

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log52

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,3 (1974)

FREE UNIFORM MEASURES

Jan PACHL, Praha

Abstract: There is a canonical mapping from the free complete locally convex space of a uniform space into the space of uniform measures. It is proved here that a uniform measure μ is in the image of the map if and only if finite $\lim_{M\to\infty}\mu((-M)\vee f\wedge M)$ exists for each uniformly continuous function f.

Key words: Grothendieck's theorem on completeness, molecular measures, uniform measures, free uniform measures.

AMS: Primary 28A30

Ref. Z.: 7.977.1

Secondary 46A05, 60B05

Introduction. For a uniform space X there is a particularly important class of functionals on the space $U_{\mathcal{E}}(X)$ of all bounded uniform functions on X. The theory of these functionals (called <u>uniform measures</u>) was developed by Berezanskij [11, LeCam [10] and Frolík [61,[7].

It appears that several basic results (viz. those in § 2 below) of the theory are valid in more general setting (see § 1). In § 3 I show that this general schema applies also to the space $\mathcal{M}_{\mathsf{F}}(\mathsf{X})$ (whose elements I call "free uniform measures" here) introduced by Berezanskij [1]. As the space $\mathcal{M}_{\mathsf{F}}(\mathsf{X})$ is a completion of the free locally convex space of uniform space X [12], it follows that $\mathcal{M}_{\mathsf{F}}(\mathsf{X})$ is a free complete locally convex space of X .

Both the space of uniform measures and the space of free uniform measures were mentioned by Buchwalter and Pupier [5] and studied in the special case of fine uniformities by several authors [2],[4],[8],[9],[11],[13],[14],[16].

In § 4 free uniform measures are described by means of uniform measures. § 4 is self-contained in the sense that no results from §§ 1 - 3 are used there.

The notations and terminology concerning topological vector spaces are those of Schaefer [15]; particularly all locally convex spaces are Hausdorff and E^* denotes the algebraic dual of E. All the vector spaces are over the field R of reals. Occasionally I use V and Λ in place of M and M are also M and M and M and M and M and M are also M and M and M and M and M are also M and M and M are also M and M and M are also M are also M and M are also M and M are also M are also M and M are also M are also M are also M and M are also M are also M and M are also M are also M are also M are also M and M are also M are also

§ 1. Approximation by molecular measures

1.1. Grothendieck's theorem (dual characterization of completion). Let $\langle E,G \rangle$ be a duality and let G be a saturated family covering E of G(E,G) -bounded sets. Denoty be G_1 the vector space of all $\mu \in E^*$ whose restrictions to each $S \in G$ are G(E,G) -continuous, and endow G_1 with the G-topology.

Then G_1 is a complete locally convex space in which G is dense.

For the proof see Schaefer [15, IV - 6.2].

1.2. Setting. Let X be a non-empty set, E(X) be a linear subspace of the space \mathbb{R}^X , separating points of X. Denote by Mol(X) the set of all formal finite real linear combinations of elements from X; thus Mol(X) is the

linear space with the base X .

The elements of Mol(X) are called molecular measures.

There is a canonical duality $\langle E(X), Mol(X) \rangle$ given by $\langle f, \Sigma A_i \times_i \rangle = \Sigma A_i f(x_i)$ and the topology f(E(X), Mol(X)) is just the topology of pointwise convergence on X.

Now consider any saturated family \mathfrak{C} covering $\mathbb{E}(X)$ consisting of pointwise bounded (i.e. $\mathcal{C}(\mathbb{E}(X), \mathcal{Mol}(X))$ - bounded) subsets of $\mathbb{E}(X)$ and denote $\mathcal{M}_{\mathfrak{C}}(X) = \{ \mu \in \mathbb{E}(X)^* \mid \text{ for each } S \in \mathfrak{C} \text{ the restriction }$ of μ to S is continuous in the topology of pointwise convergence on X?

Endow Mg (X) with the &-topology.

Grothendieck's theorem then reads as follows:

1.3. Proposition. $\mathcal{M}_{\mathbf{g}}(X)$ is a complete locally convex space in which Mol(X) is dense.

The general Ascoli theorem (see e.g. Bourbaki [3, § 2 - Th.2]) gives

1.4. The compactness criterion. A set $D \subset \mathcal{U}_{\mathcal{C}}(X)$ is relatively compact if and only if (i) the restriction of D to any $S \in \mathcal{C}$ is equicontinuous and (ii) the set $D(f) \subset \mathbb{R}$ is bounded for each $f \in E(X)$.

On every set $S \in \mathcal{G}$ the topologies $\mathcal{G}(E(X), \mathcal{Mol}(X))$ and $\mathcal{G}(E(X), \mathcal{Mol}(X))$ coincide. Hence the theorem of Mackey-Arens (see Schaefer [15; IV - 3.2]) yields

1.5. Proposition. The &-topology on $\mathcal{M}_{\mathcal{C}}(X)$ is consistent with the duality $\langle E(X), \mathcal{M}_{\mathcal{C}}(X) \rangle$ if and only if all sets in & are relatively compact (in E(X))

with respect to the topology of pointwise convergence on \boldsymbol{X} .

§ 2. Uniform measures. Given a Hausdorff uniform space χ denote by $U_{\mathcal{L}}(X)$ the space of uniform (= uniformly continuous) bounded real-valued functions on χ . Consider the family $U.E.B.(\chi)$ of all equiuniform (= uniformly equicontinuous) uniformly bounded subsets of $U_{\mathcal{L}}(\chi)$.

Thus one obtains the space $\mathfrak{M}_{\mathsf{LL}.\mathsf{E},\mathsf{B}.}(X)$, shortly $\mathfrak{M}_{\mathsf{LL}}(X)$, whose elements are called <u>uniform measures</u>.

Propositions 1.3, 1.4 apply; further the closure (in \mathbb{R}^X) of any $S \in \mathbb{U}.E.B$ in the topology of pointwise convergence belongs to $\mathbb{U}.E.B.$ - hence (by 1.5) dual of $\mathfrak{M}_{\mathbb{L}}(X)$ identifies with $\mathbb{U}_{\mathcal{L}}(X)$. Moreover there is the following result, due to Le Cam [10] (cf. [14, Th.2]):

- 2.1. Theorem. The topology 6 ($\mathfrak{M}_{\mathfrak{U}}(X)$, $\mathfrak{U}_{\mathfrak{F}}(X)$ and the U.E.B.-topology coincide on the positive cone of $\mathfrak{M}_{\mathfrak{U}}(X)$.
- § 3. Free uniform measures. Given a Hausdorff uniform space X denote by U(X) the space of uniform real-valued functions on X. Consider the family U.E.(X) of all equiuniform pointwise bounded subsets of U(X). Following the schema in § 1 this gives rise to the space

 $\mathfrak{M}_{U.E.} = \{ \mu \in U(X)^* | \text{for each } S \in U.E. \text{ the restriction of } u$ to S is continuous in the topolohy of pointwise convergence on X?

endowed with the topology of U.E. -convergence. This space will be denoted \mathcal{M}_{F} and its elements will be called <u>free uniform measures</u>.

As in § 2 the following theorem follows from 1.3 - 1.5:

- 3.1. Theorem. (a) $\mathcal{M}_{F}(X)$ is a complete locally convex space in which $\mathcal{Mol}(X)$ is dense.
- (b) A subset D of $\mathcal{M}_F(X)$ is relatively compact if and only if (i) the restriction of D to any $S \in U.E.(X)$ is equicontinuous and (ii) the set $D(f) \subset R$ is bounded for each $f \in U(X)$.
 - (c) (cf. [12]) The dual of $\mathcal{M}_{\mathsf{F}}(\mathsf{X})$ is $\mathsf{U}(\mathsf{X})$.

The fact in (a) together with the result by Raikov [12; Th.1] implies that $\mathcal{M}_F(X)$ is the free complete locally convex space of X - this justifies the term "free"; the name "free uniform measures" was chosen as \mathcal{M}_F canonically identifies with a subset of \mathcal{M}_U (see § 4).

The following theorem is an analogue of 2.1.

3.2. Theorem. The topology $G(\mathfrak{M}_F(X),\mathfrak{U}(X))$ and the U.E. -topology coincide on the positive cone of $\mathfrak{M}_F(X)$.

Proof. As the topology $\mathfrak{S}(\mathfrak{M}_{\mathsf{F}}, \mathbb{U})$ is coarser one must prove it is finer.

Let μ_{∞} , $\mu \in \mathcal{M}_{F}$ be positive and $\lim_{n \to \infty} \mu_{\infty}(g) = \mu(g)$ for each $g \in U(X)$. Choose any $S \in U.E$ and $\varepsilon > 0$. Put $f(x) = \sup_{n \to \infty} \{|g(x)|| |g \in S\}$. Then $f \in U(X)$ and $\lim_{n \to +\infty} (f - (f \land M)) = 0$. As the set $\{f - (f \land M) | M > 0\}$ is in U.E, there is $M_1 > 0$ such that $\mu(f - (f \land M_1) < \varepsilon$.

The set $S_1 = \{(-M_1) \lor g \land M_1 | g \in S\}$ is in U.E.B. and the restrictions of μ_{∞} and μ to $\Pi_{k}(X)$ are positive

elements of $m_{\mathfrak{U}}(X)$ (cf. § 4). Thus from 2.1 it follows that there is α_4 such that

 $|\mu_{\infty}(h) - \mu(h)| < \varepsilon \quad \text{for any } h \in S_1 \text{ and any } \alpha \ge \alpha_1 \text{ ,}$ and $|\mu_{\infty}(f - f \wedge M_1) - \mu(f - f \wedge M_1)| < \varepsilon \quad \text{for any } \alpha \ge \alpha_1 \text{ .}$ Then for any $g \in S$ and $\alpha \ge \alpha_1$ one has

$$\begin{split} |\mu_{\infty}(g) - \mu(g)| & \leq |\mu_{\infty}(g - (-M_{1}) \vee g \wedge M_{1})| + \\ & + |\mu_{\infty}((-M_{1}) \vee g \wedge M_{1}) - \mu((-M_{1}) \vee g \wedge M_{1})| + |\mu(g - (-M_{1}) \vee g \wedge M_{1}| < \\ & < \mu_{\infty}(f - f \wedge M_{1}) + \varepsilon + \mu(f - f \wedge M_{1}) < 4\varepsilon \;. \end{split} \qquad Q.E.D. \end{split}$$

The following example shows the free uniform measure need not be order bounded linear form on U(X) (or equivalently: the space $\mathcal{M}_{F}(X)$ need not be spanned by its positive cone).

3.3. Example. Let X be the real line with the usual (metric) uniformity. For $f \in U(X)$ put

$$\mu(f) = \sum_{m=1}^{\infty} \frac{1}{m^2} (f(m) - f(m + \frac{1}{m})) .$$

Then $\mu \in \mathcal{M}_{\mathbf{F}}(X)$ but for the function $g \in \mathbb{U}(X)$, $g: x \longmapsto |x|$, and for any m one can find $f \in \mathbb{U}(X)$ such that $0 \le f \le Q$,

f(m) = m, $f(m + \frac{1}{m}) = 0$ for $2 \le m \le m$ and f(x) = 0 for $x \ge m + 1$; then $\mu(f) = \sum_{m=2}^{m} \frac{1}{m}$.

§ 4. Connection of \mathcal{M}_F with \mathcal{M}_{L} . Observe that for any $\mu \in \mathcal{M}_F(X)$ its restriction to $\mathcal{U}_{\mathcal{F}}(X)$ is a uniform measure $\mu_{L} \in \mathcal{M}_{L}(X)$.

4.1. <u>Proposition</u> [1; 1.9]. For any Hausdorff uniform space X the canonical linear map $\{\mu \mapsto \mu_{\mu}^2 : \mathfrak{M}_{\mathfrak{p}}(X) \rightarrow \mathfrak{M}_{\mu}(X)$ is injective.

Proof [4; 4.8.2]. Suppose $\mu_{\mathfrak{U}}=0$, i.e. $\mu(q)=0$ for any $q\in U_{\mathfrak{C}}(X)$. Choose any $f\in U(X)$: $f=\lim_{M\to+\infty}(-M)\vee f\wedge M$ pointwise and the set $\{(-M)\vee f\wedge M\}$ is on U.E., hence $\mu(f)=\lim_{M\to\infty}\mu((M)\vee f\wedge M)=0$. Q.E.D.

In the theorem 4.5 below the image of the map $\{\mu \mapsto \mu_{\mu}\}$ is characterized. Particular cases of 4.5 were proved by Berezanskij [1; § 8] and Berruyer and Ivol [2], however, these authors deal with order bounded measures. As example 3.3 shows there are, in general, unbounded forms in $\mathcal{M}_{\mathbf{F}}(X)$ - and this is where the difficulty lies. The following facts are more or less needed in the proof of 4.5.

4.2. Lemma. Given a Hausdorff uniform space X, $\mu \in \mathcal{M}_{\mathfrak{U}}(X)$, $\varepsilon > 0$. Let $\{f_{\beta}\}_{\beta \in \mathbb{B}}$ be a net, $0 \neq f_{\beta} \in \mathcal{U}_{\mathfrak{D}}(X)$, such that $\lim_{n \to \infty} f_{\beta} = 0$ pointwise and the set $\{f_{\beta}\}$ is in $\mathbb{U}.E.(X)$. Suppose $|\mu(f_{\beta})| > \varepsilon$ for each $\beta \in \mathbb{B}$.

Then there exists a strictly increasing sequence $\{\beta(m)\}\$ of indices $\beta(m) \in \mathbb{B}$ such that

$$|\mu(\max\{f_{\beta(m)})| 1 \le m \le m\}| > m \cdot \frac{\varepsilon}{2} \text{ for } m = 1, 2, ...$$

<u>Proof.</u> Observe first that given conditions imply the index set B cannot have the largest element.

Now as $|\mu(f_{\beta})| > \varepsilon$ for each $\beta \in \mathbb{B}$ so $\mu(f_{\gamma}) > \varepsilon$ for some subnet $\{f_{\gamma}\}$ of the net $\{f_{\beta}\}$ or $\mu(f_{\gamma}) < -\varepsilon$ for some subnet $\{f_{\gamma}\}$ of the net $\{f_{\beta}\}$.

Thus I can suppose without any loss of generality that $\mu(f_{\beta}) > \varepsilon \quad \text{for each } \beta \in B \quad (\text{and the case } \mu(f_{\beta}) < -\varepsilon \quad \text{then}$ follows by the substitution $\mu \mapsto -\mu$).

This assumption being made construct $\beta(m)$ inductively:

Choose any $\beta(1) \in B$.

If $\beta(4)$, $\beta(2)$,..., $\beta(m)$ are found such that $\mu(h_m) > 2$ $2 > m \cdot \frac{\varepsilon}{2}$ where $h_m = \max\{f_{\beta(m)} | 1 \le m \le m\}$ then $\lim_{\beta \to \infty} (h_m \wedge f_{\beta}) = 0$ pointwise and the set $\{h_m \wedge f_{\beta}\}$ is in U.E.B.

Hence $\mu(n_m \wedge f_{\beta(m+1)}) < \frac{\varepsilon}{2}$ for some $\beta(m+1) > \beta(m)$.

Since $(h_m \wedge f_{\beta(m+1)}) + (h_m \vee f_{\beta(m+1)}) = h_m + f_{\beta(m+1)}$ this implies $\mu(h_m \vee f_{\beta(m+1)}) = \mu(h_m) + \mu(f_{\beta(m+1)}) - \mu(h_m \wedge f_{\beta(m+1)}) > m \cdot \frac{\varepsilon}{2} + \varepsilon - \frac{\varepsilon}{2} = (m+1) \cdot \frac{\varepsilon}{2}$. Q.E.D.

For $\mu \in \mathcal{M}_{\mathfrak{U}}(X)$ and $f \in \mathfrak{U}(X)$ say that $\int f d\mu = x - ists$ and $\int f d\mu = x - iff$ the finite $\lim_{M \to +\infty} \mu((-M) \vee f \wedge M) = x - ists$. (Of course, $\int f d\mu = \mu(f)$ for $f \in \mathfrak{U}_{\mathcal{E}}(X)$.)

Warning: In spite of the notation, $f \mapsto \int f d\mu$ need not be additive (unless it is defined for many functions $f \in U(X)$ enough - see 4.4 and 4.5)! Nevertheless, the following result is in force:

4.3. Lemma. Given a uniform space X, $\mu \in \mathcal{M}_{\mathfrak{U}}(X)$, $f \in \mathcal{U}_{\mathcal{S}}(X)$ and $g \in \mathcal{U}(X)$ such that $\int_{\mathcal{S}} d\mu$ exists.

Then $\int (f+g) d\mu$ exists and $\int (f+g) d\mu = \int f d\mu + \int g d\mu$.

Proof. For M > 0 put

 $M_{M} = (-M) \vee (f+g) \wedge M - f - (-M) \vee g \wedge M$.

For $x \in X$ one has $\sup_{M} |k_{M}(x)| \leq |f(x)| \leq \sup_{Y \in X} |f(y)|$; hence the set $\{k_{M}\}$ is in U.E.B..

Moreover $\lim_{M\to\infty} k_M = 0$ pointwise and so $\lim_{M\to\infty} u(k_M) = 0$, that is $\int (f+g)d\mu = u(f) + \int g d\mu$. Q.E.D.

In the proposition 4.4 below the set $S \in \mathcal{U}.E.(X)$ is said to be <u>full</u> iff it is of the form

 $S = \{f \in U(X) \mid |f(x) - f(y)| \le \varphi(x, y)$ for any $x, y \in X$ and $|f| \le q\}$

where $\varphi \in U(X)$ and φ is a uniformly continuous pseudometric on X. Any set in U.E.(X) is contained in some full set.

4.4. Proposition (Monotone convergence). Given a Hausdorff uniform space X , full set $S \in U.E.(X)$ and u.e. $\in \mathcal{M}_L(X)$ such that $\int Q du$ exists for any $Q \in S$.

If $\{q_{\alpha}\}_{\alpha \in A}$ is a net such that $q_{\alpha} \in S$ for each $\alpha \in A$ and $q_{\alpha} \geq 0$ pointwise then $\lim_{\alpha \to \infty} \int q_{\alpha} d_{\alpha} u = 0$.

Proof. Suppose there is $\varepsilon > 0$ and a subnet $1g_B i_{B \in B}$ of the net $1g_A i_{A \in A}$ such that $1 | g_B d_A u| > \varepsilon$ for each $g \in B$. As $1g_B d_A u = \lim_{M \to \infty} \mu(g_B \wedge M)$ there are constants $1g_B d_A u = \lim_{M \to \infty} \mu(g_B \wedge P_B)| > \varepsilon$ for each $1g_B \in B$. For $1g_B = 1g_B \wedge 1g_B$ pick a strictly increasing sequence $1g_B (m)$ such that $1g_B (m)$ increasing sequence $1g_B (m)$ such that $1g_B (m)$ is $1g_B (m)$ such that $1g_B (m)$ is $1g_B (m)$ such that $1g_B (m)$ for $1g_B (m)$ is $1g_B (m)$. It holds

 $h_m \in S$ for m = 1, 2, ..., hence there exists $h = \lim_{m \to \infty} h_m \ge 0$ and $h \in S$.

I am going to show that neither $\sup_{m} P_{\beta(m)} < +\infty$ nor $\sup_{m} P_{\beta(m)} = +\infty$ is possible.

- (i) sup $P_{\beta(m)} < +\infty$: Then $h \in U_{\mathcal{E}}(X)$ and $\{h_m\} \in U$.E.B., hence $|\mu(h)| = \lim_{m \to \infty} |\mu(h_m)| = +\infty$, contradiction.
- (ii) $\sup_{M} P_{\beta(m)} = + \infty : \text{ for any } M \text{ pick up } m(M)$ such that $P_{\beta(m(M))} \ge P_{\beta(m)}$ for m = 1, 2, ..., m(M) and $P_{\beta(m(M))} \ge M$.

 Then $h \wedge P_{\beta(m(M))} = h_{m(M)}$ for any M and consequently $|\int h \, d\mu| = \lim_{M \to \infty} |\mu(h \wedge P_{\beta(m(M))})| = \lim_{M \to \infty} |\mu(h_{m(M)})| = + \infty$, contradiction.
- 4.5. Theorem. For a Hausdorff uniform space X and $\mu \in \mathcal{U}_{\mu}(X)$ two conditions are equivalent:
- (i) there exists $\mu_1 \in \mathfrak{M}_F(X)$ such that $\mu(\mathfrak{f}) = \mu_1(\mathfrak{f})$ for any $\mathfrak{f} \in U_K(X)$.
 - (ii) ∫fd a exists for any fe U(X).

<u>Proof.</u> The implication (i) \Longrightarrow (ii) follows from the fact that for any $\mathbf{f} \in \mathbb{U}(X)$ the set $\{(-M) \lor \mathbf{f} \land M \mid M > 0\}$ is in U.E. and so $\mu_1(\mathbf{f}) = \lim_{M \to \infty} \mu_1((-M) \lor \mathbf{f} \land M) = \int \mathbf{f} \, d\mu$.

For the inverse, suppose (ii) holds and define $\mu_1(\mathfrak{f})=\int f d\mu \quad \text{for } \mathfrak{f}\in \mathrm{U}(\mathrm{X}) \ ; \ \text{it is to show that} \ \mu_1\in \mathfrak{M}_{\mathsf{F}}(\mathrm{X}) \ . \ \text{Clearly} \ \mu_1(\Lambda\mathfrak{f})=\Lambda\mu_1(\mathfrak{f}) \quad \text{for } \Lambda\in \mathbb{R} \quad \text{and} \quad \mathfrak{f}\in \mathrm{U}(\mathrm{X}) \ .$

Thus two more things remain to be proved: (I) If $\{f_{\alpha}\}_{\alpha \in A}$ is a net such that the set $\{f_{\alpha}\}$ is in U.E. and $\lim_{\alpha} f_{\alpha} = 0$ pointwise then $\lim_{\alpha} f_{\alpha} d_{\alpha} = 0$.

(II) μ_1 is additive on U(X).

ad (I): Since for every $f \in \mathcal{U}(X)$ one has $\int f d\mu = \int f^+ d\mu - \int f^- d\mu$ it suffices to prove $\lim_{\alpha} \int f^+_{\alpha} d\mu = 0$. If this were not so there would exist $\epsilon > 0$ and a subnet $\{f_{\beta}^{+}\}_{\beta \in \mathbb{B}}$ of the net $\{f_{\alpha}^{+}\}_{\alpha \in A}$ such that $\|\int f_{\beta}^{+} d\mu\| > \epsilon$ for each $\beta \in \mathbb{B}$.

Hence there are constants P_{β} such that $|\int (\pounds_{\beta}^{+} \wedge P_{\beta}) d\mu| > \varepsilon \quad \text{for each } \beta \in \mathbb{B} \quad \text{and Lemma 4.2 implies}$ there is a sequence $\{h_{m}\}$ such that $0 \le h_{m} \in \mathbb{U}_{\mathcal{E}}(X)$ and $|\mu(h_{m})| > m \cdot \frac{\varepsilon}{2} \quad \text{for } m = 1, 2, \dots, \{h_{m}\} \in \mathbb{U}.\mathbb{E}.(X)$ and $h_{m} \nearrow h \in \mathbb{U}(X)$.

Now for $q_m = h - h_m$ one has $q_m \ge 0$, and from Lemma 4.3 it follows that $\lim_{m \to \infty} |\mu(q_m)| = +\infty$; as the set $\{q_m\}$ belongs to U.E.(X) (and consequently it also belongs to some full set in U.E.) this contradicts Lemma 4.4.

ad (II): Let $f, g \in U(X)$ be arbitrary. For M > 0 put $\mathcal{R}_M = (-M) \vee (f+g) \wedge M - (-M) \vee f \wedge M - (-M) \vee g \wedge M$. Then the set $\{\mathcal{R}_m\}$ is in U.E.(X) and $\lim_{M \to \infty} \mathcal{R}_M = 0$ pointwise, hence $\lim_{M \to \infty} \mu(\mathcal{R}_m) = 0$ from (I), that is $\int (f+g) d\mu = \int f d\mu + \int g d\mu$. Q.E.D.

4.6. Remark. $\mathcal{M}_{\mathsf{F}}(\mathsf{X})$ may be treated as a subset of $\mathcal{M}_{\mathsf{L}}(\mathsf{X})$, but not as a (topological) subspace. In fact,

the uniform topology (= U.E.B. -topology) and the "free" topology (= U.E. -topology) agree on $\mathcal{M}_F(X)$ if and only if $U_{\mathcal{B}}(X) = U(X)$. For, if there exist $x_m \in X$, $m = 1, 2, \ldots$ and $f \in U(X)$ such that $f(x_m) > m^2$, put $\mu_m = \frac{1}{m} x_m \in \operatorname{Mol}(X)$. Then $\mu_m \longrightarrow 0$ uniformly on every set in U.E.B but $\mu_m(f)$ does not converge.

Acknowledgement. I want to express my thanks to Zdeněk Frolík for valuable discussions on uniform measures and related subjects.

References

- [1] BEREZANSKIJ I.A.: Measures on uniform spaces and molecular measures, Trudy Moskov.mat.obšč.19(1968), 3-40(Russian, English translation has appeared in Trans.Moscow Math.Soc.19(1968),1-40).
- [2] BERRUYER Jacques and IVOL Bernard: L'espace M(T), C.R. Acad.Sci.Paris 275(1972), A 33-36.
- [3] BOURBAKI Nicolas: Eléments de mathématique, Livre III: Topologie générale, Chapter 10, Paris 1961.
- [4] BUCHWALTER Henri: Topologies et compactologies, Publ. Dépt.math.Lyon 6-2(1969),1-74.
- [5] BUCHWALTER Henri and PUPIER René: Complétion d'un espace uniforme et formes linéaires, C.R.Acad.Sci. Paris 273(1971), A 96-98.
- [6] FROLÍK Zdeněk: Mesures uniformes, C.R.Acad.Sci.Paris 277(1973), A 105-108.
- [7] FROLÍK Zdeněk: Représentation de Riesz des mesures uniformes, C.R.Acad.Sci.Paris 277(1973), A 163-166.
- `[8] HAYDON Richard: Sur les espaces M(T) et M∞(T), C.R. Acad.Sci.Paris 275(1972), A 989-991.

- [9] KIRK R.B.: Complete topologies on spaces of Baire measures, Trans.Amer.Math.Soc.184(1973),1-29.
- [10] LeCAM L.: Note on a certain class of measures (preprint).
- [11] LÉGER Christian and SOURY Pierre: Le convexe topologique que des probabilités sur un espace topologique, J.math.pures appl.50(1971),363-425.
- [12] RAJKOV D.A.: Free locally convex spaces of uniform spaces, Mat.Sb.63(105)(1964),582-590(Russian).
- [13] ROME Michel: Le dual de l'espace compactologique $\mathscr{C}^{\infty}(T)$, C.R.Acad.Sci.Paris 274(1972), A 1631-1634.
- [14] ROME Michel: Ordre et compacité dans l'espace M (T), C.R.Acad.Sci.Paris 274(1972), A 1817-1820.
- [15] SCHAEFER Helmut H.: Topological Vector Spaces, New York-London 1966.
- [16] SENTILLES Dennis and WHEELER Robert F.: Linear functionals and partitions of unity in $C_b(X)$ (preprint).

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 24.6.1974)

•