.1) has a unique
(weak or strong) solution x € X  for Y£eA(X) . We have
to seek for sufficient conditions en’sgring that for Am= A-
— By there exists a unique solution Xm € An (X) to the ap-
proximate operator equation (1.4) for Y€y € An(X) and
YmzNeN , and that £, £ => X, converges to X (weakly

§2.

In this paragraph, we shall give a solution to Problem Be.

or strongly).

Theorem 2.1. Let Ax =f be a given operator equation
in the real or complex Banach space X (in general nonrefle-

xive), where f e X and A: X— X is a weakly continu-
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ous on xg c X* (demicontinuous resp.) operator, in ge-
neral nonlinear (i.e., we have Xp € X,xp—~xeX,weXjc X*
=) Caw,Ax, > — {w, Ax)  (or Xp—> X == Ax, —> AX
resp.)).

Let the operator A and space X fulfil the following
assumptions: A .
(1) 3 a sequence {A,} of operators A,:X—X such

that their restriction A, = Am«/A“ x) to A4pX) is

bijective with K’,;_‘ : Ay (X) — Ap(X) as inverse operator

and such that the relation

(2.1) O ApX) =X
\ m=1
holds.

(ii) If for Vi eN3m,eN such that £, €A (X), then

“+
we have

_(2.2) f&eAmL(X),£4—>£=>(AK;:%—I)f_;‘—»0 for 4 — 00

(where I denotes the identity operator in A,m_&(x) and —>
or —> resp. stands for the strong or weak convergence in

X resp.).

(iii) 3 a weakly continuous (or strongly continuous resp.)
operator Vs X—> X  for which the relation (of left-hand
side inverse)

(2.3) xeX =) V(AX) = X

is fulfilled.
Then the following assertions are valid:

VEeX34{f, €A, (X)), f;—> £ such that we have
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1) £feX, f,ed,  X)— f=>x--z;:.f.;—‘Vf
“+

4 “
(or £ex"f&‘Am.<x)—->f-=>,xL=I;:i £, —>V£f resp.).

2) The operator equation AX = £ has for V€e X the u-

nique weak solution X = V¢ , le.€s, we have

(2.4) mex:cx*=) {ar, AVE)> = <arr, £

(or the equation AX = £ has for V£ e X the unique
strong solution X =Vf# , i.e., we have A(VE)= £ resp.).

3) The relation

(2.4 a) (X -vig, —o0
<
(aor
(2.4b) (I;,: -V, — 0 resp.)
a4

is valid for 4 — o0 .

Proof: (Existence of a solution) From (2.1) it follows
. -4
that for V€e X 3 a sequence {£:,3c U A, (X),
so that 3 a sequence {m;3% c N of indices m_ sauch
that we have

£. €A

<

m, K

In virtue of the assumption (i), there exists also a sequen—

-4

ce of elements x; = Am& 2 such that
Am‘;x_;, =£; — £ .
Now, we shall prove, using (2.2), the following weak
convergence in the space X : '



(2.5) Ax, —~ £ .

We have, clearly, for 4 —»> oo

(2.58) & eX*amy <wr,Axy - €)= <, CAKm - D)EL) +
+ S, £, -£)— 0

because the first term on the last right side . ~ges to
zero in virtue of the assumption (ii) and the secon.
goes to zero by the continuity of wr e x* .

Using the weak continuity of the operator V assumed

in (iii), we obtain from (2.5)

(2.6) Ax‘.v —_f =) VA.x,;' =X, —V£ .

Now, let us take

(2.7) w e .X: cX*
so that we have clearly, by (2.3),
(2.8) (mr,f;)=<w,Am‘L\x¢)=<w,A.x4>—
= <k Am 3> = <un ACYAR,)> - <w,<A-A,,,,4>I;1;_£,_>

so that we obtain for 4 — o0 , using (2.6), (2.2) and the

assumed weak continuity of the operator A on X;‘ c X*
(2.9) w eI:‘c I*,£¢-+ £,x,>Ve=> Car,AVE) = <wr,£)

i.e., the element V£ e X is for Yfe X a weak solu-
tion of the operator equation (1l.1l).
(Or, if we use the assumptions that the operator YV is

strongly continuous, i.e., X, —n => Vx;——> Vry. , and that
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the operator A is demicontinuous, we have
(2.10) Axy = £ =y x, = VAx, —> V¥
and therefore also

(2.11) Ax;, —~ AVE .

Because the weak limit of Ax,; in X is unique, it fol-
lows from (2.10) and (2.11) that we have

(2.12) AVE = £

i.e, the element Vfe X is a solution of Ax = £ for
Y£eX , resp.)

Assertion 3) follows in both the weak or strong version resp.

from the relation
(213) (Ko -V, = (x;:%i‘,‘; - VE) 4+ (VE-VE)
~

in virtue of the assertion 1) and Assumption (iii).

(Unicity of the solution): If there would exist x',x”e
e X such that AX’=£f, Ax® = ¢ then we would have by
(2.3)

(2.14) X'-x"= (VAX'~-VAX") = (V£-VE) = F . Q.E.D.

Remark 2; . Clearly, the sequence {f;chm&ﬂ()}, £, —
—+feX may be also stationary, this case being trivial
from the point of view of projection methods. But for this
trivial case, too, it follows from (2.2) that we have for
all sufficiently great indices 4 the relation £ = £ =
= Am‘ix‘-_-}.xi , 80 that, by (2-3),1“;1&?- x; =VAx; = VE
is the unique solution to Ax =f, and the relation Ax—

— £ is fulfilled trivially.
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Remark 2,2. Some applications of Theorem 2.1 are given
in [11,(51,[61.
§3

In this paragraph, we shall give a solution to the pro-
blem C.

Theorem 3.l. Let Ax =f be a given operator equa-
tion in the resl or complex Banach space X (in general non-
reflexive), where fe X &and A: X— X 1is a weakly con-
tinuous (continuous resp.) operator, in general nonlinear.

Let the following assumptions be fulfilled:

(i) 3 a continuous monotonically increasing real function
= (1) defined for n = 0 such that
(3.1) o (0) =0 ,

(ii) 3 an operator T: X® > X* such that we have
(3.2) .x,qgfex,nre:x*=>'l<an,A.x-Arg.>lZx(l(nr,.x-ny»”

so that the operator A is injective

(or

(3.20) X, peX= lAx-Agll 2 c (Ix - 1)

so that the operator A is injective, resp.)

(iii) 3 =& sequence of operators <{B, % B :X— X and
Y c X such that we have: Y weakly closed, Yo A(X) ,
(A-B 2(X)=(A-BXX)cY and

(3.3) xeX=B,x—>fg for m —

(or

(3.32) X eX=B,x—>4 for m-—>oco , Tesp.)

(iv) 3 a constant Xs(0,4) such that we have for the
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above mentioned operator T : X*— X* and for Yne N

(3.4) X, 6 ¥, v & X=> 1< T, 8, % = B, 4 > & Kew (1<, x=4.3])

(or 3 a constarit X e (0,4) such that we have for Ym e N

(3.42) x4 e¥= 1B, x-B, 4| = Xexllx-ngll) resp.)

Then for the sequence of operators

(3.5) Apn=A-3B,, A, : X—X

the followiné assertions are valid:

1) For Yn e N , the operators A, are injective (on?Y ).

2) We have

(3.6) weX)=TX™, £,6A4,(X), £, >feA(V) =X, =
=Kle ~x=ATt

and £, —>feY,X,—~x=><w, Ax)=<w,£> ,x€Y unique

(or

-1 o
(3.60) £, €A (X), £ —>FeAY) b Xp= A £ > x=AE

and £, ~—>feY, X, —> X =>Ax =£6=>f6 A (¥),x unique,resp.)

3) We have the following error estimation by help of the re-

sidum X, = £ - Ax,, :

2eY, wveX*, w=Tvr, Cuw,Axd =, £> == [(Tar, £ - Ax, O =
=l<’fv,Ax-Axw>lz & (Kar, X=Xy )

and therefore, denoting (3 = (3(x), 2 2 0 the inverse func-

tion to o« (n)

(3.6b) 0 «— @ (I<KTar, £-Ax,>1) 2 I<Kar, x-Xpy 2|

(which represents a componentwise estimation for the error

X = X of the weak solution X € ¥ to the equationAx=f,
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(or
X —> X, Ax = €= iy I = 1€ Axpy | = LAX-Axp N 2 cc Ul = Xp 1)

and therefore
(3.6c) 0 «— (B (Nf-Ax, )= 1% =Xpll resp.)

Proof (Injectivity of As, )« We have, following (3.2)
and (304)’

(3.7) weX* x,gpe¥, A, x=A,y = 0=KTr, A, x-A,gyl=
= KT, Ax =Ay.> = <Tw,Bpx - Bp 12 o (K, X~ g D)1~
- Ko (Ko, x-g>) = (1-K)ec (I<ar, x- g > 1)

and therefore, because (4-K)> 0 by the assumption (iv),
it follows from (3.7) by help of the properties of the func-

tion o (k) assumed in. (i), that we have
Kar,x=g>l= 0  for w;x*—m-@
so that A, is injective for Ym € N on Y (or we have,
following (3.2a) and (3.4a),
(3.72) X, €Y, Apx=A,py = 0=, x-Ap gl =
z lAx-Ayll- B, x-B, o ll2
z2U-K)x(llx-gl)

and therefore, by the assumption (i), it follows from (3.7a)
that
“.X—A*|=0=>x=d*

8o that again Am is injective for Ym € N onY .

(Construction of the solution) Let £,& Ap(X), £, —
—£eA(Y), For the unique solutions x,e€ A(X),xeY resp.
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to the operatér equations ApXn=fn , AXx =f resp.,

the relation

(3.8) £-£, mAX = ApX, = (A-Ap)X + (ApX-ApXp) =
= B”.X + (Am)‘ - .A-m_-x”)

must be valid following (3.5), from which we obtain with

help of the inequality (3.7) and of (iii)
(3.9) v € X ==y | Tor, £~ £, > = 1< Tw, Byx >+ T A X ~

~ A 00 2 (A=K (e, x = Y1) = 1<Tor, By x Ol

so that, for m — co , we obtain by help of (3.3), (3.9)
(3.10) 0 ¢ U-Kx (K, x-xpu2l) & I{Ta, £-£, 01 +

+I1<Twr,Byx>l — 0

for Ywre€X™ because B, x—0, f,—> £ and To eX* is
a continuous linear functional and therefore, in virtue of

the assumption (i), we have for £, ¢ A, (X), £f,—>£e AY)

(3.11) {yx-x, > —> 0 for Yo eX* i.e., Xp =

= A',:fn—\x =A"2 .

Now we shall prove that also for £, —>fe€Y the ele-
ment X which is the weak limit of .x,,,=A;: £, (i it ex-
ists), is a weak solution to the operator equation (1.1)

the case of a generalized solution). Clearly, we have, in
virtue of (3.5), (3.4) for Var=Tr e x: = T(X*) and for

£,—>feY, £, € An(X) the relation (because Y is weakly
closed by (iii) )
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(3.12) <ar, £, > = <ar, Ay Xp > = S, Axpy > =

— S, (A-Ay)x,)> = Sun Axy ) =<w,BoXqp) =

= S, Ax Y=<W, B X >+ T, By x - B, X ¥
from which it follows, using (3.4) and (iii)
(3.13) 0¢ I<ar, £y, ~Axp 2 & KT, By > =<, By x> 1 &

€ Koo CIKary X =%, 1) + 1<ar, By x>l

But the operator A is, by assumption, weakly continuous,
so that it follows from (3.11)
(3.14) xp—>x==d Axy—AX,f—>f6 X => £ = AX,—£-Ax .

Clearly, we obtain from (3.13), using (3.11), (i), (3.3) and

(3.14), for m = o
(3.15) 0« Um IKar, £, ~AX, 0| = {ar,£-Ax>| £
. myeo

£ fm 4K C<ar,x =, ) + [, By x D13 = 0
M-y

and therefore
(3.16) <w,£-Ax>=0 for YweXy=T(X")

i.e., if £, f6Y, Xp— %, then X is a generalized weak
solution to (1.1).

(Or, if we suppose the continuity of the operator A and
the validity of the relations (3.2a), (3.3a), (3.4a), we ob-
tain, estimating the norms in the relation (3.8) by help of
the inequality (3.7a) and (iii), for £, €4, (X),£,—>fe A(Y)

(3.17) Mg-£,. 02 MBoxh+ (A=) e (hx =%, 1) .
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Because f£,—> f , it follows from the inequality (3.17),

using (3,3a), (iv) and (i) end letting m — o

. ~1 -
(3.18) 1Ix ~Xp l— 0 i.e. x@=Anfw—>x=A feX .

Because the operator A is continuous by assumption, we ha-

ve
- '
(3.19) Xy =—> X =A £ = Ax, —> Ax =1¢ .)

Now, we shall prove that for f, —f e ¥ , the element
X € X which is the strong limit of X = Ap £ € Ay (X) (if
it exists), is a solution to the operator equation (1.1l), i.e.,
Ax =f , 80 that fe A(X) (no generalized solutions).
Clearly, we have for f,—feY, xn_-.[,:_f,w —-xe) by (iii)
and (3.5)
(3.20) ¢, = ApXm=AXpy - (A=A )X, = AX, - BpXm =

=Axp-By,x + (B, x-B,x,)

80 that we obtain by estimating the norms in (3.20) by help of
the inequality (3.4a)

(3:21) 0 14, - Ax, N £ 1B, x I+ Koo Clx = 1) .

Because A is supposed to be continuous and £, — fe X s
Xm —> X we have

(3.22) £n = Ax, — £ - Ax

and therefore, letting m —> oo in (3.21), we obtain by
help of the assumptions (3.3a) and (i)

(3.23) Qe ll€-Axl€ 0 ¢—>Ax = € , i.e. £ A=Y,
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(Error estimation) The componentwise error estimation
(3.6b) follows immediately from the inequality (3.2) in the
assumption (ii) of Theorem 3.l.

Similarly, the norm error estimation (3.6c) follows im-
mediately from the inequality (3.2a) in the injectivity as-

sumption (ii) of Theorem 3.l.

(Unicity of the solution) Unijcity of the solution to
the equation (1.l1) for £e€ A(X) follows from the fact that

A is assumed to be injective. For weak solutions and £eX\
N\ A(X) (generalized solutions) we can prove the uniqueness
of the weak solution to (1.l1) in the following way: let the-
re exist for £e X\ A(X) two elements x'e X, x"e X
such that (ar, Ax’>=<Car,£> and <ar,Ax")> = {w, £} for
Yor = Tor € x’o" = T(X™) . Then we have, following (3.2),

(3.24) 0= ICar, AX’ = AX">| = I<Tr, Ax'- Ax">| 2 o (14, x'= x">1)

and therefore, using the assumption (i), we obtain
(3.25) oy x'=x"> =0

for Yor € X , so that x’ = x” , Q.E.D.

§ 4.

In this last paragraph, we shall prove three simple lem-
mas which will enable us to verify the most important assump-
tions in the theorem 2.1.

The assumption (ii) in Theorem 2.1 can be verified by
help of the following

Lemma 4.1. (1) Let the sequence {(C, %} of operators
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cm; X— X be so that their restrictions E,w =C, IC x)
m

to Cm(X) ere bijective having the inverse operator (E’,,,)“.
(ii) Let 3 an injective operator C: X— X having

the following properties:

(4.1) x€X == Cpx —> Cx

(4.1a) C(X) 5 Cp(X) for YmeN .

(iii) For ¥Ym e N , the operators C<€m>-4 are
Lipschitz operators with the Lipachitz constants «, 0<

< u,”é &% < co , =0 that we have

4 A 5
(4:2) %', x" € Cp(X), m & N == 1 C(E) 7 %" - C(C) x"he

& o “X'—N”“ .

Then the relation
~ -1
(4.3) 2, € CM‘(I), z,—>zeCX)=><w, (C—Cﬂi)(c,%) z >0

is valia for Ywr e X* .
Proof. In virtue of the injectivity assumption (ii),

]
there exists the inverse operator € : C(X)—> X 8o that

we have

(4.4) x€C(X) = Ax=C2eX .

For 2; € Cn, (KD CCX), 2y € CO0, w2, , 3= O, 5w €2
we have, using the triangle inequality and the boundedness
of weX* ,
(heda) (<w, (Cm Cp (T 7%, 21 4 1w, CCEp T2y - 201 +
AL ;
1wy 2w ) b M e [N (Em Y 2l Na ez )] = 0
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for m — e , because we have Iz-z,;l—-p 0 by the con-

tinuity of the norm and further

(440) KOy )"~ 2l = he () - €CE,, 310, X1 2

I\

% BCx; - Cp Il & cc HCxy - Cix N+ 0 HCx = Cppyx I =

o 2z -zl+ colICx-C,,.%xll—» 0

for 4 — o , in virtue of the assumptions (4.1), (4.2).
Q.E.D.

The assumption concerning the injectivity of the opera-
tors A, in the theorem 2.1 can be verified using the fol-
lowing

Lemma _4.2. Let o, () be a sequence of continuous
monotonically increasing real functions defined for x = 0
and such that o, (0) = 0 . Let us suppose that, for Vm 2
2 Ne N , the operators A, X— X fulfil the condi-
tion
(4.5) X, x"eX = IA X'-A X"l 2 , C(Ix’-x"1) .

Then, for Ym 2 Ne N , the operators A, are in-
Jjective.

Proof: By contradiction.

-If there would exist x’, x” € X , such that A, x'=A,x"

and x'#$ x" for some m > Ne N , we would have

(4.6) 0= A, x'-A, X"l 2 o, (N’ = x"I) == Ix’= x"h= 0 .

which is in contradiction with x' % x" , Q.E.D.

The assumption (2.1) in Theorem 2.1 can be verified by
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help of the following
Lemma 4.3. Let the Banach space X have the property
(o), and let the operator A: X—> X have the property

(4.7) X, =B, (X) = ACX) 5 X, L =4,2,3,..

Then the relation

(4.8) O An(X) =X  (where A,=P, AR, )

is valid.
Proof. Because 'P,:" =P, , we have, using (4.7) for
Ym ¢ N
(4.9) X2A(X,) = AP, (X)> B, (X)= X, => P, XA, X)=
= B AR, (X)2Ph(X) =B, (X) = X,,

and therefore

o0 0 © 00 o0 CJX X
(4.1o)ng4xm:“%1t@(x> :MLs)qu—bI=“L=J43(M > U A (X UX, =

8o that we have

0
DA =X
with A, =P, AP, . Q.E.D.

Remark 4.1. We see by Definition 1.2 that if AtX— X
is surjective, Theorem 3.1 gives sufficient conditions for

the PW-solvability (PS-solvability resp.) of the equation

(1.1) in general normed linear spaces X which need not be

reflexive. In [4], some applications are given for the case of

reflexive Banach spaces.
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