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Abstract: Input processes F: Set— Set , such that

each mapping £: FP1—7Y is a behavior map of a mini-
mal machine, are characterized.
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In the present note we characterize all input proces-
ses F: et —> Set such that each mapping £: F?1 —7
has a minimal realization, i.e. it is a behavior of a "mi-
nimal® machine (see [31).
The note has three parts. In I, we give a sufficient condi-
tion for the existence of minimal realizations in Dyn (F),
F: ¥ — % (see [3]). In II, we apply it to the case
% = Set  and solve fully this situation. In III, we give
a very simple sufficient condition for the existence of free
F -algebra over any finite set and fof the existence of
minimal realizations of each £3 FP1—7 with I fi-

nite.
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I.

1. Let X bea .category, F: X— X%  be a func-
tor. The category &yn (F) is defined in [3] as fol-
lows x): objects (called F -dynamics) are pairs (X,9)
where X eoly X, e X(FX,X) ; nmorphisms (called
dynamorphisms) €: (X,d)—> (X',d") are those morphisms
fe K (X,X’)  which satisfy e Ff=fod . Let
£:X— Y e a morphism of X, o’=(X,d") be an F -dy-
namics. Any pair (¢ ,o’), where g :o'—> o' is a dynamor-
phism and £ factorizes through g , is called an ¢ =rea-
lization of £ .
let (% ,M) be an image factorization system for X (see
e.g.[2]). We say that the 0- -realization is reachable if
g €% . We say that (g4,0;) is a minimel o -realization
of £ if it is a reachable o’-realization of £ and for
any reachable ¢ -realization (g,,9,) of £ there ex-
ists exactly one dynamorphism K : 0 —> 0% such that
hogy=9 -

2. Let € be a class of morphisms of a category X .
A diagram Q:D—> X is called an € -spectrum if

(i) D is a thin category and for each o, 0 '€ ofy D
there exists o” e 04] D such that D(oj0”") + 0 + Dl 0™ .

x) The categories Dym (F) are closely related to the
generalised algebraic categoriea A(CF,G) considered
in [1],[52,07],0(8].

Here, F',G are set-functors (i.e. endofunctors of Set )
and if G = 4odent , then A(F,G) = Dyn (F) .

]

xx) This notion is a simple generalization of realization of
a behavior map, considered in {3]. Realizations precisely
in the sense of [3] are considered in II and III of the
present note.
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(ii) for each morphism m of D, & (m) is in €. .

We say that a push-out

= TINE
(%) X Y
?\/

Z

is an ¢ -push-out if o, € ¢ .

let F: X — X be a functor. We say that T preserves
¢ -push-outs (or colimits of ¢ -sggc;:g) if the image of
each <% -push-out is a push-out (or the image of a colimit

of any ¥ -spectrum & is a colimit of Fe D ).

3. Let € be a class of morphisms of a category ¥ .
We say that € is factor-admissible if
(a) B,y €% whenever (x) is an ¢ -push-out;
(b) «, € € for all d s of; D , where
{Wjdoey ldeotjDiy=cotbm D, & is an € -spectrum.

We notice, that, for example, the class epi of all epi-

morphisms of ¥ is factor-admissible.

4. Let 4 be a class of epimorphisms of a category
S . We recall that < -factor object of X € obi X 1is any
, where g € X(X,X’), 98¢, ¢ -factor ob-
Jects (g4, X4) , (92, X,) of X are isomorphic if there

pair (g, X')

exists an isomorphism & e X (X,,X,) such that 6o Gy = @3 -
X is said to be <% -co-well-powered if each its object

has only a set of non-isomerphic ¢ _factor objects.
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5. Theorem. Let (%¢,72) be an image factorization
systen for a category X , € be factor admissible. Let
X . have % -push-outs and colimits of < -spectra and a
functor F: X —» X preserves thems If X is £ -co-
well-powered, then each morphism £: X — Y of X has a
minimal o’ -realization in Oyn (F) for any F -dyna-
mica o= (X, d).

Proof is a routine induction and therefore it is omit-

ed.

6. Proposition. Let ¥ be a category with coproducts,
2 be a class of its epimorphisms. Let £ be the system
of gll functors F: % —> X which preserve % -push-outs
and colimits of ¢ -spectra. Then L is closed under form-
ing coproducts over a set. If, morsover, ¥ is complete,
is factor-admissible and each 6'e ¢  is a retraction (i.e.
there exists a morphism w of X auch that 6o = 1 ),
then Q is closed under forming factor-functors.

Proof. Clearly, Sl is closed under forming coproducts

over a set. Let K be complete, € be factor-admissible and
each 6'¢ ¢ 1is a retraction. Let F be in 2, »:F— G be
an epitransformation.

a) We prove that G preserves % -push-outs. Let (%)
be an ¢ -push-out, #: GY—» W , &:GZ —> W be mor-
phisms such that o @ = F o G9 ., Then there exists
exactly one @ :FV—> W  such that Fo-»y =p-FpB ,

Fe», = 9o PJ" . Now, it is sufficient to show that @

factorizes through », . Find @:Y—>Y such that
/3 ° (ﬂ, = "V o Then
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@-@oP/SoP(usﬁo;)yof'(a.=ﬁoG(u.oJ’V.
b) The proof that G preserves colimits of <% -spectra

is analogous.

7. Examples:
A) O = Set: Set is cocomplete,( epi, mono ) is
the only image factorization system of Set, epd is fac-

tor-admissible and each its element is a retraction.

Lemma: Let M be a finite set. Then Hom (M, =)
:Set—> Set preaervea epi-push-outs and colimifs of epi-spec-
tra.

Proof. We sketch the proof for F=~Hom (2,-) gi-
ven by FX=X=X, Ff = £x£f .

a) Let (& ) be an epi-push-out,£:FY—> W, ¢ FZ —
— W Dbe mappings such that £ o P =g o Fy . Define h:
:FY—> W by M (x) = (feFx)(x) , where X € FX is cho-
sen such that (F(Boo)) (x) =2z . It is sufficient to prove
that (fo Fx ) (xX)= (£ Fx)(X) whenever (F(fBox))(x)=
= (F(BRox))(X) . We have x=<x1,x2>,‘i=<§4,'i2> and
the last equation implies o< (X )= (30 o< (X,), Be oo (%) =
= fox(X,) . Since (%) is a push-out, there exist chains

2 2

1 1 1 P 2 —_
and X2= fo, tqi"’7t'm = X2

.X1=to,'t1 gtsey tﬁ‘l—’ X,,

; ; . 7 ¢
such that oc(t:)soc(tz+4) for 4+ o044, 7(-&%):7(1_“4)

for i even, 4=1,2 . Consider the chain

1 1 - .2 - ;2
Sty %p Y= Sty %, 0, €y, X Dyeees CEL %, > = (X, 1y <R, e
oy $X, K>
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b) Let D: D Set be an epi-spectrum,
{X;{ecyld €otjD}?)y=colim & . Then «, are epi, so Fay,
are epi. It is sufficient to prove that for each z € Fd(d),
x'eFPD () suéh that (Focg)(z) = (Fory )(z’)  there
axists c eotj D such that D(d,c)+ @ + D(d’,c) and

(FOCAN(x) = (FD(4)) (') . Since z=<x,,%,%2'=<z],2)),

we have o (%,)=oc,(z!) . Find c; € 065 D such that

(Q(?))(zf;}:(@(i‘f)) (z;_) and chocse ¢ such that
Dle,,e) + g *D(e,,c) .

Corollary: If F 1is a factorfunctor o. any

‘.LLGLAHm(MQ,,—) , where A is a set and all M, are

finite sets, then each mapping f: X— Y has a minimal

o’ -realization in Dyn (F) with any o= (X, ") .

B) X = Veet (i.e. the category of all real vector
spaces and all linear mappings). Yect is cocomplete ,
(eni, mono ) is the only image factorization system for

Veet , epl is factor-admissible and each its element is a
retraction.

Lemma: If M is a finite dimensional vector space,then
Hom (M,~): Veet — Yoot preserves epi-push-outs and
colimits of epi-spectra.

The proof is omitted.

Corollary: If F is a factorfunctor of any
al'_éA%m(.M.a,,—) y where A is a set and all M, are
finite-dimensional vector spaces, then each linear mapping

£f: X—Y 7as & minimal o -realization in Qyn (F)
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with any o = (X, 0")

II.

1. Let F: X— X be an endofunctor, T : Dyn(F)—
— X be the forgetful functor, i.e. T(X,d)=X, Tf =1 .
We recall (see [3]) that F is called an input process if T
has a left adjoint. Denote it by L : X — Dyn (F) . Put
FPP=ToLl , 1let q : Jolemt —> Fe® be the transforma-
tion given by the adjunction. Denote L X = ¢Pox , Ax) . If
£: %X — ¥ is a morphism of ¥ , then its LX -rea-

lization is called realization only (see [31).

) 2. All input processes F: Set-—> Set  are charac-
terized in [5]. We recall that a set-functor F is an input
process if and only if it is not excessive (a set-functor F
is excessive iff card FX = cand X for all sets X

with caxd X = 4 for some cardinal number 44 ).

3. Theorem. Let T be a set-functor. The following

assertions are equivalent.

(1) F preserves epi-push-outs and colimits of epi-
spectra.

(2) For each mapping £: X—> Y and each F -dynamics
o=(X,d) ,there exists a minimal o -realization of £ .

(3) For each infinite set X , each mapping £: X—2
and each F -dynamics o= (X,d") there exists a minimimal
o -realization of £ .

(4) F is an input process and each mapping
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£: PO — Y  hes a minimal realization.

(5) F is an input process and each mapping
£:FPX— 2 , with X infinite, has a minimal realiza-
tion.

(6) P is a factor-functor of somea-.é_lalim (Mg ,-),

where A is a set and all M, are finite sets.

4. (6)==> (1) follows from I.7, (1)==)(2) from I.5,
(2) == (3) is evident. (6) ==>(4) follows from I.5, 6, 7 and
[ 5], because a_.&LA Hom (Mo ,=~) and their factor-functors
are not excessive, (4) == (5) is evident. Thus, we have to
prove the implications (3)==»(6) and (5) =(6). This is
the aim of the rest of II .

5. Let F: Set — Sat be a functor. If X 1is a

set, define
xF= U (FEI(FY) .

1Y X
conel Y< carnel X

We recall (see [4]) that a cardinal m is called an unat-
tainable cardinal of F if Xp % f , where card X =4 .

F  is not a factorfunctor of any @J._LA Hom (M,,~) , where

L
A is a set and all M, are finite sets if and only if F
has an infinite unattainable cardinal (it follows from the

Yoneda lemma).

6. The proof of non (6)==> non(3): Let F: Set—> Set

be a functor, which is not a factor-functor of any
Gy Hom (Mg,~), where A is a set and all M, are

finite sets. Let ¥ be an infinite set such that Y, + r.
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(i.ee cored ¥ is an unattainable cardinal of F ). Put
X =Yudial, where @ ianotin ¥, 2 =Xx=10,1f and
we suppose X A Z = & . Let 4,7 3+ ¥ —> Z be mapp-
ings given by w;(m) =<a4,4 >, 4 =0,1 . Let

£:2— 2
be given by £(<a,1>) =4 , £(z) =0  otherwise. De--
note by K the set of all finite subsets of Y. If X e
eX , put Zy=Ku [(X-K)x40,431 ,gy:2—Zy ia &i-
ven by qy(<{x,i>) = x whenever xe K, i=0,1, gy (2)=2
otherwise. If X ¢ X', denote by q!,((. : Zy—> Zyg  the
mapping such that gy = gy ° gy - Clearly, £ factorizes
through each gy - If 4{=0,4, put Au [Pw; 1(YE) ,

K, = [F(qqov)1(Yy) . Thus, if KcX' , then A} =
=[PX 1CAL) . since guo(Y) A gyo v (V) s

finite, .A.c:( nA:‘ =g .

Put B* = U [FPq 17CAL), B - o [Fe,17"CAL) .
Then B°nB'= @, By n By = 7 . L:: o =(Z,d) bean
P -dynsmics, defined as follows. d(z)=<a ;4> ifzeB,
o"(z)=<a,0) otherwise. We shew that £ has not a minimal

o -realization.

a) First, we define dy: FZy —> Zy  auch that g *
: (Z2,d)—>(2,d) is a dynamorphism. It is sufficient to
put df(2) = <a,1y if zeBy, Jy(x)=(a,0) other-
wise.

b) Let (t,o’) be a minimal o -realization of £,
o’=(T,z) . Since t factorizes through each g, ,it fac-
torizes through the mapping h: Z—{<a,0?,<a,1>? v Yy
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given by h((a,i))-<a.,—£),h(<q.,1’.))-q, ifyeY,4+=0,1.
But if ce ¥p , then c¥= [Fuglte)eA® amd (FA)(c®) =

=[Fhoy)I(e)=lFlhor)l(e)=[Falle?) , 80 (2o Ft) (%)=

=(xeFt)(c") . On the other hand, de’=<a,0Y, de’ =

=<a,1) and £(<a,0%) % £(<a,1>) , 80 (tod)(c®)sk
% (tod)(c?) , Which is impossible.

7. The proof of non(6) =y non(5): Let Y,a,X,Z,0=(Z,0),
£ have the same meaning as in 6. Let us suppose that F is
an input process, let

x:F°Z 4 2
be the mapping such that x o Ny = iatmz and
2:(F®2,8,) —> 0 iaa dynamorphism. Put

f
9=PQZ-L->Z—>2 i

Then, ¢ has not a minimal realization in Dyn T , the
proof is the same as in 6.

TE,

1. Let F: Set —» Set be'a functor. If ¥ is an
input process, then for each set X , there exists a free
F -algebra (F®x »£x) over X (i.e. X is embedded in
Pax ' by the mapping Nnyg: X— P@x such that for
each mapping £: X—»Y  and each F.-dynamics (Y, d")
there exists exactly one dynamorphism g : (P®x » Ag) —
— (Y, d") such that ¥eMx=f ). But free F -algeb-

Tas may exist over some sets X although T is not an in-
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put process.

2. Theorem. Let F: Set — Set be a functor such
that card Fac, £ ¢, 'X) hen for each non-empty fini-
te or countable set X there exists a free F -algebra
(F@x, £x) over X and each mapping £: FoX — Y
has a minimal realization in Dyn (F) .

Proof. Since cand Fag £ ¢, , < is not an unat-
tainable cardinal of F (see [41 ). Thus,

@ ! co
Feg= U (Fi, ) (FA,) whenever X, = U A, ,

m= A4
Ap cAp,y and ip: Ay —> X, is the inclusion. This
implies that the algorithm for the construction of a free
F -algebra over a set X , described in [ 5], stops at @,
whenever X+ fand card X 4x, .Hence, (F®X, £,) exists and

@
cord F "X & ¢, . Now, we define a subfunctor @ of F

by G(¥Y= U . (FPE)(FXK)
F: K> Y

K fonite °

restriction of F£. Then GX =FX, G®X =F°X whene-

ver card X € ¢, . Since G has no infinite unattainab-

, 6f 1is a domain-range

le cardinal, it is a factor-functor of somea.le.lAHM(Ma,,-),
A is a set, My are finite. Thus, if card X £ X,

each mapping £ G2X =Fo% — ¥ has a minimal realiza-

tion in Dyn (G6) ,s0 in Dyn (F) .
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