

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log48

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,3 (1974)

THE TOPOLOGICAL NATURE OF ALGEBRAIC CONTRACTIONS

Paul CHERENACK, Cape Town

Abstract: One shows that if $c:W\to W/V$ is the coequalizer of a constant map and a closed immersion in the category of affine schemes of a countable type over a field k, then c is also a topological coequalizer with respect to the Zariski topologies. If k=R or C and W/V has the induced product topology, then c is on compact balls a topological coequalizer with respect to the strong topology on W. Finally, if W_{mn} is a closed orbit under the action of G on W, the group quotient of W by G exists if and only if the group quotient of W/W_{mn} by G exists.

Key words: Affine scheme of a countable type over % closed immersion, algebraic contraction, topological cokernel, strong open subset, Zariski topology, submersive, invariant ideals.

AMS: 14A15

Ref. Z. 2.741

§ 0. Introduction. Let k/G be the category of based affine schemes of a countable type over a field k. The main references here are [2] and [3]. If (W, Q) is an element of k/G, W = Spec A for some countably generated k algebra A, $Q \in W$ and Q = Spec k. Suppose that (Y, Q) is another element of k/G and

 $i:(Y,Q)\longrightarrow(W,Q)$

is a closed immersion in $\ensuremath{\mathcal{R}}\slash \mathcal{G}$. This implies that Y is the zeroes in W of an ideal in A .

Then, from [2], we know that the cokernel of i in A/G is the map

$$c: (W, Q) \rightarrow (Spec(R+I), Y)$$
.

<u>Definition 1.</u> The map c is called the algebraic contraction of V in W. We write Spec(R+I) = W/V.

In this paper, we will demonstrate the following propositions.

- § 1) Algebraic contractions are surjective.
- § 2) If $c.(W,Q) \longrightarrow (W/V,V)$ is an algebraic contraction, then, as a scheme of countable type over &, W-V is isomorphic to W/V-V.
- § 3) If $c.(W,Q) \rightarrow (W/V,Y)$ is an algebraic contraction and U is an affine open of W/Y containing V, then, the restriction

$$c':(c^{-1}(U),Q) \rightarrow (U,V)$$

is an algebraic contraction.

§ 4) c is the topological cokernel of i if V, W and W/V are endowed with the Zariski topologies.

Consider the situation when $\mathcal K$ is $\mathcal C$ (or $\mathbb R$), the field of complex numbers (or the field of real numbers). Suppose that $\mathcal K$ has the usual topology. We endow $\mathcal K^N$, the set theoretic product of $\mathcal K$ indexed by the natural numbers $\mathbb N$, with the product topology. Let $(\mathcal W,\mathcal G)$ be an element in $\mathcal K/\mathcal G$. $\mathcal W=$ Spec A and A has the form $\mathcal K(X_1,\ldots,X_m,\ldots)/\mathcal J$ where $\mathcal J$ is an ideal in the polynomial ring $\mathcal K(X_1,\ldots,X_m,\ldots)$ in a countable number of variables. Then, $\mathcal W$ can be identified with a closed

affine subscheme of the affine space \mathcal{R}^N , and the topology on \mathcal{W} is called the product topology on \mathcal{W} .

Now, suppose that C_i , $i=1,2,\ldots$, are compact subsets of W and that C_i^0 denotes the interior of C_i in the product topology. Furthermore, we require that

1)
$$C_{i} = C_{i+1}$$
.

2) $C_{i+1}^{\circ} - C_{i} \cup \{R\}$, for some $R \in W$, is connected.

3)
$$W = \bigcup_{i=1}^{\infty} C_i$$
.

In this situation, we make the following definition.

Definition 2. Use a strong open subset of W (with respect to the C_i) if and only if U \cap C_i is open in C_i with respect to the product topology, $i = 1, 2, \dots$. The collection of strong open subsets of W form a strong topology (with respect to the C_i).

§ 5) Suppose that \mathcal{R} is \mathbb{C} (or \mathbb{R} , and that W is an affine scheme of finite type over \mathcal{R} . If W has the product topology and V (more precisely, V reduced) has smooth components, then there is a strong topology on W/V such that

is a topological cokernel.

We point out the following theorem to be found in Kelly [6], p. 145, which shows that there are substantial difficulties in extending this result to all elements (W, Q)

of &/G .

16 Theorem. If an infinite number of coordinate spaces are non-compact, then each compact subset of the product is nowhere dense.

Let G be an algebraic group acting on an affine scheme $W = \operatorname{Spec} A$ of finite type over k. Suppose that the action of G on W is closed and that k is algebraically closed. The reader is referred to Mumford [8], for the notions that we now introduce. Our notation is the following:

- i) $\textbf{A}^{\textbf{G}}$ is the collection of elements in A invariant under G .
- ii) R is the collection of (closed) orbits of W under the action of G .
- iii) I_{\varkappa} is the (reduced) defining ideal of π , π an element of R .

Note that every closed subset of W (Zariski topology) contains a maximal ideal M of A and if A is algebraically closed, an element of A must take on a value in A at M. Therefore, as one can easily show,

$$A^{G} = \bigcap_{n \in R} (A + I_{n}).$$

We consider $\kappa_1, \kappa_2, \ldots, \kappa_m$, a finite number of orbits of G and their union

$$W_m = \bigcup_{i=1}^m x_i .$$

The action of G on W induces an action of G on the algebraic contraction W/W_m . Furthermore, let $W^G=$ = $Spec\ A^G$ and $c^G\colon W \longrightarrow W^G$ be the map of affine schemes induced by the inclusion $A^G \longrightarrow A$. We state now informally the results to be demonstrated in § 6. More precision will be found in § 6.

§ 6) A categorical quotient (W^G, c^G) of W by G exists, c^G is submersive and W^G is an affine scheme of countable type over & if and only if the corresponding assertion for W/W_{mr} (instead of W) is true.

The section in which the result i) above is proven, is § i , i = 1, 2, 3, 4, 5, 6.

§ 1 The surjectivity of algebraic contractions

We use the notation of § 0. Let $c^*: \mathcal{R} + I \longrightarrow A$ be the inclusion map of \mathcal{R} algebras corresponding to an algebraic contraction c. Suppose that J is a prime ideal of $\mathcal{R} + I$ which generates A. Then,

$$1 = \sum_{i=1}^{m} a_i \dot{z}_i$$

where $j_i \in J$ and $a_i \in A$, i = 1, 2, ..., m. If $t \in I$,

$$t = \sum_{i=1}^{m} (ta_i) j_i \in J ,$$

and, thus, $J\supset I$. But, I is maximal in A+I. This implies that I=J. As I is an ideal in A, it is impossible that it generates A. Therefore, JA is a (proper) ideal of A, and, as

$$J' \cap (k+I) = J$$

for a minimal prime ideal J' of JA, it follows that c is surjective.

§ 2. Algebraic contractions outside points of contraction

Again, we use the notation of § 0. Let

be a generating set of I as an A module. Then,

where $A_{\mathbf{f}_m}$ is the localization of A at \mathbf{f}_m . Also,

$$W/V - \{V\} = \bigcup_{m=1}^{\infty} Spec\left((R+I)_{f_m}\right)$$

where $(k+I)_{f_m}$ is the localization of k+I at f_m .

We must show that, under the induced map

$$c_m^*: (k+I)_{f_m} \rightarrow A_{f_m}$$
,

 $(k+1)_{f_m}$ is isomorphic to A_{f_m} as a k algebra.

Clearly, c* is an injection. Suppose that

$$X = \frac{\alpha}{(f_m)^m} \in A_{f_m}$$

It follows that

$$x = \frac{af_m}{(f_m)^{n+1}}$$

belongs to $(R + I)_{f_m}$.

§ 3 . Affine localizations of algebraic contractions are algebraic contractions

The result promised in § 0 is an immediate consequence of the next proposition.

<u>Proposition 1.</u> In the category of countably generated & algebras, localization preserves equalizers.

<u>Proof.</u> Let $i: E \to A$ be the equalizer of $f, g: A \to B$ in the category of countably generated & algebras. Suppose, furthermore, that S is a multiplicative system in F. We need to show that E_S is the equalizer of $f_S, g_S: A_S \to B_{f \circ i}(S)$. Note that $f \circ i(S) = g \circ i(S)$.

- i) $i_S: E_S \longrightarrow A_S$, the map i localized at S, is injective. $i_S(\alpha/\beta) = 0$ implies that $i(\alpha)/i(\beta) = 0$. There is an $\beta' \in S$ so that $i(\beta')i(\alpha) = 0$. Then, $i(\beta'\alpha) = 0$ and $\beta'\alpha = 0$ in E_S . Hence, $\alpha/\beta = 0$.
 - ii) $f_S \circ i_S(\alpha/\beta) = g_S \circ i_S(\alpha/\beta)$. This is clear.
- iii) Suppose that $f_S(\alpha/s) = \varphi_S(\alpha/s)$. Then there is an $s \in S$ so that

$$f \circ i(s')(f(a) - g(a)) = 0$$
.

As foi(s') = goi(s'),

$$f(i(s')a) - g(i(s')a) = 0$$
.

Therefore, $i(s')a \in E$, and

belongs to Es .

i), ii), and iii) imply Proposition 1.

§ 4. Algebraic contractions are topological quotients with respect to the Zariski topology

Let $\mathbb V$ be an open neighborhood of V. We must show that $c(\mathbb U)$ is open in W/V. As c is an isomorphism outside V, this will be done if we show that $c(\mathbb U')$ is open in W/V for an open neighborhood $\mathbb U'$ of V contained in $\mathbb U$.

V is covered by affine opens $W_{f_m} = Snec(A_{f_m})$. As W-V and V have no points in common,

$$\sum_{m} (f_m) + I = A .$$

Here, $\sum\limits_{m} (\mathbf{f}_m)$ is the ideal generated by the \mathbf{f}_m . Hence,

$$1 = f + t$$

where $f \in \Sigma(f_m)$ and $t \in I$. But,

$$c(W_{\mathfrak{p}}) = (W/Y)_{\mathfrak{p}}$$

is open in W/V. As $W_f \subset U$ and W_f is a neighborhood of V , we may take $U' = W_f$.

§ 5. Algebraic contractions can be topological quotients for appropriate strong topologies

We reduce to the case when $W = ke^m$, $m < \infty$, $k = \mathbb{C}$ (or \mathbb{R}).

Consider the diagram

where i is induced because of the functoriality of coequalizers. Here, k^{n} and W have the product topologies. Then, if J is the ideal of W, i corresponds to the natural map

$$R + I + J \longrightarrow (R + I)/J$$

of k algebras and is thus a closed immersion. Suppose that there are compact subsets C' of k^m/V defining a strong topology on k^m/V such that the algebraic contraction c' is a topological quotient. A diagram chase shows that

$$C_i = C'_i \cap W/\gamma$$

are compact subsets of W/V defining a strong topology on W/V such that c is a topological quotient.

Hence, we need only show:

Suppose that k is \mathbb{C} (or \mathbb{R}) and that k^m is affine m space. If k^m has the product topology and V is a closed affine subscheme of k^m with smooth components, then there is a strong topology on k^m/V such that $c: k^m \longrightarrow k^m/V$ is a topological cokernel.

This result, however, is an easy consequence of the next proposition, setting $C_i = c(\overline{B}_i)$.

Proposition 2. Let V be a closed affine subscheme

of k^m , $m < \infty$, $k = \mathbb{C}$ (or \mathbb{R}). Suppose that Y has smooth components and that \overline{B}_n is the closed ball of radius x in k^m about 0. If k^m and k^m/V have the product topology

restricts to a topological quotient

$$c: \overline{B}_n \longrightarrow c(\overline{B}_n)$$
.

Proof. Note that

$$c: \overline{\mathbb{B}}_{n} \to (Y \cap \overline{\mathbb{B}}_{n}) \longrightarrow c(\overline{\mathbb{B}}_{n}) \to (c(Y))$$

is a homeomorphism. Hence, we are finished if we show that every open neighborhood U of $V \cap \overline{B}_R$ is mapped to an open neighborhood c(U) of c(V).

 V_1, \ldots, V_j will be the components of V and V_i will have some defining equations

$$F_i^1 = \dots = P_i^{mi} = 0$$

where mi is an integer bigger than zero and $1 \le i \le j$. We assume, furthermore, that

$$m1 \ge m2 \ge \ldots \ge mj$$
.

Set

$$S = \{(s1, s2, ..., sj) | 1 \le si \le mi \}$$
.

Then, if, for $b = (b1, b2, ..., bj) \in 5$,

and the elements of S are enumerated

 $m = m1 \cdot m2 \cdot \dots \cdot mj$, c can be written

$$c = ((F_{s_1})^{\delta^1}, \dots, (F_{s_m})^{\delta^m}, G_{m+1}, \dots)$$

where $\gamma^{1},\ldots,\gamma^{m}$ are integers bigger than zero, and where $(F_{b_{1}})^{\gamma^{1}},\ldots,(F_{b_{m}})^{\gamma^{m}},G_{m+1},\ldots$ belong to I, the ideal of V, and generate the & algebra k+I. Notice that we need to take powers of the $F_{b_{1}}$, $1 \le t \le m$, as I need not be reduced; and that the product topology on k^{m}/V is independent of the generators chosen for k+I.

Let $D_{\xi} = \{x \in \mathcal{R} \mid |x| < \xi \}$, F_{ξ} be the product of D_{ξ} m times and

$$G_{\xi} = (F_{\xi} \times (\sum_{i=m+1}^{\infty} k_i))$$

where $k_{i} = k_{i}$, i = m + 1, m + 2,

Claim: For each $P \in \overline{B}_{\pi}$, there is an open set U' containg P with the property:

If $\sigma > 0$ (thus, $\sigma \in \mathbb{R}$), there is a $\xi > 0$ such that every point of

lies within a (Euclidean) distance σ' of $V \cap U'$.

Assume that the claim is known. As \overline{B}_n is compact, for each $\sigma > 0$, there is a $\varepsilon > 0$ such that every point of $c^{-1}(G_{\varepsilon} \cap c(\overline{B}_n))$ lies within a distance σ of $V \cap \overline{B}_n$. If U is an open neighborhood of $V \cap \overline{B}_n$ and B(U) is its boundary, let

 $\delta' = \min \left\{ d\left(\mathbb{R}, \mathbb{R}'\right) \mid \mathbb{R} \in \overline{\mathbb{B}}_n \cap Y, \, \mathbb{R}' \in \mathbb{B}(\mathbb{U}) \right\} \; .$

Here, d denotes the Euclidean distance and $0 < \sigma < \infty$ as both $\overline{B}_n \cap V$ and B(U) are compact. Clearly,

$$c^{-1}(G_{\varepsilon} \cap c(\overline{B}_{x})) \subset U$$

and

$$G_{\varepsilon} \cap c(\overline{B}_{n}) = c(c^{-1}(G_{\varepsilon} \cap c(\overline{B}_{n})))$$

is open. Hence, the proof of Proposition 2 will be complete as soon as the claim is demonstrated.

<u>Proof of Claim</u>: Consider $P \in \overline{B}_n \cap V$. The V_i , $i = 1, \dots, j$, can be arranged so that

 $P \in \bigcap_{i=1}^{q} V_i$ and $P \notin \bigcup_{i=q+1}^{q} V_i$ for some integer q, satisfying $1 < q \le j$. By choosing appropriate linear combinations of

$$F_i^1, \ldots, F_i^{mi}$$
,

for $i \ge q+1$, one can guarantee that

$$\mathbf{F}_{\mathbf{z}}^{\mathbf{r}}(\mathbf{P}) \neq \mathbf{0}$$

for $i \ge q+1$ and $1 \le p \le mi$. Hence, there is a closed (compact) ball $\overline{B}_p(P)$ of radius p around p such that

for $Q \in \overline{B}_{\rho}(P)$, $i \ge q + 1$ and $1 \le p \le mi$. Also, if $\theta = min\{i\}_{i}^{p}(Q)|iQ \in \overline{B}_{\rho}(P)$, $i \ge q + 1$, $1 \le p \le mi$, $\theta > 0$ as $\overline{B}_{\rho}(P)$ is compact. Thus, if for all $h \in S$ and $Q \in \overline{B}_{\rho}(P)$,

then

$$|(F_4^{61}(Q) \cdot F_2^{62}(Q) \cdot \dots \cdot F_4^{63}(Q))^{26}| < \xi$$

and

$$|F_1^{b1}(Q) \cdot F_2^{b2}(Q) \cdot \dots \cdot F_q^{bq}(Q)| < \xi^{1/3b}/\theta^{\frac{1}{2}-q}$$
.

Hence, we can assume that

and that I is reduced.

Next, we show that if ξ is small enough and $Q \in \overline{B}_{n}(P)$,

*) For some i, 1 \(i \(\dagger \) ;

$$F_{i}^{1}(Q), F_{i}^{2}(Q), ..., F_{i}^{mi}(Q)$$

must be small.

Suppose, for instance, that F_4^{μ} , $1 \le \mu \le m \cdot 1$, is not small. As

$$|F_1^{n}(Q) \cdot F_2^{n^2}(Q) \cdot \dots \cdot F_j^{n^j}(Q)| < \xi ,$$

$$|F_2^{n^2}(Q) \cdot \dots \cdot F_j^{n^j}(Q)|$$

must be small for $(\mu, 52, ..., 5j) \in S$. Induction, then, implies that one has small values

$$F_{i}^{1}(Q), \ldots, F_{i}^{mi}$$

for some i such that $2 \le i \le j$. Otherwise, F_1^{μ} is small for $1 \le \mu \le m1$, in which case *) is true.

The proof is reduced to the case where V has one reduced smooth component.

We select defining equations F_1, F_2, \ldots, F_m for V. Let $G : \overline{B}_{\mathfrak{S}}(P)$. For every $i, 1 \le i \le m$, F_i can be written

$$F_{i}\left(X\right) = \frac{\partial F_{i}}{\partial X_{a}}\left(Q\right)\left(X_{a} - Q_{a}\right) + \dots + \frac{\partial F_{i}}{\partial X_{m}}\left(Q\right)\left(X_{m} - Q_{m}\right) + \dots + \frac{\partial F_{i}}{\partial X_{m}}\left(Q\right)\left(X_{m} - Q\right) + \dots + \frac{\partial F_{i}}{\partial X_{m}}\left(Q\right)\left(X_{m} - Q\right) + \dots + \frac{\partial F_{i}}{\partial X_{m}}\left(Q\right) + \dots + \frac{\partial F_{i}}{\partial X_{m}}\left(Q\right) + \dots + \frac{\partial F_{i}$$

higher degree terms

where $X = (X_1, X_2, \dots, X_m)$ and $Q = (Q_1, Q_2, \dots, Q_m)$. If φ is small enough, the higher degree terms can be disregarded. Let

$$A(Q_i) = \begin{bmatrix} \frac{\partial F_1}{\partial X_1}(Q_i) & \dots & \frac{\partial F_1}{\partial X_m}(Q_i) \\ \dots & \dots & \dots \\ \frac{\partial F_m}{\partial X_1}(Q_i) & \dots & \frac{\partial F_m}{\partial X_m}(Q_i) \end{bmatrix}$$

A(Q) \cdot (X-Q) = ξ is the equation of the subspace of \Re^m parallel to the tangent space T(Q) to V at Q, whose distance from T(Q) and, hence, Q is determined by ξ . The coefficients of A(Q) are bounded as $Q \in \overline{B}_{Q}(P)$, a compact set. Therefore, for a given $\sigma > 0$, there is an $\xi > 0$ such that a point X in $\overline{B}_{Q}(P)$ satisfying $|F_{i}(X)| < \xi$ for $i = 1, 2, \ldots, m$ must lie within a distance σ of $V \cap \overline{B}_{Q}(P)$. Taking $U = B_{Q}(P)$, the interior of $\overline{B}_{Q}(P)$, the proof is complete.

Example 1. If, in Proposition 2, one takes the product topology on k^n/V , $c: k^n \rightarrow k^n/V$ is not necessarily the topological quotient. Let $k = \mathbb{R}$ and

m=2 . Suppose V is the Y axis. Then, the image of the open subset

of \mathcal{R}^{ζ} under c is not open. For instance, the sequence $\chi_{m} = (e^{1/m}, 1/m)$

lies outside $\ensuremath{\mathtt{U}}$ but converges to the image of the $\ensuremath{\mathtt{Y}}$ axis under $\ensuremath{\mathtt{c}}$.

§ 6. Some geometric invariant theory

Our notation is that of § 0. First, we collect some results which will be useful.

Let $W^G = \operatorname{Spec} A^G$ and $c^G : W \longrightarrow W^G$ be the map defined by the inclusion $A^G \longrightarrow A$. Then, according to Mumford [8], p. 8, a categorical quotient (W^G, c^G) of W by G exists and c^G is submersive when the following conditions hold.

<u>i</u>) If $\mathcal{G}: \mathcal{G} \times \mathcal{W} \longrightarrow \mathcal{W}$ defines the operation of \mathcal{G} on \mathcal{W} and $P_2: \mathcal{G} \times \mathcal{W} \longrightarrow \mathcal{W}$ is the second projection, then

 \underline{ii}) \underline{o}_W G is the subsheaf of invariants of $c^G*(\underline{o}_W)$.

 $\underline{iii}) \ \ \text{If } X \ \ \text{is an invariant closed subset of } W \ ,$ $\mathbf{c}^G(X) \ \ \text{is closed in } W^G \ ; \ \ \text{if } X_{i} \ , i \in I \ , \ \text{form a set}$ of invariant closed subsets of $W \ . \ \$ then

$$c^{G}(\bigcap_{i\in I}X_{i})=\bigcap_{i\in I}c^{G}(X_{i}).$$

As in Mumford [8], p.28, one can deduce that iii) is implied by the relation:

$$\underline{\text{iii}'}) \qquad \sqrt{(\sum_{i \in I} A_i)} \cap A^G = \sqrt{\sum_{i \in I} (A_i \cap A^G)}$$

where the A_i are G invariant ideals in A corresponding to the X_i . Note that the radical operation \vee commutes with \cap .

Next, we restate the first result promised in § O.

<u>Proposition 3.</u> Suppose that W_m is the finite union of orbits n_1, n_2, \ldots, n_m of G. A categorical quotient (W^G, c^G) of W by G exists, c^G is submersive and W^G is an affine scheme of countable type over A if and only if, for the induced action of G on W/W_m , a categorical quotient (W_m^G, c_m^G) of W_m by G exists, c_m^G is submersive and W_m^G is an affine scheme of countable type over A. Moreover, if W^G exists, $W^G = W_m^G$.

<u>Proof.</u> There is a countable subset \mathbb{R}'' of \mathbb{R} such that $\bigcup_{\kappa \in \mathbb{R}''} \kappa$ is dense in \mathbb{W} and $\mathbb{R}' = \{\kappa_1, \kappa_2, ..., \kappa_m\} \subset \mathbb{R}''$.

If we write $R'' = \{n_1, n_2, \dots, n_i, n_{i+1}, \dots \}$, it follows that

$$A^G = \bigcap_{k=1}^{\infty} (k + I_{n_k}) .$$

Define now

$$E_1 = k + I_{k_1}$$
, $-496 -$

$$\mathbf{E}_2 = \mathbf{A} + (\mathbf{I}_{n_2} \cap (\mathbf{A} + \mathbf{I}_{n_4}))$$

and , inductively, for each positive integer $\frac{1}{2} > 0$,

I)
$$E_{j+1} = k + (I_{k_{j+1}} \cap E_{j})$$
.

Then, for each integer $\beta > 0$, by means of unduction, one can prove without difficulty that

$$E_{\dot{i}} = \bigcap_{i=1}^{\dot{i}} (k + I_{n_i}) .$$

Let $B = \bigcap_{h \in \mathbb{R}^1} (k + I_h)$. Relations I and II imply $k + (I_{n_1} \cap E_m) = \bigcap_{i=1}^m (k + I_{n_i}) \cap (k + I_{n_i})$

for each integer j > m, the order in R" being immaterial. Hence, on taking countable intersections,

$$A^G = B^G = \bigcap_{k \in \mathbb{R}^n} (k + I_k)$$
. Let $a_m^G : W / W_m \rightarrow W^G$ be the

affine map of schemes defined by the inclusion $A^{\mathcal{G}} \longrightarrow \mathcal{B}$.

For both W and W/W_m, Condition , above is obviously true. One can derive Condition \underline{ii}) for both W and W/W_m from Proposition 1. Hence, in order to complete the proof of Proposition 3, it is necessary to show that \underline{iii}) is valid for W if and only if it is valid for W/W_m.

As Spec $E_j \longrightarrow Spec E_{j+1}$ has been shown in § 4 to be a topological quotient, for each integer j > 0, so is the composite

$$\operatorname{Spec} \, \operatorname{E}_1 {\longrightarrow} \, \operatorname{Spec} \, \operatorname{E}_2 {\longrightarrow} \, \ldots \ldots {\longrightarrow} \, \operatorname{Spec} \, \operatorname{E}_m \ .$$

Therefore, the map

Spec A \rightarrow Spec $\bigcap_{n=1}^{m} (R + I_{n})$

is the topological quotient shrinking each κ_i , i = 1, 2, ..., m, to a point. Hence

$$\text{III)}\; \sqrt{(\sum_{i\in I}A_i)} \cap (\bigwedge_{i=1}^m (k+I_{n_i})) = \sqrt{\sum_{i\in I}(A_i\cap (\bigwedge_{i=1}^m (k+I_{n_i})))} \;\;.$$

Intersecting this last equality with $B = A = \bigcap_{k \in \mathbb{R}^n} (A_k + I_{k^l})$, we discover that $\sqrt{(\sum_{i \in I} A_i)} \cap A^G = \sqrt{\sum_{i \in I} (A_i \cap A^G)}$ when

 \underline{iii}') is valid for W/W_m . Since every G invariant ideal B' in B is of the form $A' \cap B$ for some G invariant ideal A' in A, the validity of \underline{iii}') for W implies the validity of \underline{iii}') for W/W_m . q.e.d.

References

- [1] A. BOREL: Linear algebraic groups (W.A.Benjamin, New York, 1969).
- [2] P. CHERENACK: Basic objects for an algebraic homotopy theory, Can.J.Math.XXVI(1972),155-166.
- [3] P. CHERENACK: Some invariant theory among quasi-projectives, to appear.
- [4] J. DIEUDONNÉ and J.B. CARRELL: Invariant theory, old and new (Academic Press, New York, 1971).
- [5] A. GROTHENDIECK: Elements de géometrie algébrique. I (Springer-Verlag, Berlin, 1970).
- [6] J.L. KELLEY: General Topology (Van Nostrand Reinhold, New York, 1955).
- [7] J.C. MOORE: Semi-simplicial complexes and Postnikov restems, Symposium Internacional de Topolo-

gia Algebraica(La Universidad Nacional Autonoma, Mexico, 1958).

- [8] D. MUMFORD: Geometric invariant theory (Springer-Verlag, Berlin, 1965).
- [9] D. MUMFORD: Introduction to algebraic geometry (Hazvard University Press, Cambridge, Mass.).
- [10] O. ZARISKI: Algebraic Surfaces (Springer-Verlag, Berlin, 1971).

Department of Mathematics
University of Cape Town
Cape Town
Republic of South Africa

(Oblatum 12.5.1974)

1.