

Werk

Label: Errata **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log38

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 15,2 (1974)

CORRECTION TO MY PAPER "EXISTENCE THEOREMS FOR

OPERATOR EQUATIONS AND NONLINEAR ELLIPTIC

BOUNDARY-VALUE PROBLEMS", Comment.Math.

Univ.Carolinae 14(1973),27-46

Walter PETRY, Düsseldorf

Professor P. Hess has remarked that the first part of relation (3.5) (Theorem 2)

$$(*) \quad B(0,u_0,u_0) = \sum_{|\beta| \leq m-4} [B_{\beta}(\cdot,\xi_{m-4}(u_0)), D_{u_0}]$$

is not proved.

We define D(B) as in the paper but only for all $v \in W := V \cap W_{m^*, n}$ and ask for a solution of (3.1) for all $v \in W$.

We assume the following additional condition on $F(x, \xi_{m-1}, \xi'_{m-1})$ (see Assumption 5): To each $u \in V$ and K > 0 there exists a function $F_{u,K} \in L^1(\Omega)$ such that

$$|F(x,\xi_{m-1}(u),\xi_{m-1}(v))| \leq F_{u,K}(x)$$

a.e. on Ω for all $w \in V$ with $|w(x)| \leq K$. Further let m = 1.

Under this additional assumptions relation (**) can be proved. Indeed, for each K>0 we define

$$\Omega_K := \{ x \in \Omega : |u_o(x)| \leq K \}$$

and set

$$u_0^{\mathsf{K}}(\mathsf{x}) := \left\{ \begin{array}{l} u_0(\mathsf{x}), \ \mathsf{x} \in \Omega_{\mathsf{K}} \\ 0, \ \mathsf{x} \in \Omega \setminus \Omega_{\mathsf{K}} \end{array} \right.$$

Then $u_0^K \in V$ and $u_0^K \to u_0$ in V as $K \to \infty$. Following the pattern of the proof of Hess (J.Math.Anal.Appl. 43 (1973),241-249, p.248) for each K there exists a sequence $\{u_V\} \subset C_0^\infty(\Omega)$ satisfying $u_V \to u_0^K$ in V, $|u_V(x)| \leq K$ and $u_V(x) \to u_0^K(x)$ a.e. on Ω . Hence $B(0, u_0, u_V) \to B(0, u_0, u_0^K)$. From $B(0, u_0, u_V) = [B_0(\cdot, u_0), u_V]$ it follows by Assumption 5 (b) and the additional condition on F that the Theorem of Lebesgue is applicable. Hence

$$B(0, u_0, u_0^K) = [B_0(\cdot, u_0), u_0^K]$$
.

By definition of w_0^K and Assumption 5 (a) the Theorem of Lebesgue again can be applied and (*) with m=1 follows as $K \to \infty$.

Relation (*) is unsolved for the case m > 1. The same remark holds for Theorem 2 in "Nonlinear eigenvalue problems, Comment.Math.Univ.Carolinae 14(1973),113-126.

Mathematisches Institut der Universität Düsseldorf Moorenstr. 5, 4 Düsseldorf B R D

(Oblatum 1.4.1974)