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ON THE GEOMETRIC CHARACTERIZATION OF DIFFERENTIABILITY I.
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. Abstract: In the first part of the paper, the geomet-
ric characterization of differentiability in Banach spaces
in terms of tangent flats (planes) is given. In the second
one, the possibility of such characterization in terms of
tangent cones [4) is discussed answering a problem of T.M.
Flett [41.
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The differentials of mappings are usually introduced
in an analytic (increment) manner, the typical example of
which being the definition in the sense of Fréchet, but
differentiability can be characterized also in another way:
geometrically, i.e., using the notion of a tangent as in
the classical analysis. Unfortunately, the simple transpo-
sition of a classical notion of a tangent into the spaces
of more dimensiona or into infinitely dimensional spaces,
meets various difficulties. This and other related problems
were studied by many authors, for example in [11 - 1101].
There are two main directions in approaching the problem
of the geometric characterization of différentiability; in

the first, the notion of a tangent plane (see [61) is ased,
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the second is based on the notion of a tangent cone (see
[4] and [5]). In both these directions, the characteriza-
tion was stated in case of finitely dimensional spaces;
the aim of our paper is to give such characterizations for
infinitely dimensional spaces, too.

The first part of our paper is devoted to generali-
zing the characterization stated by Roetman [6] to the in-
finitely dimensional case; the possibility of such genera-
lization was indicated already in [6]1. In the second part,
we deal with the notion of a tangent cone in the sense of
Flett [4). Flett put the probleﬁ ([4]), see also [51) of
the characterization of differentiability in infinitely
dimensional spaces in terms of tangent cones defined in
[4); we shall show by an example that such a characteriza-
tion, even under very strong restrictions, is not possible.
This problei is investigated also in our paper [111, whe-
re we define a slight modified notion of tangent cone and
prove the required characterization in terms of the cones

in question.

1. Characterization in terms of tangent flats

(1.1) First we recall the main result of Roetman [61.
Let Ac R™ be a set with a non-empty interior, F: A —
—> R* a mapping and denote G (F)=4(x,4):x eA,tg.ch*,
4=F(x)t c R™ x R™ the graph of F . Consider
maximum norms in R™ and R™ and the sum norm (i.e.
IxUlm + lagll, ) in the product R™ x R™ . Let
(Xq,%,) be an interior point of G(F) . Aplane T
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(in general, more than 2 -dimensional) is said to be the
tangent plane to the graph G (F) at the point (X;,%o.)
if there are (m +#4 ~4) -dimensional planes T, (4=
=4,.e.. s ) such that T = ‘."fﬁ1 s and that for arbi-
trary non-degenerated co-cones %% (Xo,%0)2 T (i=1,.., ),
an open ball B(X,,y,) with the centre at (X,,%,) can

be chosen so that
' @
G(F) N Blxy, ) €00 € (x,m) -

A co-cone in a space R™ with a vertex %z, € R™ is de-
fined [6] as a complement in R™ of the set <€ (%) v

v (2z,- %(z,)) where % (z,) is an open convex cone in
R™ with a vertex at %, . In these terms, the following
theorem holds [61:

A mapping F:AcR™—> R™ is differentiable (in
Fréchet sense) at an interior point X, of A if and only
if there is a tangent plane T to the graph of F at X,
which is not parallel to the space ™ .

The proof of this theorem ia based on the representa-
tion of the mapping F by a matrix and on the description
of the geometric relations above in the analytic way. Now,
following the basic Roetman’s ideas, we shall prove an ana-

logical assertion for mappings in Banach spaces.

(1.2) Let Z be a Banach space. A set T ¢ Z is
said to be a flat (or linear variety) in Z iff it is a
translation of some linear subspace of Z ; that means
(T — =) is a linear subspace of Z for every x € TI .

A translation of a maximal proper linear subspace of Z is
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called the hyperplane in Z ; if TI is a hyperplane in Z,

%, 1T and %4 € Z\TT then Z is the direct sum of TT-=z,
and bft(x-zo) « Furthermore, if TT is a hyperplane in Z
then there is a linear functional ¥ : Z— R  such that
TM={z: <z, 2*>=01% and on the other hand, the set
M=4%: <%, 2*> = 0} is a hyperplane for every z* Z»>R;
moreover, TT is closed iff x* is continuous. See e.g. [12]

for these and other properties of hyperplanes used below,
Let z, € Z. A set € (z,) is said to be the cone in

Z with the vertex =z, iff A (€(zy)-2z,) c (€(2zy)~ 2,)
for every A >0 . If €(z,) is a convex cone in Z with
& vertex %, then we call the complement of <€ (z,) U

v (2%, - €(2,)) in Z the co-cone to €(z,) and we de-
note it by <€’(z,) ; it is also a cone with a vertex at 2, ,
but it is not convex. »

We shall see later that it is sufficient for the charac-
terization of differentiability to consider a special type
of co-cones only. The reason of it lies in the following:

If €(z,) 1is a convex cone in Z with a vertex z, and
if T is a closed support-hyperplane of € (z,) at =z,
such that

d.[S4(zo) N ﬁe(zo),TTJ =d=>0

where S,(z)) = {z:lz-2z Il = 1% and d (A B)= l;lr la-£1,
aehA e

then the set

{a:2=2,402, 420, Uz’ =1, dlz,+2", T £ 203

is a subset of the co-cone ‘€'(z,,> . This set is a co-cone,

too; moreover, in the case of a finitely dimensional space Z ,
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it is the co-come to some circular cone with the axis per-
pendicular to T ; hence passing to the infinitely dimen-

sional case, we define:

Definition. Let Z be a Banach space, TT  a hyper-

plane in Z, %z, € 11 and o< > 0 . The set

‘e_;,r,«(zo)={z: x=z,+rz', Az 0, lz'l=q,d(z,+z;TT)&x?

is said to be the cironlar co-cone in Z with vertex =z,
corresponding to the hyperplane m and the parameter o
The co-cone ‘C.;T‘x (%,) can be described also in an-
other way which seems to be more suitable for the conside-
rations below. The construction is as follows: Let TT be
a closed hyperplane in Z , %o € 11  and o > 0 . Choose
some i € ZN\TT, lu-z,ll= 4 and let z} € Z* be such
that laXl=4, <u-2z,, 25> = dx, TT)  end {z-Zg,Zp 7=
=0 for every =z € 11 3 such =z exists due to the

Hahn-Banach Theorem. Then
(1) ‘ET'I_“(za)=-(z: Kz-2,, 2t > ¢  l2z-2,1}% .

Its validity and the independence of the choice of « and

z¥  follow immediately from the lemma below.

Lemmg 1. Let TT be a closed hyperplane in a Banach
space Z, %, € 11, o« > 0 and let ) (B,) bethe
¢ .
corresponding circular co-cone. Then

' e oo {ay 2D gz
O (Fo) = Lz | (o, @721 & — oy TR

for every . € Z\TI  and x* € Z* such that <{z-z  z*)>=0
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whenever 2 < 1T .

]
Progf. Let z'€ €’ (z,) : then o (-2-%0_ T) 4.
£rool (- H
W '~ 2, |

Let 4. and z* be as in the lemme and denote Tl, =

={z:{z-2,,2*)=v}.The set T, is a hyperplane and it

-
n be easily shown that TI, T+ ————— 4 and
ca Yy == (44,,3*)
S e LU LTINS
d B Ty [ Hence ————=2 ¢ T,
L <, *> | ¢ AN ¢
1< *y1
where j2'l e — 22 2, , whence the result. The
ol (w,TT)

converse can be proved similarly.

Now, let X, Y be Banach spaces and denote by &
the system of graphs of all continuous linear mappings from
X dnto Y . Hence, every M € @& is a closed linear

subspace of X =< 7Y .

Definition. Let X, Y be Banach spaces, Ac X,
F:A—Y, x, an interior point of A and let TT be a
flat in X x Y . The flat T is said to be tangent to the
graph G (F) of F at the point (x,,F(x,)) iff the
following two conditions are fulfilled:

(1) T-(x,,Flx)) e G
(ii) For each o« > (0 there is x(x)=>0 such that
G(M nB”“)(xo,PCxo)) c “QH ‘e;*‘“(xo,P(xo))

where B, (%, F(x N=d2eXxY: lz-(x,, F(x, )l =<2} and

H is the system of all closed hyperplanes H in XY
having the property TTec H .

Lemma 2. If TT is a closed flat in a Banach space
Z and H  is the svatem of all closed hyperplanes H in
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Z such that T H , then (Y H =T .
: He il

Proof. Assume that there is z’eHQHH such that

z&€ 1T and let =z, be an arbitrary point of T . By Hahn-
Banach Theorem, there is xz* € Z* such that | z*¥l =41,
(%-2,,z*)=0 whenever z s 1l and (z2y,z¥>=d (2,T)>
> 0 . Denote Hy,={zeZ:<z-%,,2* )= 0}; Hyw is 3
closed hyperplane and T « Hyy ; hence Hyy € H . It imp-
lies that z' « H_,  but it is contradictory to

{)-z, ,z*)> > 0 , The converse inclusion is trivial.

Let us remark that the notion of a tangent flat to a
graph defined above agrees in finitely dimensional spaces
with the analogical Roetmen s notion and moreover, the con-
dition (i) implies the tangent flat T  1is not parallel to
the space Y (it means the flats 1T and 4 0y}xY are not
parallel; two flats TT, and Tl, are said to be parallel
1P (M -2,)c(Ty-2,) or (T, - z,)e (T, -2z4) for some
24 €Ty and z, €T, ). Using this more general notion
of a tangent, we can now prove the following theorem that
is formally identical with the Roetman ‘s theorem quoted abo-
ve but that characterizes T -differentiability of mappings
also in infinitely dimensional spaces (we write F -aiffe-

rentiability for Fréchet differentiability etc.).

Theorem 1. Let X,Y be Banach spaces, AcX, F:
:A—>Y and let x, be an interior point of A . The mapping
F  possesses the T -derivative at the point X, if and
only if there exists a tangent flat to the graph of F at
the point (x,,F(x,)) .
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Proof. We shall consider the sum norm in XxY (that
is the norm defined by l(x,g)ly ., = llxly + Neg lly ) but
it is not essential - an arbitrary equivalent norm can be

considered. Denote Z =X =Y , 4, = F(x,) and z, =
= (xyy ) o

1) Suppose F possesses the F -derivative F’(x,) at
X, and set

M= ilx,g) € Z: g = ap+ Flx,) (x-%,)3 .

Evidently, (TT- (x,,4,)) = G.(F'(x,)) € G . set

P={z*e€ Z*: lz*l= 4,<(z-2,,2%) =0 whenever z T}

and denote H= {Hz* :z* e P3$ where Hz*= {ze Z:<z-z°,z"‘)= 0%.

It is MecH for every HeH eand, conversely, every
hyperplane H in Z such that Tc H , belongs to H .
Indeed, there is z’,_"‘ € Z for every H o TT  such that
Izl =4  and {z-z,,2}> =0 whenever z € H ; sin-
ce Te R , it is z: e?P and hence H «e H ., Moreover,

it lsthsz*"TT by Lemma 2.

To prove Tl is a tangent flat to Q,(P) at X, , it
remains to verify the condition (ii). Suppose to the cont-

rary that there is «« > 0 and z, € G (F) such that

1 '
lzp-2, 1l £ — and z”"*ﬂfepu‘eﬂm(%) for m=4,2,... .
It means there is H,p, € H for every m such that

z, € €, _(=,) .

n >
Choosing ., and z:: in the manner described in the con-
struction before Lemma 1, we can see that Hz* =H,, and
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|k gym 2y % 7 > * Nz, -z, |

for every m. by (1). Since T & Hv  for every m , it
v

follows
Kz 2,20 01 = 1< 2= 2,20 > | = |<zo-z,zn’:)l >ot Iz, -2,

for all x € TT and hence

(2) (o -y ll+ llx, - —x 1) > e Cllag, - g, 1+ U= %, 1) 2 o lx, =%, 1
vhere 2z, = (dm,%m) and z = (x,)e T .

Now, set x, s(\xm,né.w) where x = Xpm 1 rg,:,._= Yy +
+P'(Xp) (X =%p? « Evidently z, €T and so it follows
from (2) that

na"“_ ﬂ‘ro‘ P'(xo)(*m' \xo)n >l "\Xm'- Xo ll

for all m , However, it contradicts our assumption on F -

. s i 1
differentiability of F at X, because I, =%, I & | 2,2, P2 = s

2) On the other hand, suppose now that there is a tan-
gent flat T to G(F) at z, = (%,,F(%,)) and prove that
F is T -daifferentiable at Xg

According to (i), there is a continuous l;i.near mapping
L:X—Y such that TT=4(x,y) € Z: =g+ L (X=X )3 -
Define the sets P ,H,, and the system H  in the same
marmer as in the first part of our proof. Then H is the
system of all hyperplanes in 7  containing TT , again, and

itis MH =T by Lemma 2.

Held
Now, let =< > 0 be an arbitrary number and let z' €
e m‘CH (z,) . Then by our Lemma 1,
Heh Rad
e:.(u*,z > ,
<z’ 2, ,2* le —22 — —— .z’ 2z,
) SR LTSN 5
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for all z*e P and all Mg € Z N\ Hz* « According to the
Hahn-Banach Theorem, there is z'* € Z* such that llz'* |l = 1,

(z.-zo ,2'*> =0 whenever x € T and

(4) Ka'-z 2% = d (2!, T) .

It is 2’*e P  and hence, choosing Ay e

llu.z,*ll =41 and d(u,,, Howl) 2 % (such w,

in (3) so that

,x exists

by the well-known theorem of F. Riesz, see e.g. [131), we ob-

tain from (3)

(5) Wx'-z), 2'*>1 ¢ 2@0“2‘-20" .

In view of- the definition of & distance a8 an infimum, we can

find x" € T  so that

lob (2", T - I2'-2" | | < o Il 2'- z, I,

whence

(6) {z'-z,,2'*> 2 I2'- 2"l - o ll'- 2, 0

by (4). Denoting =’= (x',4') eand 2”= (x",4") we have

f,,"ar%i-L(x“- X,) and so it follows from (5) and (6) that

(7) lae q,o-L(x'-onIAllq.'-n‘,o-L(u"-fxo)l+llL||-lx"—x'l6
€ U+ILD Iz-2"l € U+ AL Kz'- 2z, 2"+ Iz 2, 1) &
£ 3 (4+IL 1) llx'- z,l .

This inequality implies that

Iy~ U= IL (- x,)1 £ Be0 (A4 BT 1) (lix'= o I+ llgg'= g 1)

whence
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ML+ 3ec (4+ 1L 1)

(8) loy'~a | € o Bx'=x |l
¥ % 1- 8 A+ 11 1) o
4 .
assuming & <€ ———————— , It follows now from this re-
3¢4+ 0L

lation and (7) that

3 (4 1L 12

L _ L ° ,-x l[
(9) lgy'- g - Llx'=x )l £ PRy TITAE X=X,

1
for = (x' ! if —
every z .x,@,)eHng ‘eu,«,(zo) if x < PYTPTTAT

Now, let € >0 be an arbitrary given number; we can

€

as that . Set = na et
sume that ¢ <1 et A+ LN M+ILII+€) 2

2(x) be a number corresponding to this e according
to (ii); note that e« < ———— ,Choose
3(4+1LIN
°V_‘_I'I-Scc.(’HﬂLll) . n(e)
1+ 1L +3ecc (A4 IL 1Y 2
n ()
to be {uex:ll.x-xolléd"icA 3 it is e d'< 5

sa small (but positive)

x (ec)

and hence llx - x, Il < whenever lx-x,l< " . If

(x,4) € aon G 202 then Ix-x,ll< g” implies

I e ML +3cc (4+ 1L 1) x (e) n(ee)
) . <
% L ls s A4 ILD) 2 2

by (8) and so AnHCPﬂ Cho %) € B oy (20) vhere
A=4(x,g)eXxY: lx-x, Il &« &} . Therefore,

]
G(F)nd AHC?H\‘CL'“ (z,)c (}(F)AB‘(‘)(zD)c HQHI ‘CH" (z,)
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by (ii) and hence

(10) g,(F)hACHC\“‘C:I,‘(ZO) .

Tt follows from (9) and (10) that

IF(x)-Flx,) -Lx-x0 & & Ix-x, |
for a1l x e A, Ix-x, 1 £ g, which implies that F posse-
sses the F -derivative F'(x,) =1L at the point X, .

This completes the proof.

(1.3) Let & be a system of sets C cX  that are
star-shaped with respect to 0 and such that there is Ce

e & with dieam C<n for every 2 >0 .

Definition. Let X, 7Y be Banach spaces, A c X ,
F: A=Y, o€ Int A (interior of A ) and let T bea
flat in X = Y . The flat TT is said to be & -tangent
to the graph G (F) of F at X, iff the two following
conditions are fulfilled:

(17) TT-(x, Flx,)) € ¢ where & is as in (1.2)

(ii°) There are 2 (x)>0 and C e & for each x>

>0 such that

(11) GUF) A Ll Flatg )+ Cox B 1T € ) € X0 F (%))

Y
where B, = {yeY:lyll <xt and H  is the systen of
all closed hyperplanes H in X =Y  such that TT ¢ x .

Particularly, we denote by 6, the system of all sub-
sets of X that are star-shaped with respect to 0 and by
€, the system of all C € 6, such that 0elnt C. Our
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Theorem 1 can be now rewritten as follows:

Theorem 1°. A mapping F: A—Y (AcX) posses-
ses a Fréchet derivative at X, € Int A if end only if
g(F) possesses a 6, -tangent flat at X, -

The following theorem can be proved in a similar way.

Theorem 2. A mapping F: A=Y (AcX) possesses &
Gateaux derivative at X, € Imt A if and only if G(F) pos-

sesses a 6, -tangent flat at X, -

Note that it is possible to characterize also the diffe-
rentiability of a mapping F:A—>Y (AcX) atx,e A
relative to a set M « A ; to this aim, only the change of

Cw in (11) for C, A M is needed.

2. Characterization in terms of tangent cones

(2.1) Another approach to the geometric characterisa-
tion of differentiability was studied by T.M. Flett, who in-
troduced in [3] and [4) the notions of tangent rays and co-
nes. We recall his definitions:

Let X be a Banach space, A, <X, X, be a cluster
point of A, and denote A=A N\ix,} .If the limit

. X - Xg

x>x,  llx<x,l
*xeh

exists then the ray in X with the beginning at X, and

= ueX

the direction a4 (i.e. the set {xeX:X=X,+Au, A 201 )
is called the tangent ray to A, at X, .
Let Sc X, X, € S . The union of all tangent rays at X,
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to all subsets A, c S for which such a ray exists is said
to be the tangent cone to S at %, ; if there is no such
A,c S  then we define the tangent cone to S at X, to

be the one-point set Ly 3 .

Flett proved in his paper [41 the following theorems
(see [4], Theorem 1(i) and Theorem 5):

Theorem A. Let X,Y be Banach spaces, DeX, %X,€
e ImtD , let T:D—Y be a mepping T - differentiab-
le at Xp and denote @ (x)=TF(x,) + F'(xy) (x=X4) for

x € X . Then the tangent cone to G (F) at the point
(%g, F(%g))  equals ta Gl(e) -

m" eorem B. Let X,Y be finitely dimensional spaces,
DeX, X, €mt D, Tigt P DY be a mapping conti-
nuous at X, and suppose the tangent cone to G( F) at
(xp » F(Xo)) is contained in a aet (xg,F(x0)) + G (L)
where L: X— Y is a continuous linear mapping. Then the
napping F  has the Fréchet derivative P'(x,) at X,
and F'(x)=1L.

Flett [4] put the question (see also [5]) whether it
would be possible to define F -differentiability by means
of some tangent cone also in infinitely dimensional spaces.
We show in the next paragraph that‘using tangept cones in the
sense of Flett [4), such total characterization of F -diffe-
rentiability cannot be given, even under very strong restric-

tions.

(2.2) Consider the following example. Let X be a real

line, ¥ a real infinitely dimensional Hilbert space, {e,?

- 534 -



an infinite orthonormal sequence in Y  and define a mapp-

ing F: X—Y as follows:

~

FG)=0 for Ixi=

9 m.=4,2,...

2m-4

1 1
P(\X)=—’;ew for lxl.—--?—.—”:-, m=4,2,..

F(x)=0 for Ixl241

F(x) 4is linear in each of the intervals

[ 1 4 [ 1 1 ][-4 -1
2m+d ' 2m )’ om | 2m-4"t2m-1" 2m
-1 -1
-4 2 eer
L and o2m ! 2m+1 ]’ ™~ e

The mapping T is locally Lipschitzian and maps the
whole 4-dimensional space X (the real line) into the Hil-
bert space ¥ . It is F(0)=0 and we show that the tangent
cone to G(F) at the point ¢0,0)e X>Y i8 the line
Lx=4(\x,n‘,)cx_x}'r4y-03 .

Indeed, let A be a subset of G (F) such that %, =
=(0,0) € AN A and let z, = (Xn,F(xs)) be a sequence
in A which converges to %z, (we shall consider the sum
norm in X <Y as in the preceding paragraphs). We can sup-

pose without loss of generality that X, >0 for all m =

=; 4, 2, e and that there is at most one X, in every
1 1
interval (% =4 2,...) 3 denote by +(m)
[2u+4 ' 2% -1 ] FERT Y

4
24 (m)+4 1 24i(m)-1

such a number that xm'e[ ] for m=4,2,. «

Now, every X, can be expressed in one of the forms
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4 1 1
i _ _ & 00,41
() Xy et T n (Qum 2~;<m)+4)’ .

or

1 1 1
(12b) X =——+19\-( - — S5 «[0,11,
" 24 (m) " \2i(m)-1 21.(m,)) s ’
Assume for instance that all x, are expressed in the form
(12a) (other cases would be processed similarly) and that

Xm < Xom, whenever m <m 3 then

)
F(‘xm) = :(L:ﬁ * Citm)

and

2i(m)+ 4B 4 (m) + 345,
24(m) « (24 (m) + 1)

lz, l=Nx, L+ UF(x )=

Denote P the projection of (X x YIN{z,} onto S =

=dzeXx¥:lzl=4%  i,e. Plz) = "uz_n for every =z €
z

eX»Y,24(0,0) .It is easy to calculate that for every

m,m, m>m |,

(13) ﬂP(zw)-P(zm)hﬂ Yoo Xme | ) Plxm) _ F(.x,,,,)" )

Iz, | Uz, | MmNzl
2i(m) + &, 24 (m) + &S,
2i(m)+ 33 +4i(m)d,  2ilm)s 33+ ume "
24 (m) + 4 2 24 (m) +1 213
N [(2'9"" 2%(@)+31§,,,+‘H.(m)1$,,,) * (2'%‘ 2%(m)+315\m+l+¢(m,)¢3m)] )

If we denote the first term on the right side of (13) by T
then the following estimate holds:
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1 4
0T = = +
1 [ 1428 4 __zv._gf‘m A+ 2 +32f;;;)]

e b=
24 (m)+ (B4bi(mN, (2+h %, )—v(m)+ 3

24 ( Y~ P 21.(m) 21.(m.) 64(m)+3
44 » 7—
< (4+ P
( 124 (m) + 6 )
where %, ., = max (2,, Pm ) . The second term on the right
side of (13) - denote it by T, - can be estimated as fol-

e|245‘+

lows:
I 24 (m)+4 ., ( 24 (o) 4 4 )2}%‘

T, £ 24, £
maex 24 (m) 24 (m)

2

(2+ _(—m.'). « Wan

4
29 (m)+1 \a 24 (m)+ 41 292 2
Ty 2 2%, [( 6i(m)+3 )+( 64 (m)+3 )] ZTE""M

where W, = min (d,, ) and Fma, 18 as above.

We conclude from these estimates and (13) that

(14) o s mim (5, %,) & IP(2,) - Plzy,) | & ¢ (m) - max (F, 5,

for every m ,mm, m<m vwhere ¢, > 0, c(m)>0 for all

m end Zm c(m)=c¢, >0 ., We can see from (14) that
vy oo 1

the sequence {P(z,)3 converges if and only if the sequen-

ce 2,% has the property 3, —> 0 . If this is the case,

then denoting z* =(4,0)e ScX =Y , it holds

R O Tl \ll;g‘:”’“’-
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1

- f . ) PPT o)
35, 24(m)4 44 (m )P 432 » 34,
4+ 2% + Crm Y 1-1-142;;}?4-’3(;

and so P(z,)—> z* if m —>co . Thus we lave proved that
z* is the only limit point of P(A-2,) for arbitrary
AcG(F) with z,=(0,0)eAN A . Hence according to
the Flett’s definition quoted above, the line L, is the
tangent cone to G.(F) at =z, .

On the other hand, it is evident that the Fréchet deri-
vative of T at 0 € X does not exist. In fact, if there
is the derivative of ¥ at 0 it would be equal to zero-
operator N by Theorem A and by the assertion just been

proved, However, choosing X, = -Qi- (m = 1, 2,...) we have

XKp=> X = 0 and

1
IPO)-Flx =Nl IFG)l ™
%=, 1 1,1 _240-‘:

for all m , which contradicts the definition of the T -de-

rivative.

The reason why the Flett’'s notion of a tangent cone is
not adequate to the characterization of F -differentiabili-
ty, is the following: In the Flett's definition of a tangent
cone, only such sequencea {z,%c G (F), x, —>x, are
taken into account for which the sequences {P(z,)} are
convergent while on the other hand, all sequences {z,% C
c G(F), 2, —> =z, are considered in the definition of an
F -derivative. This difference is not essential in the ca-:

se of finitely dimensional spaces because the set {P(2,)%
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is then compact for every <«,? and hence every sequence
{P(z,7% haa a convergent subsequehce. In infinitely di-
mensional spaces, this ¢ifference is unfortunately essential
and in order to make the total characterization of differen-
tiability possible, we must modify the Flett’s definition in
an appropriate menner. In this respect, see [11] for concre-

te results.
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