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FREE ALGEBRAS AND AUTOMATA REALIZATIONS IN THE LANGUAGE
OF CATEGORIES
Jir{ ADAMEK, Praha

Abstrgct: Given a functor FP: X—> X the category
of F —algebras is formed as a generalization of universal
algebras. The paper exhibits a construction of free F -al-
gebras and a discussion of its convergence. These results
are applied to realizations of behaviours by sutomata in ca-
tegories, as defined by Arbib and Manes. We solve their pro-
blem: when do minimal realizations exist. A necessary and
sufficient condition (under additional assumptions) 1s that
F preserves co-meets of quotient objects (= pushouts of
;plmgrphiame). A stronger result is.obtained for normal

unctors.
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Prior to this paper, V. Trnkovd characterized functors
from sets to sets with minimal realizations (private commu-
nication); the present results are independent of hers. I am
very much indebted to V. Koubek, J. Reiterman and V. Trnkovéd
for valuable discussions on this subject.

I. Free functor-glgebras

Given an endofunctor P: X —> X  denote by X (F)
the category of F -algebras (i.e. pairs (T,w) where T
is an object of X and @ :FT—>» T ) and homomorphisms
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£:(T,@)—> (T, w’) which are X -morphisms f: T—> T’

for which the following diagram commutes:

Pr—2 .7

||

FT'—2 o T/

Notice that 1) the category of universal algebras of type
A=4M 3., (where M; are cardinals, possibly in-
finite, considered as sets) is just Set (F) where F
is the sum of hom-functors, ]:‘=¢}/I Hom (M;,-) . 2) If
F is a monad then the category of monad-algebras is a
full subcategory of W (F), 3) Generalized algebraic
categories A(F,G) , where F and G are set functors,
represent another generalization of the categm:ies of uni-
versal algebras (see [1 - 3, 5, 6]) but in case G is the

identical functor we have A(F,G) = Set(F) .

The notion of free algebras can be transferred to
functor-algebras as follows: let A be an object of X
and let (A* %) be an algebra. (A*, 9*) is free over
A if there exists a morphism 4 3A—> A* such that for
each T -algebra (T, w ) and each morphism £3: A—> T
there exists a unique homomorphism £ : (A% cy") — (T,»)
for which £ » = £ .(Thus free algebras are just universal
arrows ¢f ine natural forgetful functor from X (F) to *.)
Free algebras may be obtained by the following algorithm
or, more generally, by the following transfinite construc-
tion. In what follows, we assume that a cocomplete catego-

ry ¥ and a functor F: X —> %  are given.
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Free algebra algorithm. Given an object A € X% put
%:A; W:,=.Av PA} WéS.A.VP(AV PA),ou, Wm+4 - .A. VPWm .

Denote g, : FW,— W, , and A:A—W, the canonical
maps.

The algorithm is said to converge if for the colimit
A*¥ . ¢ Vo> A* of the diagram

& 41 vF& 1vF({vF&)

W, —> W, —— W2 —_— W3 ... there exists

g : FA¥— A* with 9Ft, = ¢, ,gn, m= 0,452, 00«
In that case (A*, @) is a free algebra over A with res-

pect to t,: A—> A*, as will be seen later.

Definition. A functor F is said to preserve unions
of sequences if it preserves the colimit of any diagram

u,— 1I.4—> Uz——> of subobjects.

Proposition. If F preserves unions of sequences and
hom (FA, A) %= @ then the free algebra algorithm con-

verges for A . If moreover F  preserves countable' sums

then A* = Av ¥ F™A .
mzA1

Proof. It is easy, notice that Jom (FA, A+ im-
plies that A is a coretraction and so &, ,vFm,... are

subob jects.

Note. Since each finite hom-functor from sets to sets
clearly preserves unions of sequences, the above algorithm
directly generalizes the construction of free finitary uni-

versal algebras.
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Free glgebra construction. Given an object A define

by transfinite induction objects W

[, and morphisms 4 :

:Wy—>W; (344 are arbitrary ordinals) such that for

% )

{n; FE1<P

any ordinal ¢ a diegram D, = (4W;3;_ ., 14,

is constituted (1.5.,/31.’1.; '1% and s big = "’ha‘) .

W=A; W=AVFA; s, is canonical.

4 non-limit: W."M-AVF"[.“; Byt = 4AVP°-‘»,%-4 .

‘L limit: a) W,;' and b&’é: Wé_')W'

s , 4< 4 ,1is the

colimit of :D‘;'

b) W_;+4 =Av PW,; 5 A, i is defi-

)

ned by: & A. is canonical, 4. 1'”}4-4‘
/

4+4,4 “4,0 4

The construction is said to stop after < steps if

A

A, is an isomorphism. Then put A¥ =W, , ¢" =

C4dy &
-1

= (Pgygee) m:FA¥—> A¥ | where m: FW,—> Wy g

is canonical; put &* = 4,0 « Denote by m;: A—->w,._+_,,

and m, : FW;—> W, _, the canonical maps.

‘ Proposition: If the free algebra construction stops
then (A*, @A) is a free F -algebra over A with res-
pect to AA .

. Té prove the proposition we exhibit a construction of

| Ahe .extension of a morphism £: A—> @, , where (Q,d)

is an algebra, to a homomorphism f:,.- (A* %) —> (R, ) .

Set. £ = £% .where £*:W;—> 6 is defined by induc-

tion. £c £ m; =¢ ama £5m, o FFEY ) for
.&'ii‘.;itt.f“'b;‘- = £% for all 4 > 3 defines £*. £

is a homomorphism since £% = £%+1,

i, and
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)-1m“___ £ar.g,A .

£“+4m‘ = S Fe* and so- d'Pfd’!‘ =£d('°x+4,a

The uniqueness follows since given g : (A% ") — (@, )

4 £

put g xgb"_‘-‘ , then 9«0 =£% implies 93‘.’ =£ for all 4 .

Note. Koubek and Kirkovd-Pohlové presented a construc-
tion of free algebras in case X = sets and mappings.
Their construction is easily seen to be essentially the sa-
me as the one above, in particular as far as the stop is
concerned. They prove that the construction stops for A
iff there exists a set BoA with card FB = cawdB . More-
ever, if the construction does not stop then free algebras

do not exist. We generalize the last result.

Définition. A category ¥ is said to fulfil the core-
trezt chain condition if it is coretract-locally small and
for each well-ordered diagrem D of coretractions (D con-
sists of coretractions p,;:W;—> W;, 3 &< are ordinals
less than 9 ) the following holds: if U and ¢;:W;—1U
is the colimit of D then for each co-bound of coretrac-
tions 11', 9,:;:?@—-»11’ the unique morphism ¢ : U—> U’

with g g: = @/; is also a coretraction.

Examples. The following categories clearly fulfil the
coretract chain conditién: 1) sets and mappings, 2) vector
spaces (over any field) and linear mappings, 3) sets and

relations.

Theorem. If % fulfils the coretract chain condition
and Swom (FA,A)# f§ then there exists a free F -algebra
over A iff the free algebra construction stops for A .
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Proof. If swom (FA,A) % (§  then ”:,o is a core-

traction and it follows from the coretract chain condition

A 1 . .
that all 43 are coretractions. Denote t; ;:W; —> W

I

such morphisms that t,

PRIPE 4W . Assume that (3B, )

i

is a free algebra over A  with respect to d,: A—>B .
To prove that the free algebra construction stops we shall
find coretractions d;: W;—> B with d'-i."’-‘:,é"'dﬁ .Since
X is coretract-locally small there exist # <41 such

that '311,;' 1s an isomorphism; then so is bg'whé

Set d; ,m;=d, and d;, 4m;=yFd; and for 4
limit define d; by dymgz=d; for <4 .Clearly
d-,;_/ai‘3-= d; ,let us prove that d; are coretractions. Choo-
se ©:FA—>A then (1)fd, = , and so d, is a co-
retraction. Put d'= m, Pt‘in,{. then we have the extension

of m; to a homomorphism £: (B,y)—» “‘Q”,J) and a
straightforward proof by induction shows £d.5, = ’51'-1—4,5. for
all 3 £ 1 +4 , in particular £d4+4= 4W«‘.¢4'It follows now
from the coretract chain condition that also d; for 4 1li-

mit are coretractions.

IT. Minimsl reglizations by automats in categories

Following Arbib and Manes we call F an input process
if free algebras exist over any generator. Then for fixed
objects I,Y of ¥ we define the category of automata:
objects are automata M = (@, g, e, 3) where (@, o)

is an F -algebra,
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<fI

Fo—- g2 ¥ Q rre Yo+

71X
T’C I &€ Y Fo* ¥
>\ 4’ g B
I e ld FQ—— Q=Y
AUTOMATON SIMULATION BEHAVIOUR

and ©:I—0 , B:8—>Y are morphisms in X 4 morphisms
are simulations &: M—> M’ which means a homomorphism
6:(R,d)—> (§’,d’) for which ='= 6z, 36 =0 .
(This generalizes e.g. sequential machines: ¥ = sets and
mappings, F(-) = = x S where =\ is the input alpha-
bet, @, are states, (3 1is the output map, &° is the next-
state function and © maps a singleton set I onto the ini-
tial state of M .) If the extension 'u:;: I*— @ is epi

then M is said to be reachable.

The extemnal behaviour of M is the morphism fy =
= (Be} .Conversely, a realization of a morphism £ : I* —
—> Y is an automaton M whose behaviour is £ , The rea-
lization M  is minimal if 1) M is reachable, 2) for any
other reachable realization M’ there exists a simulation
F: M—M .

Arbib and Manes asked under which condition minimal
realizations exist. For constructive input processes, i.e.
functors F for which the free algebra construction always
stops, we give an answer in terms of co-meets of quotients.

Let { N }t‘.‘. be a collection of quotients of an
object A, i.e. epis kt : A—-)At . Recall that a co-meet,
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or a multiple pushout, of the collection is a quotient

% : A—>B such that 1) there exist g, :A,—>B with

& = b, , 2) for each k’: A—>B’ and p} : A, —> B’

with %'= n| &, there exists £: B—» B’ such that ﬂ::f»ﬂ«t

for all t € T . In other words, co-meet b-tﬁ:bt is the
€

biggest quotient less than all ’*’-b in the quasiorder x £ »
iff # =4's» for some A’ .

A functor T 1is said to preserve co-meets if for each
non-initial object A and each collection of quotients of
A their co-meet is preserved by F in the sense of pre-
servation of colimits (shortly: if F (/M*k,) = M*Fk, ).
Recall that an object A is initial iff for each object X
there leads exactly one morphism from A to X . The catego-
ry X is called connected if swm (X,Y)4+ g for arbitrary
objects X,Y with one possible exception that Y is ini-
tial.

F is said to admit minimal realizations if for each
objects I,Y and each £: I¥—,Y there exists a mini-

mel realization of £ .

Theorem. Let ¥ be a cocomplete, connected, co-locally
small category. Then a constructive input process I' admits

minimal realizations if and only if F preserves co-meets.

Proof. I. Sufficiency. Given £ : I*—Y , let
(8, dy , T4, B); teT3 be the collection of all

reachable realizations of £ ; denote x = ('z:t)*%: I*~a, .
Since all x, are quotients of I* and ¥ is co-locally

small there is no harm in assuming that T is a set (and
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not a proper class). Let x =tOT*)Lt' with ¢ I*— @

and p,: 8,—@Q ,2=n,x, .Since B, x, =f there exists
a unique (3: 6—Y  with B, = Bp, for all t . Since
Fx= N*Fr, and Cp,d;)Fx, =xg' there exists a unique
d:FQ—> @ with p,d, = FFp, (i.e., 1 (@, o) —
— (@,d") ). It is easy to verify that (Q,d, xe s, #) is

a minimgl realization of £ .

II. Necessity.

A) F preserves epimorphisms with non-initial domain.
Let % : A—B be epi, let fo,9: FB—>C be morphisms
with f2 Phk = ¢ Ff . We shall prove that h =g . 1)C=3B.
Recell the construction of extensions - it is clear that if
£ Fh =qFh then M = % : (A*,9"—> (B, p) . Let
M=(8,d,z, ) beaminimal realization of %} . Sin-
ce clearly "":» is epi, we have two reachable realizations
of X + N* = (B, n,k, 1y) and N%= (B, 9, %, 15) .
There exists a simulation 6 N*™—> M ; then R, =1y
and 6, is epi (6’&;- =% ) end 80 6, is an isomorph-
ism; clearly 6'1;4 is a ainulatiori M— N* , Further-
more, there exists a simulation € : N* > M ; we get a si-.
mulation 6 = 6’1;46"%: N%— NT. Then 4156= 5 ,
thus 6 = 41, , and €: (B, g)—> (B, ) .Therefore p =g .
2) C is arbitrary. Set A’= Av (C with i, :A—A’
and 3, : C—» A’ canonical, analogously B’, i, and
Fp - Put M= v i,: A—> B’ . Since A is non-
initial, we may choose f£f: C—> A and put £/: A—A
with £/4, =4, and €3, =€; ¢': B’— B  with
g'ig = 1y and ¢'jp = %€ .To prove that p = g it suf-
fices to show 1“4; Pg,’ = 5D9'P9,' : since hom (A,C) % ]

- 597 -



and fwom (B,A)+ fJ we have hom (B,C)+ ¢ which im-
plies that there exists A with &4y =15 , then o =
=hipnFy Fig= h3gqFg’Fig = g . Since &’ is
epi and clearly g & = 4%f’ we have 3'.341.};‘9,’ Fih' =
=5'.B QFg'Fi’ which, according to case 1), implies
- . ’
4y Fo’ = 359Fg -

B) F preserves co-meets.
Let & =to: A, where ’*’t : A-».xt ape epis, & :
1 A— X with & = 41“,')0* . Let g:tf‘\:f‘bt where ¢ :
:FPA—Y  with g =g, Fh, . (A is a non-initial object.)
Since Ff and all Fk, are epis, to prove that £ pre-
serves the co-meet it clearly suffices to find a (necessa-
rily unique) n : FX—Y with 2 Fk = q -

Denote a.: X—> XvY and & :Y— X v Y the

canonical maps. Define £ Wf—s (X vY)*: £1 =

A hvg) s £ e 457 and £ = g P

) 1

for 4 limit f';‘/‘-,_‘.ﬂ.’._.fﬂ" ;y 4<4 . Put £= £%

s A¥ 5 (X v Y)* and consider a minimal realization
M=(8,d,9,B3) of £ .For each t €T put f3 = (3?:)[:‘—;
—> (XvY)* where {31-.— bxvy(@evqt) 3 [5‘:*4@-’-.-. /hxvya,p*
and @i+4m4 = qxvy}"ﬁ:' . Further, put ’l:,t:A"'—’
— x_:‘, %t‘—’ (/::xf ’%t)’;xt and recall %e = %y whe-
re ,%:= /axtk_tv, Jv::"m% =AMt & & and ki+4mvi= g:x* F,Oei .
Since kt are epis and P preserves epis (recall that

A is non-initial) clearly j/e,t are epis, too; moreover,
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ﬁt%t = £ for each t € T . Therefore we have reachable
realizations of £: M, = (X}, Py s s Ry, Be) and

there exist

A
FAf 0 A £ x,yx AP grE xy Yo

P&, %y B T ¥ p
X
Fx: —9; X: Fe, —J> o)

simulations 6;: M —> M . Then 9 = (6, lcx* YA, for
each t € T and so there exists a unique xy : X— Q@
with ¢ = sy% . To prove that there exists x with Q=
= nFPhk we find xy: FO—> Y  with Q= x,Fg (and
put & = x,Fr ).

Since (39,: = £ we have {39,:./5:01;0= £/a:mo=/axv>b'g'
and so (3Fqg = AXVY,G-Q . Assume hom (X,Y) 4 ¢
(if contrary, then ¥ 1is initial and as fwm (FA,Y) % /¢
also FA is initial and so, since hom (X,A)+ @ implies
bom (FX ,FA) 4 ff , also FX 1is initial and the case
is clear), analogously Jwom (F(X vY) y XvY)£ 0. It
follows that then & 1is a coretraction; choose ¢: X v Yo

—Y with ¢c¢& = 47 . Further bxvy is a coretrac-
tion for '(4xvy); 5 14yy  where

W:P(XvY) — (XvY) is arbitrary. Then
L

X

xvy(.%Pg, and we may put

g=c 4":(” ;bx"ylrg= e

* . .
ry= ¢ 4 xyy B ¢ This concludes the proof
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Recall.that an object 0 is a zero if for each object
A there leads just one morphism from 0 to A and just
one from A to 0 ; then for arbitrary objects A,B  the-
ré leads just one zero morphism (i.e. morphism factorizable
through zero) from A to B . Given f: A—B , the ker-
nel (cokernmel) of £ is the equalizen (coequalizer) of £
and the parallel zero morphism.
A category X with zero is normal if it has kernels and
each monomorphism is a kernel of some morphism, dually: co-
normal. A category both normal and conormal is called exact.
A functor F: X— K is normal if it preserves ker-
nels, i.e. F(%ker f) = 4kerx F£ . Analogously for exact
functor. The above result on minimal realizations can be
strengthened for normal functors: the preservation of co-

meets implies that F is an input process.

Theorem. Let X be an exact, cocomplete, co-locally
small category. Then for a normal functor F: X —>3 the
following is equivalent: v

1) P is.a constructive input process which admits
minimal realizations,

2) F preserves co-meets,

3) P is exact and preserves unions of subobjects.

Proof. We proved 1—> 2 already.

5 2 —» 3. It suffices to show that T is conormal
since then F is exact and it pree " ves unions, as, given
a gﬂlection { "‘%“-’»-I of subobjects of an object, clear-
ly Uk = Sew (M* cokax ky) . Let £: A—B  be

arbitrary, there exists an epi~-mono factorization £f= me
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(it follows from the fact. that ¥ is cocomplefe and co-
locally small, see e.g. Herrlich, Strecker 34.1). Then
coker £ = coker m . Since F ias normal, Pm is a
monomorphism, thus Fm = %ot coker Fm , moreover m =
= Jaov coker m  and so Skeu (eoker Fm)= feor (Feokerm ),
Now, ' preserves epis (the exactness of X allows us

to stop worrying about the initial object) and so

F coker m and cofker Fm  are epis with the same
kernel. Therefore F cokern m = cofeer Frm and, as Fe
is epi, we get cofker Ff = Feoker £ .

3—>1. Since F preserves unions it is clear that in
the free algebra construction SQD,Q,D +1 1is epi and so
Aedy,4  is epi for all 4: if 4 is 1i,it it follows from
the preservation of unions and we have S“,m.;“ = 4dv PSQ”.,;
which is epi if Swo is. Since all Swo.; are guotiants
of W“’a » it follows from the co -local smallness that the
free algebra construction stops. The preservation of co-

meets follows.

Added in proof: Too late I found & paper of M, Barr,
whose results are closely related to the current paper, I

mean: Coequalizers and Free Triples', Math.Z,166(1970), 307-
322.
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