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Abstract: There is a canonical mapping from the free
complete locally convex space of a uniform space into the

space of uniform measures. It is proved here that a uniform
measure « is in the image of the map if and only if finite
me @ (MIvEA M) exists for each uniformly continuous func-

tion £ .
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lecular measures, uniform measures, free uniform measures.
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Introduction. For a uniform space X there is a par-
ticularly important class of functionals on the space
Uy (X)) of all bounded uniform functions on X . The theo-
£y of these functionals (called uniform megsures) was deve-
loped by Berezanskij [11, LeCam [101 and Frolik [61,[71 .

It appears that several basic results (viz. those in §
2 below) of the theory are valid in more general setting
(see § 1). In § 3 I show that this general schema applies al-
80 to the space W (X) (whose elements I call "free uni-
form measures® here) introduced by Berezanskij [11. As the
space /% . (X) is a completion of the free locally con-
vex space of uniform space X [12], it follows that

W (X)) is a free complete locally convex space of X .

- 541 -



Both the space of uniform measures and the space of free
uniform measures were mentioned by Buchwalter and Pupier [51
and studied in the Qpecial case of fine uniformities by se-
veral authors {21,041,08),191,011) ,1131,0143,016].

In § 4 free uniform measures are described by means of
uniform measures. § 4 is gself-contained in the sense that no
results from §§ 1 - 3 are used there.

The notations and terminology concerning topological vec-
tor spaces are thoae of Schaefer [151; particularly all lo- .
cglly convex spaces are Hauadorff and E* denotes the al-
gebraic dual of £ . All the vector spaces are over the field
R of reals. Occasionally I use V and A in place of

max end mim .

§ 1. Approximation by molecular measures

1.1. Grothendieck’s theorem (dual characterization of
completion). Let <E,G)> bea duality and let @ be a
saturated family covering E of 6¢(E,G) =-bounded sets. De-
noty be G4 the vector space of all w € E¥ whose rest-
rictions to each S €® are € (E,G) -continuous, and '
endow G, with the © -topology.

Then G., is a complete locally convex space in which
G is dense.

For the proof see Schaefer [15, IV - 6.2].

1.2. Setting. Let X be a non-empty set, E(X) be a
linear subspace of the space Rx s separating points of X.
Denote by Mol CX) the set of all formal finite real linear
combinations of elements from X ; thus Mo (X) is the
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linear space with the base X .

The elements of Mol (X) are called molecular measures.
There is a canonical duality <E (X)), Mol (X) > given

by (£, ZA, %> = Ay £lxy) and the topology

&C(E (X)), Mo (X)) is just the topology of pointwise
convergence on X .

Now consider any saturated family & covering E QO
consisting of pointwise bounded (i.e. 6(E(X), Mol (X)) -
bounded) subsets of E(X) and denote

Mé (X) = {@ e E(X)*| for each & e® the reatriction

of w to S is continuous in the topology of pointwise
convergence on X § .
Endow Wy (X)  with'the @ -topology.

Grothendieck ‘s theorem then reads as follows:

1.3. Proposition. @y (X) is a complete locally
convex space in which Mo€(X) is dense.

The general Ascoli theorem (see e.g. Bourbaki [3, § 2

- Th.2]) gives

1.4. The compactness criterion. A set D cmd(JC) is
relatively compact if and only if (i) the restriction of D

to any S € @ is equicontinuous and (ii) the set () c
cR is bounded for each £e€ E(X) .

On every set S € @ the topologies €(E(X), Mo€ (X))
eand 6(E(X), 'm‘ (X)) coincide. Hence the theorem of
Mackey-Arens (see Schaefer [15; IV - 3.2]) yields -

1.5. Proposition. The @ -topology on Wg (X) is
consistent with the duality (E(X), Mg (X)> if and enly
if all sets in ©® are relatively compact (in ECX) )
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with respect to the topology of pointwise convergence on X .

§ 2. Uniform measures.- Given a Hausdorff uniform space
X denote by Uy (X) the space of uniform (= uniformly con-
tinuous) bounded real-valued functions on X . Consider the
family U.E.B.(X) of all equiuniform (= uniformly equiconti-
nuous) uniformly bounded subsets of g (X) .

Thus one obtains the space W1, 5 (X) , shortly
»mucm , whose elements are called uniform megsures.

Propositions 1.3, 1.4 apply; further the closure (in R*)
of-any S €e U.E.B in the topology of pointwise convergence
belongs to U.E.B. - hence (by 1.5) dual of W, (X) iden-
tifies with 11,,(1) . Moreover there is the following result,
due to Le Cam [10] (cf. [14, Th.2]):

2.1. Theorem. The topology 6 (@, (X), U, (X) and

the U.E.B. -topology coincide on the positive cone of
’)O‘lu(X) .

§ 3. Free uniform measures. Given a Hausdorff uniform
space X denote by L (X) the space of uniform real-valued
functions on X . Consider the femily U.E.(X) of all equi-
uniform pointwise bounded subsets of U(X) . Following the
schema in § 1 this gives rise to the space

WMye.= ‘(f"euﬁx)”‘!for each S ell.E. the restriction of
@ to S is continuous in the topolohy of pointwise con-

vergence on X ¢
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endowed with the topology of LU.E. -convergence.
This space will be denoted 492, and its elements will be

called free uniform measures.
As in § 2 the following theorem follows from 1.3 - 1.5:

3.1. Theorem. (a) . (X) is a complete locally
convex space in which WMo (X) is dense.

(b) A subset D of %Lp(X) is relatively compact if
and only if (i) the restriction of D to any S e U.E(X) is
equicontinuous and (ii) the set D(£)cR 1is bounded for
each feU(X) .

(¢) (cf. [12]) The dual of W g(X) is U(X) .

The fact in (a) together with the result by Raikov [12;
Th,1] implies that 2% (X) is the free complete locally
convex space of X - this justifies the term n"free"; the
neme "free uniform measures" was chosen as @i, canonical-
ly identifies with a subset of w, (see § 4 )e

The following theorem is an analogue of 2.1.

3.2, Theorem. The topology 6¢m . (X),U(X)) and the

U.E. -topology coincide on the positive cone of a.(X) .

Proof. As the topology S(MF,U) is coarser one
must prove it is finer.

Let @, , @ € W  be positive and 2om (@)= (g
for each g & U(X), Choose any SelU.E and >0 . Put
£(x)= Aup4lg(x)| ge S} . Then £eU(X) and

Zm (£ —-(£AM))= 0 . As the set {£-(fAM)|M=>03is

M—>+c0

in U.E, there is M, > 0 such that @w(E-(EANN<E -
The set S, = {(-M4)v9AM1‘g,eS} ig in U.E.B. and

the restrictions of «, and @ to U&CX) are positive
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elements of %!, (X) (cf. § 4). Thus from 2.1 it follows
that there is oc; such that

lug (h)-@h)|< & for any heS, and any o« = x4
end lu (£-EAM)-w(f-£AM | < € for any cc Z o<y -
Then for any g€ S and o = e, one has

L (9= @ (g & e (- =MD v g A ML+
e (MIvg Al ) - w (M Ivga M) +lp (g - CM)vgaM, l<

<54.¢(£-£AM1)+5+¢4.(£-£AM4)< he . Q.E.D.

The following example shows the free uniform measure need not
be order bounded linear form on U (X)) ( or equivalently:

the space L (X) need not be spanned by its poéitive cone).

3.3. Example. Let X be the real line with the usual
(metric) uniformity. For fe U(X) put

(£) = % 1 ¢ 1 ))

© = e THE £(@)—£ m4+ = .

Then @ € %%(X) but for the function ¢ € U(X), g-:x —> Ix1,
and for any " one can find £€ UL(X) such that

0£f£<q ,

f(rn)-m,,f(m-y %ho for 2 <€ m £ m and £(x)=0 for

% = amad § th )= = 4
= m 2 = —
+4 ; then @ o

§ 4. Connection of W!_. with 9, . oObserve that

for any @ € mF(X) its restriction to U, (X) is & uni-
form measure &y € mu (X)
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4.1. Proposition [1 ; 1.9] . For any Hausdorff uniform
space X the canonical linear map {p >, ¥: @ (X)—
— Mu(JC) is ixijective.

Proof [4; 4.8.21 . Suppose u, = 0, i.e. @{g)=0 for
any g € Uy (X), Choose any fel}(JC): f=M&JPw(-M)v£‘A M
pointwise and the set 4 (-M)vfAM} is on U.E. ,hence
H(f)sMﬁ.m“ 6(« ((.M) v E£A M) = 0 - Q.E.D,

In the theorem 4.5 below the image of the map{@ > ¢}
is characterized. Particular cases of 4.5 were proved by Be-
rezanskij-L1; § 8] and Berruyer and Ivol [2], however, these
authors deal with order bounded measures. As example 3.3
shows there are, in general, unbounded forms in MWig(X) -
and this is where the difficulty lies. The following facts

are more or less needed in the proof of 4.5.

4.2, Lemma. Given a Hausdorff uniform space X , @ e
eM (X)), e>0. Let {£333.5 be a net,0&£; ey (X)),
such that Rm £, = 0 pointwise and the set {£57 is in
U.E.(X) ., Suppose ly(£@)|> e for each feB .

Then there exists a strictly increasing sequence<{3(m)$
of indices 3(m)e B  such that

| max 4 gy, 114 m cmBlzm. = for m=4,2,0 .

Proof. Observe first that given conditions imply the
index set B cannot have the largest element.

Now as |w (£,)l > ¢ for each Be&B 80
“(£p)>¢ for some subnet {£,3 of the net %43 or
@(f. )<~ € for eome subnet {f,} of the net {£,% .
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mpus- I can -suppese without any loss of generality that
p.(fﬁ)> ¢ for each B3eB (and the case (u.(f{,)<—s, then
follows by the substitution @w+—> — @ )e

This assumption being made construct B(m) inducti-
vely:
Choose any (3¢1)e B .

If (C4), (3(2),..., 3(m) are found such that w(h, ) >

>m1,‘—€'£ where hm-m»{fﬂm,l'iémém? then

Lign(hm/\fn) = 0 pointwise and the set -fhm/\ fﬂ'f is in
uoEoB .

€
Hence “(»"mAme‘rn) < - for some f3(m+41)>
> pBim) .
Since (A, A Eacmen )t Fm ™ £acmen)) = Bmt £5emaqy

this implies w (A, Vv fn(mM)) = b (M) + i (e gy) =

2
Por w e M (X) and feU(X) say that ffd@. ex-
ists and [fdw = & iff the finite 2m w((-M)vEAM) =t
exists. (Of course,ffd'g. =w(£) for fely(X) )

€ [ €
—(‘(MmAfﬁ(m+4,)>M'—+$--§--(Im'+4)‘—2'- .  Q.E.D.

Warning: In spite of the notation, f +— f£d.y. need
not be additive (unless it is defined for many functions

£eU(X) enough - see 4.4 and 4.5) ! Nevertheless, the

following result is in force:

4.3. Lemmg. Give) a uniform space X, w e 9 (X)),
£ elUy(X) and g €U(X) such that [gdu exists.

Then Iff‘i' g)dw  exists and [(f+ gldu =f£d.¢4, +f%d(.¢ .
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Proof. For M >0 put
Ry=GCMI v £4@)AM-€-(-M)vg AM .

2 £ [£(x)]| £ 12 ()l 4
For xeX one has A;dmlk/M(x)l 1€ (x m£fy 3

hence the set {NMI is in U.E.B..

Moreoveru;j:'/g &y =0 pointwise and “Mf,”"g(“ (k)=
= 0, that is  [(s+9)dew = w(£) + gde . Q.E.D.

In the proposition 4.4 below the set Se¢U.E.(X) is
said to be full iff it is of the form

S={£eU(I), I£(x)-2(y) | £ @ (x,4) for any X, e X
and |£]| & g%

where ¢ € U(X) and @ is a uniformly continuous pseudo-
metric on X . Any set in U.E.(X) 4is contained in some

full set.

4.4, Proposition (Monotone convergence). Given a Haus-
'dorff uniform space X , full set SeU.E.(X) and e
€ M, (X) such that [gdw . exists for any g e S .

If {9, %es 18 @ net such that g, e S  for each
« €A and ¢ .\ 0 pointwise then ,&;m'r%d(c-o =

Proof. Suppose there is € >0 and a subnet {9;7,.5
of the net {g, f,e¢a  such that lfql,d@l> € for each
feB . &s [gdu = w¥m @(gp AM)  there are con-
stants P;  such that lw (g AT3)]1 > € for each BB -

For fB = Qg A 'Pﬂ pick a strictly increasing sequence
£A(m)7 such that (see 4.2) |l (h )I>e-2 (where
Blm u at (see 4. @ Chy,, 2

W,y = maxif, |1£m £m3} ) for m =4,2,.. . It holds

Blm)
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My, €S for m =14,2,... , hence there exists M =

= timb,z 0 and he$S .

I am going to show that neither W%rm‘ + o0 nor

,,%1, P{;tmg + 00 1is possible.

(1) supy Bpipy<+ 0 ¢ Then hoe Uy (X) and {hm}e
e U.E.B. ;hence I@,(h)l =m% l@ () = + 0, contra-

diction.
(i1)  Aupr PB(@) =+ 00 for any M pick up m (M)
such that By cmy Z Pacmy for m =1,2,..., m (M) and

Bpimemn = M -

Then v AT

Blm(M) = A,

M) for any M and consequently

lfhdyl:mgnz lé""""fmmu»””m‘.f’;’: e u"m(M)) | = 4+00 ,
contradiction.

4.5. Theorem. For a Hausdorff uniform space X and
@ € @, (X) two conditions are equivalent:

(i) there exists w, € @p(X) such that w(f)=, (£)
for any f e ub<x) .

(ii) [fd@  exists for any fe U(X) .

Proof. The implication (i)===) (ii) follows from the
fact that for any € € U(X) the set{(-M)vEAMIM=>01%
isin U.E. and so w(f)= Lim @ (~MIvEAM) = (£t -

For the inverse, suppose (ii) holds and define
@, (8)=[fdg for £e UCX) 3 it is to show that ¢, e
€ mF(JC) . Cleerly w (A€)=Aw, (£) for A eR and
fell(X) .
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Thus two more things remain to be proved: (I) If {fd;aceA
is a net such that the set -{f“? is in U.EX. and &zn£¢=
=0 pointwise then %m.ffx du = 0.

(II) @, 4is additive on U(X) .

ad (I): Since for every £ € U(X) one has [fdu =
+ - s . . +
=I£ d@c-ff de it suffices to prove %wffxdéc =0.1¢f
this were not so there would exist & > 0 and a subnet

+ +
{£B;Be5 of tre net {£ ¢

for each 3B .

<eA such that | £;'d.‘u,|>8

Hence there are constants PB such that
IICEB'APD)d.@. |>e for each feB and Lemma 4.2 implies
there is a sequence {%, 3} such that 0€ .4, € U, (X) and

L ) | >me 2 gor mom 4,200, L3 e U.E. (X)
and %, 7% e U(X) .

Now for ¢, =% - A,, one has gz, N 0 , and from Lemma
4.3 it follows thatm% lelgy,) = + @ 5 as the set{gp,?
belongs to U.E.(X) (and consequently it also belongs to
some full set in U,E. ) this contradicts Lemma 4.4.

ad (II): Let f,ge U(X) be arbitrary. For M >0 put

Sy = (M) v (£4gIAM-(M)vEAM-(-M)vg A M.

Then the set { %,,% is in U.E.(X) andm% oy =0
pointwise, henceM% “ (Rpp) =0 from (I), that is

fterg)dew = [fdu + [gde . Q.E.D.
4.6. Remark. Mg (X) may be treated as a subset

of muoc) , but not as a (topological) subspace. In fact,
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the uniform topology ( = U.E.B. -topology) and the "free"
topology ( =U.E. -topology) agree on M (X) if and
only if Ug (X) = U(X) . For, if there exist x, € X ,
m=4,2,... and £elU(X) such that £(x,)>m? , put

Gom = -;4; X, € Mo (X) . Then @, —> 0 uniformly on
every set in U.E.B  but @, (f) does not converge.

Acknowledgement. I want to express my thanks to Zden&k
Frolik for valuable discussions on uniform measures and re-

lated subjects.
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