

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log64

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 15,4 (1975)

Each concrete category has a representation by $\mathbf{T_2}$ paracompact topological spaces

Václav KOUBEK, Praha

Abstract: It is shown that every concrete category can be fully embedded into a category whose objects are paracompact Hausdorff spaces and whose morphisms are all nonconstant continuous (or closed continuous) mappings between these spaces.

Key words: Concrete category, full embedding, paracompact Hausdorff space, continuous mapping, closed continuous mapping.

AMS: Primary 54H10, 54G15

Ref. Ž. 3.963.5

3.969

The aim of the paper is to prove that each concrete category is isomorphic to a category whose objects are paracompact connected Hausdorff spaces and whose morphisms are all non-constant continuous (closed continuous, respectively) mappings between these objects. The theorem is based on the fact that each concrete category is fully embeddable into $S(P_2)$ proved in [3] by Kučera.

A similar result was obtained by V. Trnková [5] who proved an analogical theorem for metric (or compact Hausdorff) spaces under the assumption of the non-existence proper class of measurable cardinals. The present results do not require any special set-theoretical assumption.

The author would like to express his gratitude to V. Trnková who introduced him to this problematics.

<u>Convention</u>: Denote $P_A = \langle -, A \rangle$ the contravariant hom-functor from the category of all sets and their mappings into itself.

Definition. Let F be a contravariant functor from sets to sets. Denote S(F) the category, objects of which are couples (X,\mathcal{U}) , X being a set, $\mathcal{U} \subset FX$, and $f:(X,\mathcal{U}) \longrightarrow (Y,\mathcal{V})$ is a morphism if $f:X \longrightarrow Y$ is a mapping with $Ff(\mathcal{V}) \subset \mathcal{U}$. In particular, objects of $S(P_2)$ are couples (X,\mathcal{U}) , $\mathcal{U} \subset \exp X$ and morphisms $f:(X,\mathcal{U}) \longrightarrow (Y,\mathcal{V})$ are mappings such that $f^{-1}(A) \in \mathcal{U}$ for each $A \in \mathcal{V}$.

Theorem 1. Every concrete category can be fully embedded into the category $S(P_2)$.

Proof: see [3].

Theorem 2. There exists a metric continuum M such that if Z is a subcontinuum of M, $f:Z \longrightarrow M$ is a continuous mapping then either f is constant or f(x) = x for all $x \in Z$. M has x_0 pairwise disjoint subcontinua.

Proof: see [1].

Convention: For a given topological space T, T^X denote, the topological product of topological spaces T_i , $i \in X$, where each T_i is homeomorphic to T. Let T_i , $i \in I$ be topological spaces, then $\bigvee_{i \in I} T_i$ denote,

the topological sum of topological spaces T_i , $i \in I$.

<u>Convention</u>: Denote Z the set of all integers. Choose arbitrary but fixed disjoint subcontinua A, B, C_z , $z \in Z$ of M. Notice that the only continuous mappings between these three spaces are constants and the identities of A, B, C_z , $z \in Z$.

Theorem 3. There exists a full embedding $\Phi: S(P_2) \longrightarrow S(P_A)$.

Proof: see [4].

<u>Definition</u>. A topological space T is stiff if every continuous mapping $f: T \longrightarrow T$ is either the identity or a constant.

Theorem 4. Let T be a stiff Hausdorff space. Let $f: T^{0} \longrightarrow T$ be a continuous mapping. Then f is either a projection or a constant.

Proof: see [2].

Corollary 5: Let T be a stiff Hausdorff space. Then $f: T^{0} \longrightarrow T^{R}$ is a continuous mapping if and only if there exists a partial mapping $q: R \longrightarrow 0$, and a point $\alpha \in T^{R}$, $\alpha = \{\alpha_{i}\}_{i \in R}$, such that for every $x \in T^{0}$, $f(x) = \eta_{i} = \{\eta_{i}\}_{i \in R}$ where $\eta_{i} = x_{0}(i)$ if q(i) is defined, $\eta_{i} = \alpha_{i}$ otherwise.

In particular, $f: T \longrightarrow T^{N}$ is a continuous mapping if and only if there exists $N' \subset N$ and $\alpha = \{\alpha_{i}\}_{i \in N} \in T^{N}$ such that $f(x) = \eta_{i} = \{\eta_{i}\}_{i \in N}$ and $\eta_{i} = x$ if $i \in N^{r}$, $\eta_{i} = \alpha_{i}$ otherwise.

Corollary 6: The only continuous mappings between A^N and either B or C_{z} , $z\in Z$, are constants.

Lemma 7. Let K be a subcontinuum of a Hausderff space Q, let $a, b \in K$, $a \neq b$ such that $M = K - \{a, b\}$ is open in Q. Then for each continuous mapping $f: Z \longrightarrow Q$, where Z is a continuum, either there exists a component H of $f^{-1}(K)$ such that $a, b \in f(H)$ or there exists a continuous mapping $\tilde{f}: Z \longrightarrow Q$ such that $\tilde{f} = f$ on $f^{-1}(Q-M)$ and $\tilde{f}(f^{-1}(K)) \subset \{a, b\}$.

Proof: see [5].

Construction 8: In each C_z , $z \in Z$, choose a pair distinct points c_z, d_z . Define a topological space $\mathbb{D} = \bigvee_{\mathbf{z} \in \mathbb{Z}} \, \mathbb{C}_{\mathbf{z}} \, / \! \sim \, \, , \, \, \text{where} \, \, \, \, \mathbf{d}_{\mathbf{z}} \sim \, \mathbf{c}_{\mathbf{z}+1} \quad \text{for every} \, \, \, \mathbf{z} \, \in \, \mathbb{Z} \, \, \, .$ Choose distinct points $a_1, a_2 \in A$, $\mathcal{Y}_1, \mathcal{Y}_2 \in B$. For given set X define a topological space $E_X = A^X \sim (B \times \{0, 1\}) / \approx$, where {0,4} is a discrete topological space and $\alpha' = \{\alpha'_{\mathbf{x}}\}_{\mathbf{x} \in \mathbf{X}} \approx \{b_{\mathbf{1}}, 0\}, \{b_{\mathbf{2}}, 0\} \approx \{b_{\mathbf{1}}, 1\}, \{b_{\mathbf{2}}, 1\} \approx \overline{\alpha} = \{\overline{\alpha}_{\mathbf{x}}\}_{\mathbf{x} \in \mathbf{X}},$ where $a_x' = a_1$, $\overline{a}_x = a_2$ for every $x \in X$. For each object $P = (X, \mathcal{U})$ of $S(P_A)$ denote by P^* the space $E_{\chi} \vee (D \times \mathcal{U})$, where \mathcal{U} is the discrete topological space with underlying set $\,\mathcal{U}\,$. Let $\,\widetilde{\mathsf{P}}\,$ be a coarser topological space than P^* : a set V, open in P^* is open in $\widetilde{\beta}$ if and only if for each $u \in \widetilde{\mathcal{U}} \subset A^{\times}$ either $u \notin V$ or there exists m_0 with $\bigcup_{m>n_0} C_m \times \text{fulc } V$ and either $\{\mathcal{L}_{2},0\}\notin V$ or there exists m_{1} with $\bigcup_{n< m_{n}} C_{n} \times \mathcal{U} \subset V$; clearly $\widetilde{\mathbf{F}}$ is a connected paracompact Hausdorff space. Define a contravariant functor ψ from $\mathcal{S}(P_A)$ into the

category PAR of connected paracompact Hausdorff spaces: $\psi P = \widetilde{P} , \ \psi f = (P_A f \vee (1_B \times \{0,1\})) / \approx \vee (1_D \times P_A f / \mathcal{U}) / \sim \ ,$

where $\mathbf{1}_{B}$ and $\mathbf{1}_{D}$ are the identities of B and D. Clearly, $\psi \mathbf{f}$ is correctly defined and it is a closed continuous mapping.

Evidently the functor ψ is faithful.

Lemma 9. Let $f: T \longrightarrow \widetilde{P}$ be a non-constant continuous mapping.

- a) If T = A then $f(T) \subset A^X$;
- b) if T = B then $f(T) = B \times \{i\}$, where $i \in \{0,4\}$.
- c) If $T = C_z$ then $f(T) \subset D \times \{u\}$ for some $u \in \mathcal{U}$. In all above cases, f is an embedding.

Proof: Let K, a, & denote one of the following:

- a) $K = C_z \times \{u\}$, $\alpha = \langle c_z, u \rangle$, $\mathcal{L} = \langle d_z, u \rangle$ for some $z \in \mathbb{Z}$, $u \in \mathbb{U}$.
- b) $K = B \times \{i\}$, $\alpha = \langle b_1, i \rangle$, $b = \langle b_2, i \rangle$ for some $i \in \{0, 1\}$.

Suppose that the former case in Lemma 7 takes place, i.e. that there is a component L of $f^{-1}(K)$ with $a, k \in f(L)$. Then we get easily by Theorem 2 that L is homeomorphic to T and f is a homeomorphism of T ento K. Now, suppose that, for all K, a, k as above, the latter case in Lemma 7 takes place.

1) Suppose that f(T) meets the interior of some K, where K is from a). Then apply Lemma 7 on f, $K' = C_{z-1} \times \{u\}, \langle c_{z-1}, u \rangle, \langle c_{z-1}, u \rangle \text{ to obtain } f$

and again Lemma 7 to \widetilde{f} , $K'' = C_{z+1} \times \{u\}$, $\langle c_{z+1}, u \rangle$, $\langle d_{z+1}, u \rangle$ to obtain \widetilde{f} . Then \widetilde{f} coincides with f on $f^{-1}(K)$ and $\widetilde{f}(T)$ is a continuum which does not meet the interiors of both K' and K'' but it meets the interior of K. Then, as easily seen from the construction of \widetilde{f} , $\widetilde{f}(T) \subset K$. By Theorem 2, \widetilde{f} is an embedding of T onto K and $f = \widetilde{f}$.

2) Let the assumption of 1) not hold. Then $f(T) \subset A^{\chi} \cup U \times \{0, 4\}$ as for any continuum which does not meet the interior of any K from a).

Let us apply Lemma 7 on f, $B \times \{0\}$, $\langle \mathcal{L}_1, 0 \rangle$, $\langle \mathcal{L}_2, 0 \rangle$ to obtain \widetilde{f} and again Lemma 7 on \widetilde{f} , $B \times \{1\}$, $\langle \mathcal{L}_1, 1 \rangle$, $\langle \mathcal{L}_2, 1 \rangle$ to obtain \widetilde{f} .

If $\tilde{\mathbf{f}}$ is constant then clearly $\mathbf{f}(T) \subset \mathbb{B} \times \{0\}$ and \mathbf{f} is an embedding by Theorem 2. Analogously, if $\tilde{\mathbf{f}}$ is constant then $\tilde{\mathbf{f}}$ is an embedding of T onto $\mathbb{B} \times \{1\}$ and so is \mathbf{f} . Let $\tilde{\mathbf{f}}$ be non-constant. As $\tilde{\mathbf{f}}(T) \subset \mathbb{A}^X$, we may apply Corollaries 5, 6. We obtain that $\tilde{\mathbf{f}}$ is an embedding of T into \mathbb{A}^X and so is \mathbf{f} .

Lemma 10. Let $f: \widetilde{P} \longrightarrow \widetilde{R}$ be a continuous mapping $P, R \in S(P_A)$ with $f/B \times \{0\} = 1_{B \times \{0\}}$. Then there exists $Q: R \longrightarrow P$ such that $\psi Q = f$.

Proof: Lemma 9 implies either $f/B \times \{1\} = 1_{B \times \{1\}}$ or $f(B \times \{1\} = \langle \mathcal{L}_1, 1 \rangle)$. If $f(B \times \{1\}) = \langle \mathcal{L}_1, 1 \rangle$ then $f(\overline{a}) = \langle \mathcal{L}_1, 1 \rangle$ and therefore there exists $\mathcal{L}: A \longrightarrow \widetilde{R}$ such that $\langle \mathcal{L}_1, 0 \rangle, \langle \mathcal{L}_2, 0 \rangle \in \mathcal{L}(A)$ but this is impossible. Hence $f/B \times \{1\} = 1_{B \times \{1\}}$. Denote Δ_X the diagonal of A^X , Δ_Y the diagonal of A^Y , where $P = (X, \mathcal{U})$,

$$\begin{split} \mathbf{R} &= (Y, \, \mathcal{V}) \, . \, \, \text{We have } \, \mathbf{f}(\Delta_X) = \Delta_Y \quad \text{and so } \, \mathbf{f}(A^X) \subset A^Y \, . \\ \text{Corollary 5 implies that there exists } \, \mathbf{q} : Y \longrightarrow X \quad \text{such that } \\ \mathbf{f}/A^X &= P_A \, \mathbf{q} \, . \quad \text{As } \, \mathbf{f}(\langle \, \mathcal{b}_1 \,, \, 4 \, \rangle) = \langle \, \mathcal{b}_1 \,, \, 4 \, \rangle \quad \text{and } \, \mathbf{f}(A^X) \subset A^Y \,, \\ \mathbf{f}/D \times \{\, \mathcal{U} \,\} \quad \text{is an embedding from } D \times \{\, \mathcal{U} \,\} \quad \text{into } D \times \{\, \mathbf{f}(\mathcal{U}) \,\} \\ \text{and therefore } \, \mathbf{f}/D \times \mathcal{U} = A_D \times P_A \, \mathbf{q}/\mathcal{U} \quad \text{and } P_A \, \mathbf{q}(\mathcal{U}) \subset C \, \mathcal{V} \,. \quad \text{Hence } \, \mathbf{V} \, \mathbf{q} = \mathbf{f} \,. \end{split}$$

Lemma 11. Let $f: \widetilde{P} \longrightarrow \widetilde{R}$ be a continuous mapping such that $f/B \times \{0\} \neq f_{B \times \{0\}}$. Then f is constant.

Proof: Assume that $f/B \times \{0\}$ is non-constant. Then Lemma 9 implies that $f/B \times \{0\}$ is an embedding and so $f(\langle x,0\rangle) = \langle x,1\rangle$ for every $x \in B$. Therefore $f(\langle x,0\rangle) = \langle x,1\rangle$ for every $f(B \times \{1\}) = \langle x,1\rangle$ and by Lemma 9 we have $f(B \times \{1\}) = \langle x,1\rangle$. Hence $\langle x,1\rangle \in f(\Delta_X)$ and $\langle x,1\rangle \in f(\Delta_X)$ which is a contradiction (see Lemma 9). Therefore $f/B \times \{1\}$ is constant by Lemma 9. Analogously $f/B \times \{1\}$ is constant and so is f/Δ_X . Therefore f/A^X is constant by Lemma 9 and so is f.

<u>Definition</u>. Let \mathcal{K} , \mathcal{L} be concrete categories. A functor $\mathcal{D}: \mathcal{K} \longrightarrow \mathcal{L}$ is an almost full embedding of \mathcal{K} into \mathcal{L} if \mathcal{D} is an embedding of \mathcal{K} onto a subcategory of \mathcal{L} whose objects are $\mathcal{D}(\alpha)$, α running over objects of \mathcal{K} and whose morphisms are all non-constant \mathcal{L} -morphisms between these objects.

Theorem 12. Denote PAR the category of paracompact connected Hausdorff spaces and continuous mappings,
PAR a its subcategory with the same objects and continuous closed mappings as morphisms. Then each category L

PAR C L C PAR

is almost universal in the sense that each concrete category has an almost full embedding into ${\bf L}$.

Theorem 12 follows from Construction 9 and Lemmas 10 and 11.

A class C of topological spaces is called <u>stiff</u> for every continuous mapping $f: T \longrightarrow T'$, with $T, T' \in C$, is either constant or the identity of the space T = T' onto itself.

V. Trnková had constructed a stiff class (= not a set) of paracompact spaces as follows.

Let H_i , i=1,...,5 be five disjoint subcontinua of the Cook continuum. Choose points α , ν , ν_2 , $\nu_3 \in H_1$, ν_i ,

$$Q_{\omega} = (\bigcup_{\alpha \in \omega} H_{1}^{\alpha} \setminus \{ \mathcal{L}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{2}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{2}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{2}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{2}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{2}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha} \setminus \{ \mathcal{L}_{1}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{3}^{\alpha} \}) \cup (\bigcup_{\substack{i = 2/3 \\ \alpha \in \omega}} H_{i}^{\alpha}, \mathcal{L}_{3}^{\alpha}, \mathcal{L}_{4}^{\alpha}, \mathcal{L}_{4}^{\alpha},$$

 $G = Q_{\omega}$ is open iff it fulfils (1) - (5).

- (1) $g_{i}^{\alpha}(G \cap H_{i}^{\alpha})$ is open in H_{i} for all i = 1, ..., 5, $\alpha \leq \omega$;
- (2) if $\alpha \in \omega$, $\alpha \in G$ then

 $g_4^{\circ}(G \cap H_4^{\circ})$ is a mbh of x_4 in H^4 whenever $\alpha = 0$

 $\varphi_{1}(G \cap H_{1}^{B})$ is a mbh of U_{1} in H_{1} whenever $\alpha = \beta + 1$ G contains H_{1}^{T} for all $\alpha' \leq \gamma < \alpha$ (and some $\alpha' < \alpha$) whenever α is limit;

- (3) if $\alpha \in \omega$, i = 2, 3, $n_i^{\alpha} \in G$, then $g_i^{\alpha} (G \cap H_i^{\alpha})$ contains a *mbh* of n_i in H_i ;
- (4) if $\kappa_5^{\omega} \in G$ then G contains H_1^{γ} for all $\alpha' \leq \gamma < \omega$ (and some $\alpha' < \omega$).
- (5) if $s_5^{\omega} \in \mathcal{G}$, then $g_i^{\infty}(\mathcal{G} \cap \mathcal{H}_i^{\infty})$ contains a mbh of s_i in \mathcal{H}_i for all $(i, \infty) = (0, 4), (\omega, 5)$ or i = 2, 3 and $\infty \in \omega$.

By means of Lemma 7, one can prove that $\{Q_{\omega} \mid 1 \le \infty \}$ is a stiff proper class of paracompact spaces.

The existence of a stiff proper class of paracompact spaces follows also from the main result because "large discrete category" can be almost fully embedded in PAR.

References

- [1] H. COOK: Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund.Math. 60(1966), 241-249.
- [2] H. HERRLICH: On the concept of reflections in general topology, Proc.Symp.on extension theory of topological structures, Berlin 1967.
- [3] L. KUČERA: Úplná vnoření, Thesis, Prague 1973.
- [4] A. PULTR: On selecting of morphisms among all mappings between underlying sets of objects in concre-

te categories and realizations of these, Comment.Math.Univ.Carolinae 8(1967),53-83.

[5] V. TRNKOVÁ: Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment.

Math.Univ.Carolinae13(1972),283-295.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 17.9.1974)