

Werk

Label: Article Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log49

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,3 (1974)

QUASICOMPLEMENTED LATTICES

William H. CORNISH, Bedford Park

Abstract: Let L be a 0 -distributive lattice. Then L is quasicomplemented if and only if each minimal prime ideal in the lattice J(L) of ideals in L contrasts to a minimal prime ideal in L. A necessary and sufficient condition is also given for the contraction map to be a bijection of the set of minimal prime ideals of J(L) onto the set of minimal prime ideals of L. Amongst distributive lattices, a new characterization of quasicomplemented lattices is presented in terms of "lifting" dense elements modulo the smallest congruence having a minimal prime ideal as its kernel.

Key words: 0-distributive, quasicomplemented, minimal prime ideal, lattice of ideals, compact space, extremally disconnected space.

AMS: 06A25, 06A35 Ref. Z. 2.724.3

1. 0 <u>-distributivity</u>. According to Varlet [9], a lattice L with least element 0 is called 0 <u>-distributive</u> if it satisfies the condition: $a \land b = 0$ and $a \land c = 0$ imply $a \land (b \lor c) = 0$, for any a,b,c in L. This concept is both a generalization of pseudocomplementation and distributivity. It is equivalent to the condition that $J^* = \{x \in L : x \land j = 0 \text{ for each } j \in J\}$ is a lattice-ideal for each ideal or non-empty subset J of L and hence, as was noted by Varlet [9, Theorem 1], to the condition that the lattice J(L) of ideals in L is pseudocomplemented.

By a minimal prime ideal of a lattice or semigroup with 0

we mean a prime ideal (necessarily a proper subset) which is minimal amongst the prime ideals ordered by set-inclusion. For further details on minimal prime ideals we refer to [5] and [4]. The following theorem shows that there are sufficiently many minimal prime ideals in a O-distributive lattice. It is a consequence of Keimel's general theory of minimal prime ideals, see [4, Theorem C. Corollary]. Most of it is given in [2, Proposition 7.26, p.92]. However, we give an alternative proof based on Kist's work [5], describing prime ideals in a commutative semigroup.

- 1.1. Proposition. For a lattice L with 0, the following conditions are equivalent:
 - (a) L is O-distributive.
- (b) The minimal prime ideals of the semigroup ($L;\Lambda,0$) are minimal prime ideals of the lattice L.
- (c) For each $a \in L$ with $a \neq 0$, there is a minimal prime ideal P such that $a \notin P$.
- (d) The zero ideal of the lattice $\,L\,$ is an intersection of prime ideals.

Proof. (a) \Longrightarrow (b). By [5, Corollary 1.4 and Lemma 3.1] the semigroup (L; Λ , 0) possesses minimal prime ideals and a prime ideal P is a minimal prime ideal if and only if, for each $a \in P$, there exists $b \notin P$ such that $a \wedge b = 0$. Thus, if P is a minimal prime in (L; Λ , 0) and $\alpha_1, \alpha_2 \in P$ then $\alpha_1 \wedge b_1 = 0 = \alpha_2 \wedge b_2$ for some b_1 , $b_2 \notin P$. As P is prime $b_1 \wedge b_2 \notin P$ and yet ($\alpha_1 \vee \alpha_2 \wedge A \wedge b_3 \wedge b_4 = 0 = 0$) A ($b_1 \wedge b_2 \wedge b_3 \wedge b_4 \wedge b_5 \wedge b_5$

follows that $a_1 \lor a_2 \in P$ and so P is a lattice ideal. (b) \Longrightarrow (c) holds in the lattice (L; $V, \Lambda, 0$) since (b) \Longrightarrow (c) holds in the semigroup (L; $\Lambda, 0$) by [5, Lemma

1.2].

(c) \Longrightarrow (d) is trivial, while (d) \Longrightarrow (a) holds since $\alpha \wedge \mathcal{L} = 0 = \alpha \wedge c$ and $i0! = \cap P_i$, for suitable prime ideals P_i , imply $\alpha \wedge (\mathcal{L} \vee c) = 0$.

Otherwise, $\alpha \wedge (\mathcal{L} \vee c) \notin P_j$ for some j and so $\alpha \notin P_j$, whence \mathcal{L} , $c \in P_j$ as $\alpha \wedge \mathcal{L} = 0 = \alpha \wedge c$ and P_j is prime. But then $\mathcal{L} \vee c \in P_j$ yields an impossibility.

Since any prime ideal of the lattice $(L; V, \Lambda, 0)$ is a prime ideal of the semigroup $(L; \Lambda, 0)$, Theorem 1.1 shows that a lattice L with 0 is 0-distributive if and only if the minimal prime ideals of $(L; V, \Lambda, 0)$ are precisely the minimal prime ideals of $(L; \Lambda, 0)$.

Following Varlet [9], a lattice L with 0 is called quasicomplemented if, for each $x \in L$, there is an element $x' \in L$ such that $x \wedge x' = 0$ and $x \vee x'$ is dense. Of course, an element $d \in L$ is dense if $\{a \in L: a \wedge d = 0\} = \{0\}$. In general the element x' is highly non-unique. Besides being 0 -distributive, a pseudocomplemented lattice L is quasicomplemented - we may simply choose x' to be x^* , the pseudocomplement of x.

For an element \times in a lattice L with 0, let $(\times) = \{a \in L: a \in \times\}$ denote the principal ideal generated by \times . Then, as was established by Varlet [9, Theorem 10], a 0-distributive lattice L is quasicomplemented if and only

if, for each $x \in L$, there exists $x' \in L$ such that $(x]^{**} = (x')^*$.

Let Min(L) denote the set of all minimal prime ideals of a 0-distributive lattice L. We may turn Min(L) into a Hausdorff topological space by endowing it with the so-called hull-kernel topology which has the sets of the form $\{P \in Min(L): x \notin P\}$ ($x \in L$) as a base for the open sets. For details on this topology see [5], [4], [6] and [8]. Applying Theorem 1.1 and the main theorem of [8], we immediately obtain

1.2. <u>Proposition</u>. A 0-distributive lattice L is quasicomplemented if and only if Mim(L) is a compact Hausdorff space.

Of course, 1.2 is also a consequence of [4, Proposition 5.10, Corollary]. Proposition 1.2, together with the next result, constitute our tools for proving the main results of this paper.

1.3. <u>Proposition</u>. Let L be a quasicomplemented O-distributive lattice. Then Min(L) is extremally disconnected if and only if for each ideal J in L, there exists $y \in L$ such that $J^* = (y)^*$.

Recall that a topological space is extremally disconted if and only if the closure of each open set is open. position 1.3 can be obtained by adapting [1, Theorem 4.4] rom ring-notation to lattice-notation. There are no hidden difficulties. Alternatively, it is easily proved that, for a quasicomplemented 0-distributive lattice L, the space of minimal prime ideals is the Stone representation space for the Boolean algebra of all ideals of the form (x]** (x & L). That we have a Boolean algebra can be seen from either [9, Main Theorem, p.156] or [7, Theorem 1]. The assertion then follows from the well-known fact that a Boolean algebra is complete if and only if its representation space is extremally disconnected and the observation that the Boolean algebra of ideals (x]** is complete if and only if the condition of 1.3 obtains. This last observation follows from [7, Theorem 2, Corollary].

1.4. Lemma. For any $\,$ O-distributive lattice $\,$ L , $\,$ Min (J(L)) is a compact Hausdorff extremally disconected space.

<u>Proof.</u> Since L is 0-distributive, J(L) is pseudocomplemented and so Min(J(L)) is compact and Hausdorff because of 1.2. For a non-empty subset of J of J(L), $\{J \in J(L): J \cap X = (0]\}$ for each $X \in J\} = \{J \in J(L): J \cap Y = 0$, where $Y = V\{X: X \in J\}\}$ and so the rest follows from 1.3.

2. Main Theorems. For a 0-distributive lattice L and a prime ideal P in J(L), c(P) denotes the set-theoretical union of all ideals (of L) which are in P, while for a prime ideal Q, in L, p(Q) denotes the set

 $\{J \in J(L): J \subseteq Q\}$. If we identify the members of L with the corresponding principal ideals which they generate and thereby identify L with a sublattice of J(L) then $c(P) = L \cap P$ for each prime ideal P in J(L). That is, c(P) is then nothing more than the <u>contraction</u> of P to the sublattice L of J(L). Thus, in the statements of the main theorems we shall speak of <u>contractions</u> of minimal prime ideals in J(L) to L though, for the sake of clarity, it will be convenient to use our initial description of c(P) ($P \in Min(J(L))$) in the proofs.

For a prime ideal P in J(L) and a prime ideal Q in L, it is easy to see that c(P) and p(Q) are prime ideals in L and J(L), respectively. This was observed by Katrinák [3] in the case of distributive lattices. In fact the main theorems were inspired by [3, Lemma 12 and Theorem 5]. They not only explain [3, Lemma 12] but also clarify Theorem 5 of [3], wherein Katrinák gives a necessary and sufficient condition, involving contractions of minimal prime ideals, for the lattice of ideals of a distributive lattice with 0 and 4 to be a Stone lattice.

2.1. Theorem. A 0 -distributive lattice L is quasi-complemented if and only if each minimal prime ideal in J(L) contracts to a minimal prime ideal in L.

Proof. Suppose L is quasicomplemented. Let P \in Nim(J(L)) and $\times \in c(P)$. Then, $(\times) \in P$. Choose $\times' \in$ L such that $\times V \times'$ is dense and $\times \wedge \times' = 0$. We claim that $\times' \notin c(P)$. Otherwise, $\times' \in c(P)$, $(\times') \in P$, and $(\times V \times') = (\times) V (\times') \in P$, and so the dense ele-

ment $(x \vee x']$ of J(L) is in the minimal prime ideal P. This contradicts the following characterization of a minimal prime ideal in a O-distributive lattice L: a prime ideal Q in a O-distributive lattice is a minimal prime ideal if and only if, for each $a \in Q$, there exists $b \in L \setminus Q$, such that $a \wedge b = 0$. This characterization which will also be freely used below, follows from 1.1 and the proof of $(a) \Longrightarrow (b)$ in 1.1. Thus, it is indeed the case that $x' \notin c(P)$. Since c(P) is a prime ideal it follows that it is a minimal prime ideal.

Conversely, suppose c(P) ∈ Nim (L) for each $P \in Min(J(L))$. Then, we have a function $c:Min(J(L)) \rightarrow$ → Min (L) such that c:P → c(P) for each P ∈ \in Min (J(L)). This function is a surjection. For if $Q \in$ \in Min(L), $\mu(Q)$ is a prime ideal in J(L) and so, by Zorn's lemma, it contains at least one minimal prime ideal P. Then c(P) = Q. Since, if $a \in c(P)$ then $(a) \in C(P)$ $\epsilon P \subseteq n(Q)$ and so $(al \subseteq Q, i.e. a \in Q; c(P) \subseteq Q$ been established and hence c(P) = Q because both c(P)are minimal primes. The function is continuous. \in Min(J(L)): $a \notin c(P)$ = { $P \in$ Min(J(L)): (a) \notin P}, which means that the inverse image of a basic open set in Min (L) basic open set in Min(J(L)). Thus, Min(L) is the continuous image of Min(J(L)) and so is compact due to 1.4. Because of 1.2, L is quasicomplemented.

2.2. Theorem. Let L be a 0-distributive lattice. Then, L is quasicomplemented and each minimal prime ideal of L is the contraction of a unique minimal prime ideal of J(L) if and only for each $J \in J(L)$, there exists $u \in L$ such that $J^{**} = (u_1)^*$.

Proof. Suppose L is quasicomplemented and if $Q \in Mim(L)$, $P_1, P_2 \in Mim(J(L))$ are such that $Q = c(P_1) = c(P_2)$ then $P_1 = P_2$. Then, by 2.1 and its proof, c: $Mim(J(L)) \longrightarrow Mim(L)$ is a bijection. But, by the proof of 2.1, c is continuous. Hence, c is a homeomorphism since each of Mim(L) and Mim(J(L)) is compact and Hausdorff. Because of 1.3 and 1.4, J^* is of the form $(z)^* (z \in L)$ for each $J \in J(L)$. The quasicomplementation on L then implies $J^{**} = (z)^{**}$, as required.

Suppose L satisfies the condition: for each $J \in J(L)$, there exists $A_j \in L$ such that $J^{**} = (A_j)^*$. It is clear that L is quasicomplemented. Let $P_1, P_2 \in Min(J(L))$ be such that $c(P_1) = c(P_2)$. Let $J \in P_1$. As L is O-distributive, $J^* \in J(L)$, $J \vee J^*$ is dense in J(L), and $J \cap J^* = (0] = J^{**} \cap J^*$. As J(L) is O-distributive and P_1 is a minimal prime ideal, $J^* \notin P_1$ and so $J^{**} \in P_1$. Choose $X \in L$ such that $J^{***} = J^* = (X)^*$. Then $(X)^{**} = J^{**} \in P_1$. So $X \in (X)^{**} \subseteq c(P_1)$. Hence $X \in c(P_2)$. Then, we must have $X \in K$ for some $K \in P_2$, whence $(X) \subseteq K \in P_2$ and $(X) \in P_2$. As P_2 is a minimal prime ideal, $(X)^{**} \notin P_2$ and so $(X)^{**} \in P_2$. But $J \subseteq J^{**} = (X)^{**}$, and so $J \in P_2$. Thus $P_1 \subseteq P_2$. Because of the minimality of P_2 , we conclude

that $P_1=P_2$. Because of the proof of 2.1, each $Q\in Min(J(L))$ is the contraction of some $P\in Min(J(L))$ and thus Q is the contraction of a unique $P\in Min(J(L))$.

As a consequence of the proofs of 2.1 and 2.2, together with 1.2, 1.3 and 1.4 we obtain

- 2.3. Theorem. The following conditions are equivalent for a 0-distributive lattice ${\bf L}$
- (a) Min(L) is compact, Hausdorff and extremally disconnected.
- (b) L and its lattice of ideals J(L) have homeomorphic spaces of minimal prime ideals.
- (c) For each ideal J in L, there is $\psi \in L$ such that $\mathbb{J}^{**} = \{ v_i \}^* .$

3. Distributive lattices.

3.1. Lemma. Let L be a distributive lattice with 0 and at least one dense element. Then L is quasicomplemented if and only if for each minimal prime ideal P in L and each $x \in L \setminus P$, there exist a dense element d and an element $p \in P$ such that $x \lor p = d \lor p$.

 $\underline{\text{Proof.}}$ Let D be the non-empty filter of dense elements in L .

Suppose L is quasicomplemented with $x \in L \setminus P$ for some given minimal prime ideal P. Choose $x' \in L$ such that $x' \wedge x = 0$ and $x \vee x'$ is dense. As P is prime, $x' \in P$. Then, $x \vee p = d \vee p$ with $d = x \vee x' \in D$ and $p = x' \in P$.

Conversely, suppose L satisfies the condition in the lemma. Suppose Q is a prime ideal disjoint from D. Then Q contains a minimal prime P. If Q is not a minimal prime then there is an element $x \in Q \setminus P$. Thus there exist $d \in D$ and $p \in P$ such that $x \lor p = d \lor p$. Then $d \in Q$, an impossibility. Hence any prime ideal Q which is disjoint from D, is a minimal prime. It follows from Stone's theorem that each ideal which is disjoint from the filter D, is contained in a minimal prime ideal. From [6, Proposition 3.4], L is quasicomplemented.

If J is any ideal in a distributive lattice L then it is well-known that the relation $\Theta(J)$, given by $a \equiv k(\Theta(J))$ (a, $k \in L$) if and only if $a \lor x = k \lor x$ for some $x \in J$, is a congruence. It is, in fact, the smallest congruence on L having J as a congruence class. When J is prime, the quotient lattice $L/\Theta(J)$ is dense, i.e. each non-zero element is dense. We say that a dense element d in $L/\Theta(J)$ can be lifted to a dense element x in L if the congruence class of x modulo $\Theta(J)$ is d. Lemma 3.1 and these remarks yield the following theorem.

3.2. Theorem. Let L be a distributive lattice with 0 and at least one dense element. Then L is quasicomplemented if and only if, for each minimal prime ideal P in L, each dense element in $L/_{\Theta(\hat{\mathbf{P}})}$ can be lifted to a dense element in L.

. eferences

- [1] M. HENRIKSEN and M. JERISON: The space of minimal prime ideals of a commutative ring, Trans.Amer.Math.Soc. 115(1965),110-130.
- [2] K.H. HOFMANN and K. KEIMEL: A general character theory for partially ordered sets and lattices, Memoirs Amer.Math.Soc.No.122(1972).
- [3] T. KATRINAK: Notes of Stone lattices I (in Russian), Mat.-fyz.časop.16(1966),128-142.
- [4] K. KEIMEL: A unified theory of minimal prime ideals, Acta Math.Acad.Sci.Hungar.23(1972),51-69.
- [5] J. KIST: Minimal prime ideals in commutative semigroups, Proc.London Math.Soc.(3)13(1963),31-50.
- [6] T.P. SPEED: Some remarks on a class of distributive lattices, J.Austral.Math.Soc.9(1969),289-296.
- 17] T.P. SPEED: A note on commutative semigroups, J.Austral. Math.Soc.8(1968),731-736.
- [8] T.P. SPEED: A note on commutative semigroups II, J.London Math.Soc.(2)2(1970),80-82.
- [9] J.C. VARLET: A generalization of the notion of pseudocomplementedness, Bull.Soc.Roy.Sc.Liege 37(1968), 149-158.

School of Mathematical Sciences
The Flinders University of South Australia
Bedford Park, 5042, South Australia,
Australia

(Oblatum 8.5.1974)