

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log41

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,3 (1974)

RINGS ON COMPLETELY DECOMPOSABLE TORSION-FREE ABELIAN GROUPS

B.J. GARDNER, Hobert

Abstract: The absolute annihilator G(*) of a completely decomposable torsion free abelian group G(*) is characterized. A chain $0 \subseteq G(*) = G(4) \subseteq \dots \subseteq G(\alpha) \subseteq G(\alpha+1) \subseteq \dots \subseteq G(\mu) = G(\mu+1)$ of "iterated absolute annihilators" of G is then defined. All subgroups $G(\alpha)$ are ideals in every ring on G and when $G = G(\mu)$, some information is obtained about the kinds of ring multiplication which G admits.

Key words: Completely decomposable, absolute annihilator.

AMS: 20K99 Ref. Z.: 2.732.1

Introduction. Szele [7] defined the nil-degree (Nilstufe) of an abelian group G as the largest integer m such that there is an associative ring R on G with $\mathbb{R}^m \neq 0$, if such an m exists. Analogously, we define the strong nil-degree as the largest integer m (if there is one) for which G supports a (not necessarily associative) ring R with \mathbb{R}^m , the subring generated by all products $(\dots((a_1a_2)a_3)\dots)a_m$, non-zero. (The ostensible asymmetry of this definition can be removed by consideration of opposite rings.)

In this note we characterize the absolute annihilator of a completely decomposable abelian group G: the set of elements common to the annihilators of all rings R on G. This leads to the construction of an ascending chain of "absolute ideals" which provides: (i) a sufficient (but far from necessary) condition for G to admit only T -nilpotent ring multiplications; (ii) in some circumstances, an upper bound for the nil-degree of G; (iii) in all cases, the exact value of the strong nil-degree of G.

We denote the type of a group element x or a rational group X by T(x), T(X) respectively and otherwise follow the conventions of [2]. All groups considered are torsion-free abelian and in the absence of any qualification, rings are associative. A group is nil [6] (resp. strongly nil [5]) if $R^2 = 0$ for every ring (resp. every not necessarily associative ring) R on G. Other notation: G° is the zeroring on a group G, R^+ the additive group of a ring R, \lhd indicates an ideal.

1. Completely decomposable nil groups

Ree and Wisner [5] have given a description of the completely decomposable torsion-free nil groups. We begin with a paraphrase of their results, together with a proof, which will be useful later.

Theorem 1.1. Let $G = \bigoplus_{i \in I} X_i$ be a direct sum of rational groups. The following conditions are equivalent.

- (i) G is strongly nil.
- (ii) G is nil.

(iii) $T(X_i)T(X_j) \not= T(X_n)$ for all $i, j, k \in I$.

<u>Proof.</u> Clearly (i) \Longrightarrow (ii).

- (ii) \Longrightarrow (iii): When considering a rational group X, we lose no generality by assuming that X contains the integers and 1 has any pre-assigned characteristic of appropriate type. Thus, supposing $T(X_i)T(X_j) \subseteq T(X_k)$ for some $i,j,k\in I$, we may write $X_i=X_ie_i$, $X_j=X_je_j$, $X_k=X_k,e_k$, where $\chi(e_i)$ $\chi(e_j) \subseteq \chi(e_k)$. A multiplication on $X_i \oplus X_j \oplus X_k$ is completely determined by its effect on $\{e_i,e_j,e_k\}$. There are three cases to consider.
- (a) If $X_i = X_j = X_k = X = Xe$, then T(X) is idempotent and we can define $e^2 = e$.
- (b) If $X_i = X_j = X = Xe + X_k$, we can use the multiplication table

If $X_{\dot{i}} = X_{\dot{k}} = X = Xe + X_{\dot{i}}$, then $T(X) \leq T(X_{\dot{i}})T(X) \leq T(X)$, so $T(X_{\dot{i}})T(X_{\dot{i}}) \leq T(X_{\dot{i}})T(X) = T(X)$, and we are back to the previous case.

(c) If X_i , X_i and X_k are all distinct, the following table can be used:

	ei	ej	ek
ei	0	e	0
ej	ek	0	0
ek	0	0	0

In every case we have defined an associative ring R on $X_i \oplus X_j \oplus X_k$ and $\mathbb{R}^2 \neq \emptyset$. Thus $G_{\mathbb{Z}} \Big(\mathbb{R} \oplus \Big[\bigoplus_{\ell \neq i,j,k} X_{\ell} \Big]^0 \Big)^+$ is not nil.

(iii) \Longrightarrow (i): If R is a ring (not necessarily associative) on G with $R^2 \neq 0$, then $X_i, X_j \neq 0$ for some $i, j \in I$. Let $x \in X_i$, $y \in X_j$ be such that

$$0 + x_N = z_1 + \ldots + z_m , 0 + z_n \in X_{i_n} .$$

Then

$$\mathbb{T}(X_{i_{\ell}})\;\mathbb{T}(X_{j_{\ell}}) \leq \mathbb{T}(x_{i_{\ell}}) = \mathbb{T}(X_{i_{\ell}}) \cap \ldots \cap \mathbb{T}(X_{i_{k}}) \leq \mathbb{T}(X_{i_{\ell}}) \;\;.$$

Remark. The second possibility mentioned in (b) of the proof just given can occur even for non-idempotent types, e.g. the types corresponding to the characteristics

$$\begin{aligned} & \chi_1 = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots) \\ & \chi_2 = (1, \infty, 1, \infty, 1, \infty, 1, \infty, 1, \infty, 1, \infty, \dots) \ . \end{aligned}$$

The assumption that it cannot leads to some incorrect statements in [1]. In particular, while it is true that the direct sum of two nil rational groups has nil-degree 1 or 2, the strong nil-degree need not be defined. For example if X = Xe and Y = Yf are rational with $\chi(e) = \chi_1$ and $\chi(f) = \chi_2$, consider the non-associative ring defined.

on X @ Y by the multiplication table

	e	£
e	0	£
£	£	0

2. The absolute annihilator

Fuchs ([2], Problem 94) refers to the absolute annihilator of a group G, the set of elements belonging to the annihilator of every ring on G. In this section we investigate the absolute annihilator, which we denote by G(*), when G is completely decomposable.

Theorem 2.1. Let $G = \bigoplus_{i \in I} X_i$ be a direct sum of rational groups. Then

$$G(*) = \bigoplus \{X_i | i \in I \text{ and } \exists \text{ no } j, \Re \in I \text{ with}$$

$$T(X_j) T(X_j) \neq T(X_{\Re}) \}.$$

<u>Proof.</u> Note firstly that if $X_i \cap G(*) \neq 0$, then $X_i \subseteq G(*)$.

If $T(X_i)T(X_j) \neq T(X_k)$ for some $j, k \in I$, then as in the proof of Theorem 1.1, there is a ring A on G with $X_i A \neq 0$, so that $X_i \notin G(*)$. Conversely, if $X_i \notin G(*)$ then for any non-zero $x \in X_i$, there exists a ring R on G in which $xX_j \neq 0$ for some $j \in I$. If $xy \neq 0$, where $y \in X_j$, let

 $xy = x_1 + \dots + x_m$

where z_{κ} is a non-zero element of $X_{i_{\kappa}}$ for (distinct)

 $i_1, ..., i_n \in I$. Then

 $\mathrm{T}(X_{i})\;\mathrm{T}(X_{j}) \leq \mathrm{T}(\times_{N}) = \mathrm{T}(z_{4}) \cap \ldots \cap \mathrm{T}(z_{m}) \leq \mathrm{T}(z_{m}) = \mathrm{T}(X_{i_{m}})\;.$

Finally, let $x_1 + \cdots + x_m$ be any element of G(*), where $0 \neq x_n \in X_{i_n}$ for $n = 1, \dots, m$ and the i_n are distinct. We complete the proof by showing that $x_1 \in G(*)$. If $x_1 \notin G(*)$, then $T(X_{i_1})T(X_{j_1}) \leq x_1 \in T(X_{j_1})$ for some $j, k \in I$ and as in Theorem 1.1 we can define a commutative ring A on G such that for some $x_1 \in I$, $x_{i_1} = x_1 \in I$ but $x_1 \in I$ for all other $x_1 \in I$. But then for $x_1 \in I$ we have

$$x_1 y = (x_1 + ... + x_m) y = 0$$
.

We now consider a chain

 $0 \subseteq \mathcal{G}(1) \subseteq \mathcal{G}(2) \subseteq \dots \subseteq \mathcal{G}(\infty) \subseteq \dots$

of subgroups of G , defined inductively as follows:

$$G(1) = G(*); G(\alpha+1)/G(\alpha) = [G/G(\alpha)](*);$$

$$G(\beta) = \bigcup_{\alpha < \beta} G(\alpha) \quad \text{if } \beta \text{ is a limit ordinal.}$$

Clearly $G(\mu) = G(\mu+1)$ for some ordinal μ .

A straightforward transfinite induction argument provides a proof of

Lemma 2.2. Let $G = \bigoplus_{i \in I} X_i$ be a direct sum of rational groups. For every α , there exists a subset I_{α} of I such that $G(\alpha) = \bigoplus_{i \in I} X_i$.

Theorem 2.3. Let $G = \bigoplus_{i \in I} X_i$ be a direct sum of rational groups, R a ring on G. Then $G(\infty) \triangleleft R$ for eve-

ry & .

<u>Proof.</u> Let f be an endomorphism of $G, x \in X_i \subseteq G(*)$. Then f(x) = 0 or

$$0 \neq f(x) = x_1 + \dots + x_m$$

where $x_n \in X_{i_n}$, n = 1, ..., m and the i_n are distinct. If $f(x) \notin G(*)$, then some $x_n \notin G(*)$, so $f(X_{i_n}) T(X_{i_n}) \subseteq T(X_{i_n})$ for some j, $k \in I$. It follows that $f(X_i) T(X_i) \subseteq T(X_k)$, which is impossible, so $f(X_i) \subseteq G(*)$. Hence f(*) is fully invariant, so that $f(*) \subseteq G(*) \subseteq R$. If now $f(*) \subseteq R$, then Lemma 2.2 implies that $f(*) \subseteq R \subseteq R$. At limit ordinals the result is clear.

Suppose now that $G(\mu) = G$ for some ordinal μ . In any ring R on G, $G(\alpha+1)/G(\alpha) \le (0:R/G(\alpha))$ i.e. $G(\alpha+1)R \le G(\alpha)$ and $RG(\alpha+1) \le G(\alpha)$. Thus

 $0 \subseteq G(1) \subseteq G(2) \subseteq ... \subseteq G(\alpha) \subseteq ... \subseteq G(\alpha) = \mathbb{R}$ is a two-sided annihilator series for \mathbb{R} in the sense of [3]. Thus by Theorem 1.6 of [3] and § 3 of [4], we have

Corollary 2.4. If G is as in Theorem 2.3 and $G = G(\mu)$ for some ordinal μ , then any ring R on G is left and right T-nilpotent. If in addition μ is finite, then $R^{\mu+1} = 0$ for any such R.

We conclude this section with an "internal" characterization of the subgroups G(m) for finite m. A π -matrix is a $2 \times m$ matrix

$$\begin{bmatrix} z_{11} & z_{12} & \cdots & z_{1m} \\ z_{21} & z_{22} & \cdots & z_{2m} \end{bmatrix}$$

of types such that z_{1i} $z_{2i} \leq z_{1,i+1}$ for i = 1, 2, ..., m-1.

Proposition 2.5. Let $G = \bigoplus_{i \in I} X_i$ be a direct sum of rational groups. Then

 $G(m) = \bigoplus \{X_{\hat{\sigma}} \mid \exists \quad \text{no} \ 2 \times (m+1) \text{ π -matrix over}$ $\{T(X_{\hat{\sigma}}) \mid i \in I\} \text{ with } x_{11} = T(X_{\hat{\sigma}})\}.$

<u>Proof.</u> The result is true for m = 1 (Theorem 2.1); if it is true for m, let

 $G=G(m)\oplus H=G(m)\oplus H(*)\oplus K=G(m+1)\oplus K \ .$ If there is a $2\times (m+2)$ of -matrix

$$\begin{bmatrix} \mathbf{T}(\mathbf{X}_{\underline{i}}) & \mathbf{T}(\mathbf{X}_{\underline{n}}) & \dots & \mathbf{r}_{1,m+2} \\ \\ \mathbf{T}(\mathbf{X}_{\underline{i}}) & \mathbf{r}_{22} & \dots & \mathbf{r}_{2,m+2} \end{bmatrix}$$

with $X_i \subseteq G(m+1)$, then $X_i \notin G(m)$ (strike out the last column) and similarly $X_j \notin G(m)$. Thus $X_i \subseteq H(*)$ and $X_j \subseteq H$. But then $X_k \notin H$, so $X_k \subseteq G(m)$, which is impossible, as $T(X_k)$ is the (1,1) entry in a $2 \times (m+1)$ of -matrix. Conversely, if X_i satisfies the condition for $2 \times (m+2)$ of -matrices, we need only look at the case where $X_i \subseteq H$. If $X_i \subseteq K$, then $T(X_i) T(X_j) \subseteq T(X_k)$ for some $X_j, X_k \subseteq H$. But then there is a $2 \times (m+1)$ of -matrix $M = [x_{ij}]$ with $x_{i1} = T(X_k)$ which can be augmented to a $2 \times (m+2)$ of -matrix

Hence we conclude that $X_i \subseteq H(*) \subseteq G(m+1)$.

3. Some examples

A completely decomposable group G need not have an absolute annihilator series in order to admit only T-nilpotent multiplications. For instance if G is the group in the Remark in § 1, then G(1)=0, but $\mathbb{R}^3=0$ for every ring \mathbb{R} on G.

Even when G = G(m) + G(m+1), G can have nil-degree $\leq m$: Let $G = X_1 \oplus X_2 \oplus X_3 \oplus X_4 \oplus X_5$, where the types of X_1, \dots, X_5 are those of the characteristics

respectively. It is routine to verify that $\mathbb{R}^3=0$ for any ring \mathbb{R} on \mathbb{G} but that $\begin{bmatrix} \mathbf{T}(X_4) & \mathbf{T}(X_3) & \mathbf{T}(X_5) \\ \mathbf{T}(X_2) & \mathbf{T}(X_4) & \mathbf{T}(X_5) \end{bmatrix}$

is a m -matrix.

Any direct sum of finitely many rational groups with non-idempotent types has a nil-degree (see e.g.[8], Theorem 3.1). With infinite rank the situation can be quite different. Consider the characteristics

 $(\infty, m, \infty, m, \infty, m, \infty, m, \infty, m, \infty, m, ...)$ $(\infty, 0, m, 0, \infty, 0, m, 0, \infty, 0, ...)$ $(\infty, 0, 0, 0, m, 0, 0, 0, \infty, 0, ...)$

 $m=4,2,\ldots$ They form a semigroup $(i\chi_i \mid i \in I_i^2, \cdot)$. Let $X_i=X_i$ eight be a rational group containing eight with $\chi(e_i)=\chi_i$ and write $\chi_{ij}=\chi_i\chi_j$ etc. Then a ring R is defined on $\bigoplus_{i\in I} X_i$ by the multiplication rule eight eight. Since for any in one can find j with $\chi_i \chi_i = \chi_i$, we have $\chi_i = (\chi_i)e_j$ and R is idempotent and since $(\sum_{i=1}^m \chi_i e_i)(\sum_{j=1}^m \chi_j e_j) = \sum_{i,j=1}^m \chi_i \psi_i e_{ij}$, R has no zero-divisors.

4. Non-associative rings

The absolute annihilator series furnishes more precise information about the non-associative rings which can be defined on a completely decomposable group G. If G = G(m) (m finite) it is easily proved that $\overrightarrow{R}^b \subseteq G(m-b+1)$ for $b=1,\ldots,m$, whence $\overrightarrow{R}^{m+1} = 0$ for any ring R on G.

Proposition 4.1. Let $G = \bigoplus_{i \in I} X_i$ be a direct sum of rational groups. There is a (not necessarily associative) ring R on G with $\overrightarrow{R}^m \neq 0$ if and only if there is a $2 \times m$ π -matrix over $\{T(X_i) | i \in I\}$.

<u>Proof.</u> If there is such a matrix $[T(X_{ij})]$, let $X_{ij} = X_{ij} e_{ij}$ where the characteristics $\chi(e_{ij})$ sa-

tisfy the relations the matrix requires of their types. Define $e_{Ai} e_{2i} = e_{i,i+1}$ and let all products not thus accounted for be zero. (Note that e_{ij} and $e_{\pi h}$ can be equal for different (i,j) and (π,h) .) Then $(\dots(((e_{A1}e_{21})e_{22})e_{23})\dots)e_{2,m-1}=e_{Am} \neq 0$. On the other hand, if there is no such $2\times m$ matrix, then G=G(m-1) and $\overrightarrow{R}^m=0$ for all rings R on G.

Summarizing, therefore, we have

Theorem 4.2. Let $G = \bigoplus_{i \in I} X_i$ be a direct sum of rational groups. The following conditions are equivalent:

- (i) G = G(m), $m < \infty$ and $G \neq G(m-1)$.
- (ii) There are $2 \times m$, but no $2 \times (m+1) \pi$ -matrices over $\{T(X_i) | i \in I\}$.
 - (iii) G has strong nil-degree m .

References

- [1] S. FEIGELSTOCK: The nilstufe of the direct sum of rank 1 torsion free groups, Acta Math.Acad.Sci.Hungar.24(1973),269-272.
- [2] L. FUCHS: Infinite abelian groups, Vol.II (Academic Press, 1973).
- [3] B.J. GARDNER: Some aspects of T-nilpotence, Pacific J. Math. (to appear).
- [4] R.L. KRUSE and D.T. PRICE: Nilpotent rings (Gordon and Breach, 1969).
- [5] R. REE and R.J. WISNER: A note on torsion-free nil groups, Proc.Amer.Math.Soc.7(1956),6-8.
- [6] T. SZELE: Zur Theorie der Zeroringe, Math.Ann.121(1949), 242-246.

- [7] T. SZELE: Gruppentheoretische Beziehungen bei gewissen Ringkonstruktionen, Math.Z. 54(1951),168-180.
- [8] W.J. WICKLESS: Abelian groups which admit only nilpotent multiplications, Pacific J.Math.40(1972), 251-259.

Mathematics Department
University of Tasmania
Hobart, Tasmania, Australia

(Oblatum 8.4.1974)