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RINGS ON COMPLETELY DECOMPOSABLE TOBSION-FREE ABELIAN
GROUPS

B.J. GABDNER, Hobart

Abstract: The absolute annihilatar G(*) of a com-
pletely decomposable torsion free abelian group .G(*) is
characterized. A chain :

0€G(*¥ = G E... € Bl GloxaB)S e E Gla) =G(u+l)

of "itecrated absolute annihilators® of G is then defined.
All subgroups G(e«) are ideals in every ring on 6 and
when G = G(u), some information is obtained about the xinds
of ring multiplication which G admits.

+ Key words: Completely decomposable, absolute annihila-
or.

AMS: 20K99 Ref. 2.: 2.732.1

Introduction. Szele (71 defined the nil-degree (Nil-
stufe) of an abelian group G  as the largest integer. m
such that there is an associative ring R on G with
R* % 0 , if such an m exists. Analogously, we define
the strong nil-degree as the largest integer m (if the-
re is one) for which G supportis a (not necessarily as-
sociative) ring R with L et , the subring generated by
all products (... ayagdag)-.. Jam non-zera.

(The ostensible asymmetry of this definition can be remo-

ved by consideration of opposite rings.)
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In this note we characterize the absolute annihilator
of a completely decomposable abelian group G : the set
of elements common to the annihilators of all rings R on
G . This leads to the comstruction of an ascending chain
of "absolute ideals" which provides: (i) a sufficient
(but far from necessary) condition for G to admit only

T -nilpotent ring multiplications; (ii) in some circum-
stances, an upper bound for the nil-degree of G ; (iii) in
all cases, the exact value of the strong nil-degree of G .

We denote the type of a group element X or a rational
group X by T(x), T(X) respectively and otherwise fol-
low the conventions of [2]. All groups considered are tor-
sion-free abelian and in the absence of any qualifica;tion,
rings are associative. A group is nil [6]1 (resp. strongly
nil [51) iz R? =0 for every ring (resp. every not ne-
cessarily associative ring) R on @ . Other notation: G°
is the zeroring on a group G, R* the additive group of
aring R, <« indicates an ideal.

1. Completely decomposable nil ups

Ree and Wisner [5] have given a description of the
completely decomposable torsion-free nil groups. We begin

with a paraphrase of their results, together with a proof,
which will be useful later.

Theorem l.1. Let G -1,‘?1 X. be a direct sum of ratio-
nal groups. The following conditions are equivalent.
(i) G is strongly nil.

(ii) G 1is nil.
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(iii) T(X;») T(Xé) # T(JCX") for all ‘i&, g'., Rel.

Proof. Clearly (i) = (ii).

(ii) = (iii): When considering a rational group X »
we lose no generality by assuming that X contains the in-
-tegera and 1 has any pre-assigned characteristic of ap-
propriate type. Thus, supposing T(X3)T(X3) £ T(Xg) for
some 4i,3,% € I , we may write X =Xiep, Xz=%X3e3 >
Xpe= Xgpey » where 7 (e;) xCe3) £ % (es) - A multi-
plication on X; ® X3 & Xg  is completely determined by
its effect on ie;,e;, e5 3 . There are three cases to
consider. '

(8) If Xy=X; = Xp = X = Xe , then T(X) s

jdempotent and we can define el=e .

(b) If Xy =X3=X= Ye + Xz , we can use the mul-

tiplication table

e S5
e | 0 0

Iz Xy=Xp=X=Xe Xy, then T(XI& T(X3)TX) & T(X),
80 T(X.;,)T(X:.,)éT(X;,)TQC)=T(X), and we are back to the pre-

vious case.
(e) If Xi, X; end Xg ave all distinct, the fol-

lowing table can be used:
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3 | S

o 0 eb 0

e; €n, 0 0

e |0 |0 |0 .

In every case we have defined an associative ring R on
A . x 2 . Ga 0\+
,@®X; ®Xs  and R2 4+ D, Thus (R.e&*%kxz])
is not nil.
(iii) = (i): If X is a ring (not necessarily asso-
ciative) on G with R?4 0, then X; X; # 0 for some

4,3€l. Let xeX;, 4 € X; be such that
0+.x/g,=z1+...+zm,.0¢z,‘ex.% .
Then

TOX) TCX) & Texpd = TCK; Inen TCE )£ TCX; )

Remark. The second possibility mentioned in (b) of the

proof just given can occur even for non-idempotent types,

e.g. the types corresponding to the characteristics
7[.1:(014 10,4:0741():4 90)4$014;"')

7(2=(4,00,4,oo,4,ao,4,ao,4,00,4,09,---) =

The assumption that it cannot leads to some incorrect sta-
tements in [1]. In particular, while it is true that the
direct sum of two nil rational groups has nil-degree 4 or

2 , the strong nil-degree need not be defined. For example
it X=Xe and Y =Y¢

are rational with o (e) = A4
end 4(£) = gy,

» consider the non-associative ring defined.
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on X®Y by the multiplication table

e £
e | 0 | ¢
£ £ 0

2. The absolute annihilator

Fuchs ([2] , Problem 94) refers to the absolute anni-
hilator of a group G , the set of elements belonging to the
annihilator of every ring on G . In this section we inves-
tigate the absolute annihilator, which we denote by G(*),

when G is completely decomposable.

Theorem 2.1. Let G=.® X; bea direct sum of
Al

rational groups..Then

G(*)= @{X;|tel and 3 no 3, €l with
T(X,) T(Xy) & T(Xg)}

Proof. Note firstly that if X;n G(*) # 0, then X, s
s G(*x)

Ie T(X3)T(X3) & T(Xg) for some 3,k ¢ I , then as
in the proof of Theorem 1.1, there is a ring A on G with
X4 A+ 0, so that X; § G(*) . Conversely, if X, & G(*)
then for any non- zero x € Xj , there exists a ring R on
G  in which xX3 £ 0 for some 4 €l . If x4 =+ 0,
where o e X3 , let '

XY = Xg t oo * Zp

where 2z, is a non-zero element of Xj ~ for (aistinct)
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4gseeeyim €l . Then

T(X,) T(xa-,) £ T(.xné,)=T(z:4)n... n T(z,) e T(x, )= T(X‘—,”e .

Finally, let X4+ oo + Xm be any element of
G(*) ,  where 0% x,e€eXy, for x=4,...,m and

the 1, are distinct. We complete the proof by showing

that x;, € G(*) ., 1If x, € G(*) , themn T(x‘;,q)T(xé_)é

£ T(Xg) for some 3,% €I and as in Theorem 1.l we
can define a commutative ring A on G such tmt for some
Lel, x;,1 X+ 0 but Xp Xp = 0 for all other
m e I . But then for 0 + % € Xg we have
X = (g4 .ot Xpdyp =0 .
We now consider a chain

0sGU)eG(2)E... €S G(x) E 4.0

of subgroups of G , defined inductively as follows:

G4) = G(*); G(x+4)/G(x) = [G/G(x)I(*) ;
GpY= U G(x) if # is a limit ordinal.
x<fp

Clearly G(w)=G(w+4) for some ordinal w .

A straightforward transfinite induction argument pro-
vides a proof of

Lemms 2.2. Let G-%?IX;, be a direct sum of ratio-
nal groups. For every o , there exists a subset L, of I
such that Gl«)= @ X, .

‘el

Iheorem 2.3, Let G=,@ X
vel

i be a direct sum of ra-
tional groups, R

aringon G. Then G(xx)<1R for eve-

- W o



ry o
Proof. Let £ be an endomorphism of G,xeXy e G(™).
Then £(x)=0 or

04 £(x) = X, +onn+ Xy

, X =4y, m and the i, are distinct.

If £(x) & G(*) , then some Xy & G(*¥), so T(X.;,'D)T(Xé)é’r(xk)
for some %, % € I . It follows that T(X,) T(X3) & T(Xg),

where X, € x%

which is impossible, so £(X3) s G(*) . Hence G (%)
is fully invariant, so that G (1) = G(*) @R . If now
G(<) < R , then Lemma 2.2 implies that

[R/G(x)I(¥) <R/ G(x) , and thus Glect+1) =t R . At limit

ordinals the result is clear.

Suppose now that G(w) = G for some ordinal @ - In

any ring B on G, Glx+1)/Glx) =(0: R/G(x)) i.ee
G+ R s G(x) and RG(x+4) & Glex) - Thus

0 G(4)s G)s...£6(x)E ... E G(ud) =R

is a two-sided annihilator series for R in the sense of

[3]. Thus by Theorem 1.6 of [3] and § 3 of [41, we have

Corollary 2.4. If G is as in Theorem 2.3 and G =
= G(g) for some ordinal &« , then any ring R on G is
left and right T -nilpotent. If in addition & 1is finite,
then R®*!' =0 for any such R .

We conclude this section with an winternal® characte-
rization of the subgroups G(m) for finite m . A s-mat-

rix is a 2xm matrix



'Z,M ’3‘42 ere "l:dm

'524 ’52,2 see ’Ezm

of types such that Ty oy € Ty gy for 4=1,2,....,m~1 .

Proposition 2.5. Let @& =%@Ix,-, be a direct sum
of rational groups. Then

G(m) = @{_Xé_ |3 no 2x(m+41) g -matrix over

{T(X,)|+ eI} with Ty = T(xa._)} .

Proof. The result is true for m = 4 (Theorem 2.1);
if it is true for m , let

G=GmeH=6mI@H(MoX=Gn+NOX .

If there is a 2x(m+ 2) gz -matrix

TG T v =, L,

T(xé) Thy Ser By nri

with Xy = G(m+1) | then X, ¢ G(m) (strike out the
last column) and similarly X; $ G(m) . Thus X; € H(*)
and X3 € H . But then Xg, ¢ H , 80 Xg €G(m) , which
is impossible, as T (Xg) is the 1,1)
2x(m +4) '

entry in a

oY -matrix. Conversely, if X; satiafies the

condition for 2x(m 4 2) o -matrices, we need only look

at the case where X; c ¥ ., Ir Xy € X , then

T(X3) T(X3)2 T(Xg) for some X;,Xe = H . But then

2x (m+4) s-matrix M= [z;3] with =4 =
= T(Xg) which can be augmented to a
rix

there is a

2x(m+2) gr -mat-
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TX, My
'rxé n

Hence we conclude that X, £ H(*)s G(m+1) .

3. Some examples

A completely decomposable group G "need not have an
absolute annihilator series in order to admit only T -nil-
potent multiplications. For instance if G is the group in
the Remark in § 1, then G(4)=0 , but X3 =0 for eve-
ry ringR on G .

Even when G = G(m)# G(m+4), G can have nil-deg-
rec £m;: Let G=X,0X, ®X3® X,® X5 , where the

types of X4,-:, X5 are those of the characteristics

(4, 0, 0, 4, 0, 0,..0)
0, 4, 0, 0, 4, 0,...)
(U, 4, 0, 4, 4, 0,...)
(o, 0, 4, 0, 0, 4,..0
(A, 4, 4, 4, 4, 1,..)
respectiw;ely. It is routine to verify that R2 =10 for

eny ring R on G but that [T(X,) T(Xy T(Xy)
T(X,) ‘I‘(X,‘_) T(Xs)
is a  -matrix.
Any direct sum of finitely many rational groups with
non-idempotent types has a nil-degree (see e.g.[8]1, Theorem
3.1). With infinite rank the situation can be quite diffe-

rent. Consider the characteristics
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(0, m, o, m, w, m, ©, m, 0, m,..)
(0, 0, m, 0, @, 0, m, 0, @, 0, «.)

(0, 0, 0, 0, m, 0, 0,0, w0, ..

m =4,2,... . They form a semigroup ($15 |2 e13,-) .

Let X; = X;e; be a rational group containing e; with

xley) = x4 and write ;= 7; x; etc. Then a ring

R is defined on ,@Ix 3 by the multiplication rule
4 -

ei ej=e;; .Since for any 4 one can find 3 with

%3 Xi = A4 , we have xe; =(xe;)e; and R is idempo-

m m,m
tent and since (;‘g‘ x; e;) (qu yze;) = > Xi % By s X

# 1,9=1
has no zero-divisors.

4. Non-sssocistive rings

The absolute annihilator series furnishes more precise
information about the non=associative rings which can be
defined on a completely decomposable group G . If G =
= G(m) (m finite) it is easily proved that
iu;G(zn.-b+4‘) for s=4,...,m , whence ™=

=0 for any ring R on G .

Proposition 4.1. Let & =4.@1 X, be a direct sum
of rational groups. There is a (not necesearily associative)
ring R on G with X" & 0 if and only if there is a
2¥m s -matrix over ITX D)1 el

Proof. If there is such a matrix ET(I;_;)J s, let

I;a- =X; €;; Wwhere the characteristics x (e,,;_a-_) sa-
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tisfy the relations the matrix requires of their types. De-
fine 41 €2 = ©3,4 44 and let all products not thus
accounted for be zero. (Note that ej; and e,, can be
equal for different (i,3) and (x,s) .) Then

(o.. (((e44 624) 322) 323)-.10)32'”1_4 = e,,m' -'-F 0 . On the other
hand, if there is no such 2xm matrix, then G=G(m=1)

and R™=0 for all rings R on G .

Summarizing, therefore, we have

Theorem 4.2. Let G=‘L§1x1-, be a direct sum of ra-
tional groups. The following conditions are equivalent:

(i) 6=6m), m< o0 and G £ G(m-=-1) .

(ii) There are 2xm ,but no 2x (m+1) o -matrices

over {T(XL)\&EI} .

(iii) @ has strong nil-degree m .
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