

Werk

Label: Article Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log53

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,3 (1974)

ON MINIMAL REALIZATIONS OF BEHAVIOR MAPS IN CATEGORIAL AUTOMATA THEORY

Věra TRNKOVÁ, Praha

<u>Abstract</u>: Input processes $F: Set \rightarrow Set$, such that each mapping $f: F^{\odot} I \longrightarrow Y$ is a behavior map of a minimal machine, are characterized.

 $\underline{\text{Key words}} \colon \text{Set functor, free algebra, behavior maps, minimal realization.}$

AMS: 00A05, 18B20, 18C15 Ref. Z.: 2.726, 8.713

In the present note we characterize all input processes $F: Set \longrightarrow Set$ such that each mapping $f: F^{\oplus}I \longrightarrow Y$ has a minimal realization, i.e. it is a behavior of a "minimal" machine (see [3]).

The note has three parts. In I, we give a sufficient condition for the existence of minimal realizations in $\mathcal{D}_{YN}(F)$, $F: \mathcal{K} \longrightarrow \mathcal{K}$ (see [3]). In II, we apply it to the case $\mathcal{K} = Set$ and solve fully this situation. In III, we give a very simple sufficient condition for the existence of free F-algebra over any finite set and for the existence of minimal realizations of each $f: F^{\mathfrak{D}} I \longrightarrow \mathcal{Y}$ with I finite.

- 1. Let $\mathcal K$ be a category, $F:\mathcal K\to\mathcal K$ be a functor. The category $\mathcal O_{\mathcal N} n$ (F) is defined in [3] as follows x): objects (called F-dynamics) are pairs (X,σ) where $X\in \mathcal O_{\mathcal F} \mathcal K$, $\sigma\in\mathcal K(FX,X)$; morphisms (called dynamorphisms) $f:(X,\sigma)\to(X',\sigma')$ are those morphisms $f\in\mathcal K(X,X')$ which satisfy $\sigma'\circ Ff=f\circ\sigma'$. Let $f:X\to Y$ be a morphism of $\mathcal K$, $\sigma=(X,\sigma')$ be an F-dynamics. Any pair (g,σ') , where $g:\sigma\to\sigma'$ is a dynamorphism and f factorizes through g, is called an σ -realization of f
- Let (4, m) be an image factorization system for \mathcal{K} (see e.g.[2]). We say that the σ -realization is reachable if $g \in \mathcal{L}$. We say that (g_1, σ_1) is a minimal σ -realization of f if it is a reachable σ -realization of f and for any reachable σ -realization (g_2, σ_2) of f there exists exactly one dynamorphism $h: \sigma_2 \longrightarrow \sigma_1$ such that $h \circ g_2 = g_1$.
- 2. Let $\mathfrak E$ be a class of morphisms of a category $\mathcal K$. A diagram $\mathfrak D\colon \mathbb D\longrightarrow \mathcal K$ is called an $\mathfrak E$ -spectrum if
- (i) D is a thin category and for each $\sigma, \sigma' \in \mathcal{O}_{\mathcal{I}}$ D there exists $\sigma'' \in \mathcal{O}_{\mathcal{I}}$ D such that $\mathbb{D}(\sigma, \sigma'') \neq \emptyset + \mathbb{D}(\sigma, \sigma'')$.

<sup>x) The categories Dyn (F) are closely related to the generalised algebraic categories A(F,G) considered in [1],[5],[7],[8].
Here, F, G are set-functors (i.e. endofunctors of Set)</sup>

and if G = ident, then A(F,G) = Dyn(F).

IX) This notion is a simple generalization of realization of a behavior map, considered in [3]. Realizations precisely in the sense of [3] are considered in II and III of the present note.

(ii) for each morphism m of \mathbb{D} , $\mathcal{D}(m)$ is in \mathscr{C} . We say that a push-out

$$(*) \qquad \qquad X \qquad \qquad X$$

is an $\mathscr C$ -push-out if $\alpha, \gamma \in \mathscr C$. Let $F: \mathscr K \to \mathscr K$ be a functor. We say that F preserves $\mathscr C$ -push-outs (or colimits of $\mathscr C$ -spectra) if the image of each $\mathscr C$ -push-out is a push-out (or the image of a colimit of any $\mathscr C$ -spectrum $\mathscr D$ is a colimit of $F \circ \mathscr D$).

3. Let $\mathscr E$ be a class of morphisms of a category $\mathscr X$. We say that $\mathscr E$ is $\underline{\text{factor-admissible}}$ if

- (a) β, γ ε % whenever (*) is an % -push-out;
- (b) $\alpha_d \in \mathcal{E}$ for all $d \in obj D$, where $\langle W; i \alpha_d | d \in obj D \rangle = colim \mathcal{D}$, \mathcal{D} is an \mathcal{E} -spectrum. We notice, that, for example, the class epi of all epimorphisms of \mathcal{K} is factor-admissible.

4. Let $\mathscr C$ be a class of epimorphisms of a category $\mathscr K$. We recall that $\mathscr C$ -factor object of $X \in \mathscr{O}$ $\mathscr K$ is any pair (Q,X'), where $Q \in \mathscr K(X,X'), Q \in \mathscr C$. $\mathscr C$ -factor objects (Q_1,X_1) , (Q_2,X_2) of X are isomorphic if there exists an isomorphism $\mathscr C \in \mathscr K(X_1,X_2)$ such that $\mathscr C \circ Q_1=Q_2 \circ \mathscr K$ is said to be $\mathscr C$ -co-well-powered if each its object has only a set of non-isomorphic $\mathscr C$ -factor objects.

5. Theorem. Let $(\mathcal{L}, \mathcal{M})$ be an image factorization system for a category \mathcal{K} , \mathcal{L} be factor admissible. Let \mathcal{K} have \mathcal{L} -push-outs and colimits of \mathcal{L} -spectra and a functor $F: \mathcal{K} \longrightarrow \mathcal{K}$ preserves them. If \mathcal{K} is \mathcal{L} -co-well-powered, then each morphism $f: \mathcal{K} \longrightarrow \mathcal{Y}$ of \mathcal{K} has a minimal σ -realization in $\mathcal{D}_{\mathcal{V}\mathcal{M}}(F)$ for any F-dynamics $\sigma = (\mathcal{K}, \sigma)$.

Proof is a routine induction and therefore it is omit-

6. <u>Proposition</u>. Let $\mathcal K$ be a category with coproducts, $\mathcal E$ be a class of its epimorphisms. Let Ω be the system of all functors $F:\mathcal K\to\mathcal K$ which preserve $\mathcal E$ -push-outs and colimits of $\mathcal E$ -spectra. Then Ω is closed under forming coproducts over a set. If, moreover, $\mathcal K$ is complete, is factor-admissible and each $\sigma\in\mathcal E$ is a retraction (i.e. there exists a morphism ω of $\mathcal K$ such that $\sigma\circ\omega=1$), then Ω is closed under forming factor-functors.

<u>Proof.</u> Clearly, Ω is closed under forming coproducts over a set. Let $\mathcal K$ be complete, $\mathcal K$ be factor-admissible and each $\delta \in \mathcal K$ is a retraction. Let F be in Ω , $\nu: F \to G$ be an epitransformation.

a) We prove that G preserves $\mathscr E$ -push-outs. Let (*) be an $\mathscr E$ -push-out, $\overline{\beta}: GY \longrightarrow W$, $\overline{\sigma}: GZ \longrightarrow W$ be morphisms such that $\overline{\beta} \circ G = \overline{\sigma} \circ G \gamma$. Then there exists exactly one $\varphi: FV \longrightarrow W$ such that $\overline{\beta} \circ \gamma_y = \varphi \circ F\beta$, $\overline{\sigma} \circ \gamma_z = \varphi \circ F\sigma$. Now, it is sufficient to show that φ factorizes through γ_y . Find $\mu: V \longrightarrow Y$ such that $\beta \circ \mu = 1$. Then

$$\wp = \wp \circ F\beta \circ F\alpha = \overline{\beta} \circ \nu_{\gamma} \circ F\alpha = \overline{\beta} \circ G\alpha \circ \nu_{\gamma} \ .$$

b) The proof that G preserves colimits of E-spectra is analogous.

7. Examples:

A) $\underline{\mathcal{K}} = \underline{Set}$: Set is cocomplete, (epi, mono) is the only image factorization system of Set, epi is factor-admissible and each its element is a retraction.

<u>Lemma</u>: Let M be a finite set. Then Hom(M, -): :Set → Set preserves epi-push-outs and colimits of epi-spectra.

<u>Proof.</u> We sketch the proof for $F \simeq Hom(2,-)$ given by $FX = X \times X$, $Ff = f \times f$.

a) Let (*) be an epi-push-out, $f:FY \longrightarrow W$, $g:FZ \longrightarrow$ $\rightarrow W$ be mappings such that $f \circ F \alpha = g \circ F \gamma$. Define h: : $FY \longrightarrow W$ by $\mathcal{N}(x) = (f \circ Fx)(x)$, where $x \in FX$ is chosen such that $(F(\beta \circ \infty))(x) = x$. It is sufficient to prove whenever $(F(\beta \circ \alpha))(x) =$ that $(f \circ F \propto)(x) = (f \circ F \propto)(\overline{x})$ = $(F(\beta \circ \alpha))(\overline{x})$. We have $x = \langle x_1, x_2 \rangle, \overline{x} = \langle \overline{x}_1, \overline{x}_2 \rangle$ and the last equation implies $\beta \circ \alpha (x_1) = \beta \circ \alpha (\overline{x}_1), \beta \circ \alpha (x_2) = \beta \circ \alpha (\overline{x}_2)$ = $\beta \circ \propto (\overline{x}_2)$. Since (*) is a push-out, there exist chains

$$x_1 = t_0^1, t_1^1, \dots, t_m^1 = \overline{x}_1$$
 and $x_2 = t_0^2, t_1^2, \dots, t_m^2 = \overline{x}_2$

such that $\alpha(t_i^j) = \alpha(t_{i+1}^j)$ for i odd, $\gamma(t_i^j) = \gamma(t_{i+1}^j)$ for i even, j = 1, 2. Consider the chain

$$\langle x_{1}, x_{2} \rangle = \langle t_{0}^{1}, x_{2} \rangle, \langle t_{1}^{1}, x_{2} \rangle, \dots, \langle t_{m}^{1}, x_{2} \rangle = \langle \overline{x}_{1}, t_{0}^{2} \rangle, \langle \overline{x}_{1}, t_{1}^{2} \rangle, \dots$$

$$\dots, \langle \overline{x}_{1}, \overline{x}_{2} \rangle \qquad -559 -$$

b) Let $\mathcal{D}: \mathbb{D} \to \mathbb{S}$ be an epi-spectrum, $\langle X; \{\alpha_d | d \in \text{obj} \mathbb{D}\} \rangle = \text{colim} \ \mathcal{D}$. Then α_n are epi, so $\mathbb{F}\alpha_n$ are epi. It is sufficient to prove that for each $x \in \mathbb{F}\mathcal{D}(d)$, $x' \in \mathbb{F}\mathcal{D}(d')$ such that $(\mathbb{F}\alpha_d)(x) = (\mathbb{F}\alpha_{d'})(x')$ there exists $\mathbf{c} \in \text{obj} \ \mathbb{D}$ such that $\mathbb{D}(d,\mathbf{c}) \neq \emptyset \neq \mathbb{D}(d',\mathbf{c})$ and $(\mathbb{F}\mathcal{D}(\frac{\mathbf{c}}{d}))(x) = (\mathbb{F}\mathcal{D}(\frac{\mathbf{c}}{d'}))(x')$. Since $x = \langle x_1, x_2 \rangle, x' = \langle x'_1, x'_2 \rangle$, we have $\alpha_d(x_i) = \alpha_{d'}(x'_i)$. Find $\mathbf{c}_i \in \text{obj} \ \mathbb{D}$ such that $(\mathcal{D}(\frac{\mathbf{c}_i}{d}))(x_i) = (\mathcal{D}(\frac{\mathbf{c}_i}{d'}))(x'_i)$ and choose \mathbf{c} such that $\mathbb{D}(\mathbf{c}_1,\mathbf{c}) \neq \emptyset \neq \mathbb{D}(\mathbf{c}_2,\mathbf{c})$.

Corollary: If F is a factorfunctor of any $\coprod_{\alpha \in A} \operatorname{Hom}(M_{\alpha},-)$, where A is a set and all M_{α} are finite sets, then each mapping $f: X \longrightarrow Y$ has a minimal σ -realization in $\operatorname{Dyn}(F)$ with any $\sigma = (X, \sigma')$.

B) $\underline{\mathcal{K} = Vect}$ (i.e. the category of all real vector spaces and all linear mappings). Vect is cocomplete, (epi, mono) is the only image factorization system for Vect, epi is factor-admissible and each its element is a retraction.

Lemma: If M is a finite dimensional vector space, then $\mathcal{H}om(M,-): Vect \longrightarrow Vect$ preserves epi-push-outs and colimits of epi-spectra.

The proof is omitted.

Corollary: If F is a factorfunctor of any $\varinjlim_{\alpha \in A} \, \mathscr{H}\!\!\mathit{om}\,\,(\,M_{\alpha}\,,-\,) \;\;, \quad \text{where A is a set and all } M_{\alpha} \;\; \text{are finite-dimensional vector spaces, then each linear mapping } \\ f: X \longrightarrow Y \qquad \text{has a minimal } \sigma \text{-realization in } \mathcal{D}\!\!\mathit{vn}\,\,(F)$

- l. Let $F: \mathcal{K} \longrightarrow \mathcal{K}$ be an endofunctor, $T: \mathcal{D}_{yyn}(F) \rightarrow \mathcal{K}$ be the forgetful functor, i.e. $T(X, \sigma) = X$, Tf = f. We recall (see [3]) that F is called an input process if T has a left adjoint. Denote it by $L: \mathcal{K} \longrightarrow \mathcal{D}_{xyn}(F)$. Put $F^{\otimes} = T \circ L$, let $\eta: \mathcal{D}_{xyn}(F) \rightarrow F^{\otimes}$ be the transformation given by the adjunction. Denote $LX = (F^{\otimes}X, \ell_X)$. If $f: F^{\otimes}X \longrightarrow Y$ is a morphism of \mathcal{K} , then its LX-realization is called realization only (see [3]).
- 2. All input processes $F: Set \longrightarrow Set$ are characterized in [5]. We recall that a set-functor F is an input process if and only if it is not excessive (a set-functor F is excessive iff card FX > card X for all sets X with card $X \ge m$ for some cardinal number m).
- 3. Theorem. Let F be a set-functor. The following assertions are equivalent.
- (1) F preserves epi-push-outs and colimits of epispectra.
- (2) For each mapping $f: X \longrightarrow Y$ and each F-dynamics $\sigma = (X, \sigma)$, there exists a minimal σ -realization of f.
- (3) For each infinite set X , each mapping $f: X \rightarrow 2$ and each F -dynamics $\sigma = (X, \sigma)$ there exists a minimimal σ -realization of f.
 - (4) F is an input process and each mapping

- $f: F^{a}X \longrightarrow Y$ has a minimal realization.
- (5) F is an input process and each mapping $f: F^{\otimes}X \longrightarrow 2$, with X infinite, has a minimal realization.
- (6) F is a factor-functor of some $\coprod_{\alpha \in A} \operatorname{Hom}(M_{\alpha}, -)$, where A is a set and all M_{α} are finite sets.
- 4. (6) \Longrightarrow (1) follows from I.7, (1) \Longrightarrow (2) from I.5, (2) \Longrightarrow (3) is evident. (6) \Longrightarrow (4) follows from I.5, 6, 7 and [5], because $\varinjlim_{\alpha \in A} \operatorname{Hom}(M_{\alpha}, -)$ and their factor-functors are not excessive, (4) \Longrightarrow (5) is evident. Thus, we have to prove the implications (3) \Longrightarrow (6) and (5) \Longrightarrow (6). This is the aim of the rest of II.
- 5. Let F: Set → Set be a functor. If X is a set, define

$$X_F = \bigcup_{f: Y \to X} (Ff)(FY)$$
.

We recall (see [4]) that a cardinal m is called an <u>unattainable cardinal of</u> F if $X_F \neq \emptyset$, where card X = m. F is not a factorfunctor of any $\coprod_{\alpha \in A} \operatorname{Hom}(M_{\alpha}, -)$, where A is a set and all M_{α} are finite sets if and only if F has an infinite unattainable cardinal (it follows from the Yoneda lemma).

6. The proof of non $(6) \Longrightarrow \text{non}(3)$: Let $F: \text{Set} \to \text{Set}$ be a functor, which is not a factor-functor of any $\coprod_{\alpha \in A} \text{Hom}(M_{\alpha}, -)$, where A is a set and all M_{α} are finite sets. Let Y be an infinite set such that $Y_F \neq \emptyset$

(i.e. card Y is an unattainable cardinal of F). Put $X = Y \cup \{\alpha\}$, where a is not in Y, $Z = X \times \{0,1\}$ and we suppose $X \cap Z = \emptyset$. Let $v_0, v_1 : Y \longrightarrow Z$ be mappings given by $v_i(v_i) = \langle v_i, i \rangle$, i = 0, 1. Let

$f:Z \rightarrow 2$

be given by $f(\langle \alpha, 1 \rangle) = 1$, f(x) = 0the set of all finite subsets of Y. If K e note by K $\in \mathbb{K}$, put $Z_{K} = K \cup L(X - K) \times \{0,4\}1$, $Q_{K}: Z \rightarrow Z_{K}$ is given by $q_K(\langle x, i \rangle) = x$ whenever $x \in K$, i = 0, 1, $q_K(z) = z$ otherwise. If $K \subset K'$, denote by $Q_{K'}^K : Z_K \longrightarrow Z_{K'}$ the mapping such that $g_{K'} = g_{K'}^{K} \circ g_{K}$. Clearly, f factorizes through each g_K . If i = 0, 1, put $A^i = [F_{N_i}](Y_F)$, $A_{K}^{i} = [F(g_{K} \circ v_{i})](Y_{F})$. Thus, if $K \subset K'$, then $A_{K'}^{i} =$ = $\mathbb{E} \mathbb{F} q_{\kappa}^{K} \ \mathbb{I} (A_{\kappa}^{i})$. Since $q_{\kappa} \circ v_{\sigma}(Y) \cap q_{\kappa} \circ v_{\sigma}(Y)$ is finite, $A_K^0 \cap A_K^1 = \emptyset$. Put $B^i = \bigcup_{K \in K} [Fg_K]^{-1}(A_K^i), B_K^i = \bigcup_{K' \in K} [Fg_K^K]^{-1}(A_{K'}^i)$. Then $B^0 \cap B^1 = \emptyset$, $B_K^0 \cap B_K^1 = \emptyset$. Let $\sigma = (Z, \sigma)$ be an F-dynamics, defined as follows. $\sigma(z) = \langle \alpha, 1 \rangle$ if $z \in B^1$, $\sigma'(z) = \langle a, 0 \rangle$ otherwise. We show that f has not a minimal o -realization.

- a) First, we define $\sigma_{K}': FZ_{K} \longrightarrow Z_{K}$ auch that $G_{K}: (Z,\sigma) \longrightarrow (Z_{K},\sigma_{K}')$ is a dynamorphism. It is sufficient to put $\sigma_{K}'(z) = \langle \alpha, 1 \rangle$ if $z \in B_{K}^{1}$, $\sigma_{K}'(z) = \langle \alpha, 0 \rangle$ otherwise.
- b) Let (t,σ') be a minimal σ -realization of f, $\sigma' = (T,\tau)$. Since t factorizes through each g_K , it factorizes through the mapping $h: Z \longrightarrow \{\langle \alpha, 0 \rangle, \langle \alpha, 1 \rangle\} \cup Y$

given by $\mathcal{N}(\langle \alpha, i \rangle) = \langle \alpha, i \rangle, \mathcal{N}(\langle y, i \rangle) = y$ if $y \in Y$, i = 0, 1. But if $c \in Y_F$, then $c^i = [Fv_i](c) \in A^i$ and $(Fh)(c^o) = [F(h \circ v_i)](c) = [Fh](c^1)$, so $(\tau \circ Ft)(c^0) = (\tau \circ Ft)(c^1)$. On the other hand, $\sigma c^0 = \langle \alpha, 0 \rangle$, $\sigma c^1 = \langle \alpha, 1 \rangle$ and $f(\langle \alpha, 0 \rangle) \neq f(\langle \alpha, 1 \rangle)$, so $(t \circ \sigma)(c^0) \neq \langle \alpha, 0 \rangle$ which is impossible.

7. The proof of $non(6) \Longrightarrow non(5)$: Let $Y, \alpha, X, Z, \sigma = (Z, \sigma)$, f have the same meaning as in 6. Let us suppose that F is an input process, let

$$r: F^{\otimes}Z \to Z$$

be the mapping such that $\kappa \circ \eta_Z = ident_Z$ and $\kappa: (F^{@}Z, \ell_2) \longrightarrow \sigma$ is a dynamorphism. Put

while the

$$q: F^{\otimes}Z \xrightarrow{\pi} Z \xrightarrow{f} 2$$
.

Then, φ has not a minimal realization in $\mathcal{D}_{\text{Nyn}} F$, the proof is the same as in 5.

III.

1. Let $F: Set \longrightarrow Set$ be a functor. If F is an input process, then for each set X, there exists a free F-algebra $(F^{\otimes}X, \ell_X)$ over X (i.e. X is embedded in $F^{\otimes}X$ by the mapping $\eta_X: X \longrightarrow F^{\otimes}X$ such that for each mapping $f: X \longrightarrow Y$ and each F-dynamics (Y, σ') there exists exactly one dynamorphism $\varphi: (F^{\otimes}X, \ell_X) \longrightarrow (Y, \sigma')$ such that $\varphi \circ \eta_X = f$). But free F-algebras may exist over some sets X although F is not an in-

put process.

2. Theorem. Let $F: Set \longrightarrow Set$ be a functor such that card $F \times_0 \subseteq X_0$ X. Then for each non-empty finite or countable set X there exists a free F-algebra $(F^{\otimes}X, \ell_X)$ over X and each mapping $f: F^{\otimes}X \longrightarrow Y$ has a minimal realization in $\mathcal{D}_{NP}(F)$.

<u>Proof.</u> Since card $Fx_0 \leq x_0$, x_0 is not an unattainable cardinal of F (see [4]). Thus,

$$\begin{split} \operatorname{F}_{x_0} &= \bigvee_{m=4}^{\infty} \left(\operatorname{F}_{i_m} \right) \left(\operatorname{FA}_m \right) & \text{ whenever } x_0 &= \bigvee_{m=4}^{\infty} A_m \; , \\ \operatorname{A}_m &\subset \operatorname{A}_{m+4} \quad \text{and } i_m \colon \operatorname{A}_m \longrightarrow x_0 \quad \text{is the inclusion. This implies that the algorithm for the construction of a free } \end{split}$$

F -algebra over a set X , described in [5], stops at ω_0 whenever $X \neq \emptyset$ and $\operatorname{card} X \not\simeq_{\mathcal{K}_0}$. Hence, $(F^{\otimes}X, \ell_X)$ exists and $\operatorname{card} F^{\otimes}X \not\simeq_{\mathcal{K}_0}$. Now, we define a subfunctor G of F by $G(Y) = \bigcup_{f: K \to Y} (Ff)(FK)$, Gf is a domain-range

restriction of Ff. Then GX = FX, $G^{\otimes}X = F^{\otimes}X$ whenever cand $X \leq x_0$. Since G has no infinite unattainable cardinal, it is a factor-functor of some $\coprod_{\alpha \in A} \operatorname{Hom}(M_{\alpha}, -)$, A is a set, M_{α} are finite. Thus, if cand $X \leq x_0$, each mapping $f: G^{\otimes}X = F^{\otimes}X \longrightarrow Y$ has a minimal realization in $\operatorname{Dyn}(G)$, so in $\operatorname{Dyn}(F)$.

References

- [1] J. ADÁMEK, V. KOUBEK, V. POHLOVÁ: The colimits in the
- x) As usual, $x_0 = \omega_0$ is the set of all smaller ordinal numbers.

- generalized algebraic categories, Acta Univ.Carolinae 13(1972),29-40.
- [2] A. ARBIB, E.G. MANES: Basic concepts of category theory applicable to computation and control, Category Theory applied to Computation and Control, Proceedings of the First International Symposium, Amherst, Massachusetts 1974,2-41.
- [3] A. ARBIB, E.G. MANES: A categorist's view of automata and systems, Category Theory applied to Computation and Control, Proceedings of the First International Symposium, Amherst, Massachussetts 1974,62-78.
- [4] V. KOUBEK: Set functors, Comment.Math.Univ.Carolinae 12 (1971),175-195.
- [5] V. KURKOVÁ-POHLOVÁ, V. KOUBEK: When a generalized algebraic category is monadic, Comment.Math.Univ.Carolinae, to appear.
- [6] S. MacLANE: Categories for the Working Mathematician, New York-Heidelberg-Berlin 1971.
- [7] P. PTÁK: On equalizers in generalized algebraic categories, Comment. Math. Univ. Carolinae 13(1972), 351-357.
- [8] V. TRNKOVÁ, P. GORALČÍK: On products in generalized algebraic categories, Comment.Math.Univ.Carolinae 10 (1969),49-89.

Mstematicko-fyzikální fakulta Karlova universita Sokolovská 83,18600 Praha 8 Československo

(Oblatum 15.5.1974)