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GENERALIZED SYMMETRIC SPACES x)

(Preliminary communication)

0Old¥ich KOWALSKI, Praha

Abstract: In this note we give some new results concer-
ning generalized symmetric Riemannian spaces (i.e., Rieman-
mian manifolds which admit a regular family of symmetries in
the sense of A.J. Ledger). We also present a complete classi-
fication of all simply connected irreducible generalized sym-
metric spaces of dimension 3, 4 and 5 that are not symmetric
in the sense of E. Cartan.
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Let (M,g) be a smooth Riemannian manifold. An 4 -
structure on (M,g) is a family €Ay ¢ X eM? of isometries
of (M,gq) (called gymmetries) such that each by has the
point x as an iaolated fixed point. The corresponding tensor
field S of type (4,4) defined by Sy = (#y,J)y for each
x €M  is called the symmetry tensor field of {4, % .Follow-

x) A report at the "Taéung iber Geometrie", Oberwolfach, Sep-
tember 1973.

With respect to the special character of the pape?,.Edi-
torial Board agreed with the unusual size of this preliminary
communication.
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ing A.J. Ledger ([1],[2]) an 4 -structure f{A5y% on
(M, g.) is called regular if for every pair of points x ,
g M

hy o A

n*n bzﬂjh

x 3 where z =ao,(y) .

An equivalent condition is that the corresponding tensor
field § is invariant by each Ay , i.e., for all x e M
and all vector fields X on M

From a result by F. Brickel ([3], Theorem 1) we can ob-
tain:

Theorem 1. For a regular 4 -structure {s,? on (M,g)
the symmetry tensor field § 1is always smooth.

An p -structure { sy} is called of order & (& =2)
if, for all x & M, (4, )% = identity, and 4 . is the least
integer of this property.

Using an unpublished result by A.W. Deicke we can pro-
ve

Theorem 2. If the Riemannian manifold (M, g) admits
a regular A -structure then it also admits a regular 4 -
structure of finite order.

On account of Theorem 2 we introduce

Definition 1. A generalized symmetric space (g.s. spa-
ce) is a Riemannian manifold (M,9) admitting a regular
A -structure. Qrder of a g.s. space (M,g) is the least
integer &k such that M admits a regular 4 -structure of
order &k .

Let us remark that the g.s. spaces of order 2 are
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nothing but the Cartan symmetric spaces, and the g.s. spaces
of dimension 2 are homogeneous spaces of constant curva-

ture.

Let (M,g) be a g.s. space and {by3 a fixed regu- '
lar A4 -structure on (M,g) ., Then the triplet (M, g, 1,8
will be called a (Riemannian) A4 —manifold. Let now V ‘de-
note the Riemannian connection of (M,g) and § the sym-
metry tensor field of {my% . Following A.Jd. 'Ledger [1], we

introduce a new linear connection 6 by the formula
VY = %Y -D(Y,X), where
- -1 -1
DY, X) = (VSHSTY, (I-8)"X)= (V(I_s)_,,xS)(S X) .

The basic properties of the connection 6 are the follo-
wing:

1) All symmetries A, , ¥ € M , are affine transformations of
the affine manifold (M, vy . A

2) The affine manifold (M, ¥ ) is complete.

3) (M, ¥) has parallel curvature and parallel torsion,
i.e., Gi:O, ¥ =0.

» ¥s=0, Yvsr=0, Vg =0 ..

The next definition brings together all the algebraic
compatibility conditions among the tensor fields ¢, s, X
and f H

Definition 2. An glgebraic . _-manifold is a collection
(V, 90,5, Ro, Ty) , where V is (real) vector space, ¢, is

a~ ~
a positive inner product on V , S, Rp,To are tensors of

types (1,4), (4,3), (4,2) respectively, and the following
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conditions are satisfied:
(i) Both SO} I"'Sa

are non-singular transformations
of ¥

- (ii) For any X,¥Y eV the endomorphism X, (X,Y) ac-

ting as derivation on the tensor algebra 97°(V) satisfies

R (X, NR, =R, X, 1T =K (X,Y)q, =K, x,y)5 =0

(iii) The tensora ‘io 3 Ta » ¥  are invariant by S,
i) K, =K, x, Tix,y=-Fw,x)

(v) The first Bianchi identity
o(X,x, 12 -F (£ (X,¥),2)) 20 holda

(vi) The second Bianchi identity Efio(fo (X,Y),2) =0
holds.

We shall make use of the following theorem by A.J. Led-
ger ([1]):

Theorem A. Let (_M,g,,'lb,}) be an A -manifold. Then the
group of all isometries of (M, @) keeping the tensor field
S invariant is a transitive Lie group. Hence (M,q) is a
homogeneous Riemannian manifold G/H and it is a complete
Riemannian space.

On- account of this theorem we can make

Definition 3. Two A -manifolds (M,g,{my3), (M) ¢/, {4%3)
are called locally isomorphic if for any two points peM, n'e
e M’ there is an isometry ¢ of a neighbourhcod U @ on-
to & neighbourhood U’ > 4/ such that by (8|y) = 1 w o

Definition 4. Two algebraic 4 -manifolds (V%,Q«,L,Si,iu%;)
4 =4,2 will be called isomorphic if there is a linear iso-

morphism £ : V"‘—b V, of vector spaces such that £(g;)= %y,
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£(s)=58,,£X)=R,, &(T)=T, .

Theorem 3. Let (M,q,{sy3}) be an » -menifold. Then
for each point € M the collection (Mg, @y, S,',,i”, T
is an algebraic 4 -manifold and for any two painta 4,6 M
the corresponding algebraic A -manifolds are isomorphic.

We shall call the isomorphism class of all )
(Mm‘i’msminﬁ@’, € M, the algebraic type of the A -ma-
nifold (M,q,4n6yd) .

Theorem 4 (Equivalence theorem). .Two 4 -manifolds are
locally isomorphic if and only if they have the same algebraic

type.

Notice that two locally isomorphic simply connected A -
menifolds are globally isomorphic.

Using a construction by K. Nomizu ([4]), we can prove

Theorem 5 (Existence theorem). Any algebraic J -mani-
fold is the algebraic type of a (unique) simply connected

4 -mamifold.

®

We have also the following result by A.J. Ledger, which

corresponds to Theorem 6.2 of [1].

Theorem B. For any 4 -manifold there is a simply con-
nected covering A -manifold such that the covering map is a
local isomorphism in the neighbourhood of each point.

The following result is useful in all kinds of classifi-

cation problems:
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Theorem 6. Let (M, ) be a simply connected g.s.
space and let M = My My x suo x M 4 be the de Rham
decomposition of (M,g) (i.e., My is the Euclidean part
and Mgjy..0y My are irreducible components). Then all
Riemannian spaces M, ,M4 goeny M,,, are g.s. spaces.
Moreover, any regular g -structure of order & on (M,Q-)
determines a regular A -structure of order ﬂ&;, on each

M, , where dey|h for 4 =0,4,.., 2 .

A modest claessificgtion problem.

According to Theorem 5, if we succeed in classifying
all algebraic 4 -manifolds of a given dimension, then we can
classify all simply connected 4 -manifolds and thus all sim-
ply connected generalized symmetric spaces of this dimension.

In the rest of this note we present a complete clgssifi-

cation of all simply connected and irreducible g.8. spaces of
dimensions 3, 4, 5 and of orders greater than 2 (we shall

call these spaces briefly "exceptional" ones). It means, we
leave out all symmetric spaces of E. Cartan which are well-
known. In ;ach case we shall give a representation in the
form of a homogeneous Riemannian space (cf. Theorem A). As a
rule, we shall describe first the underlying homogeneous ma- .
nifold and then we give the family of all admissible invari-
ant metrics in a different, more explicit form.

The details of the method and the complete proofs will
appear as a special issue in the edition "Rozpravy CSAV",

Czechoslovak Academy of Sciences, Prague.



Dimension m =3 .

All exceptional spaces are of order 4 and of the fol-
lowing type:
e* 0 X
As a homogeneous space, M is the matrix group [0 e® wyf -
0 0 4
Also, M is the space R’(x, %, %) with a Riemannian met-
ric g = %o x2 4 e’zzd.@,z + Mdz? , where A > 0
is a constant.
The typical symmetry at the point (0, 0,0) is the transfor-

mation .x'.-.--ny, fy,’zu, 2 ==z .

Dimension m = 4 .

All exceptional spaces are of order 3 and of the fol-

lowing type:

a & u cost -pmt 0
M is the homogeneous space || & o pint  cost O
‘ 0 0 4 0 o A
a &
where det =1.
c d

Also, M is the space R*(x,n,4,~) witn a Riemann metric

g =(-x +Vx2 4 nﬂ+_4)dfuf2+ (x+ Vx2+ /y?-r 1)dv?-
U+ dxs (A+xP)cdy?- 2xq dxdy
A+xtsg?

(A>0)

- 2pdudv+ 2%

Each transformation u’ = codl,u- sint,v, X=cos2t.x-sin2t.y
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wi= pimt.uw+ cont.r, 4= sin2t.x+ cost2t.y
for t + &3 is a aymmetry at the point (0,0,0,0) which

extends to a regular A -structure en M .

Dimension m =5 .

All exceptional spaces are of order 4 or 6 , and of

the following 12 types:

Type 1.
10 0 x
010 o
As a homogeneous space, M is the matrix group
a v i
0 0 01

Also, M is the space R_ECx,rg—,z,u,ar) with a Riemann met-
ric ¢ = dx2e anJ.Q'+ dls AT (xolu + ol - dz)? (A=0).

The typical symmetry at the point (0,«.., 0) is the trans-

formation x‘= 4, ¢'=-x, ¥'=-2, &'=-a, ¥'=u .
ZType 2.

At

e 0 0 0 X

. . At

M is the matrix group 0 e 0 0 ny
depending of two real 0 0 eazt 0 %
parameters A, > 0 , 0 0 0 e
A, 20 0 0 0 0 1

Also, M is the space R°(x,4,z,w,t)  with a Riemann met-

ric
-22.t 22t -22,t 22,5t
y=e Tdxlre Tdyl+ e 2 odzls e 2w+ dt? +
(A +2,)t CAq+dg)t
+2m[ea‘1a‘1dxdz+e " d:y,dw]-o-
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A -2t Ay=-2)
+2/3[e * 4 cl'q;,oLz--e,'aﬂ ‘td.xd.rur] .

Here either .ﬁ.,,>_a,2>0, or,2+ {.&2<4 , ar .7\,1=,9L2>0,
x=0,0&6B8<4, or, >0, 4,=0,x=0,0<B<1 .

The typical symmetry at the point (0,...,0) 4is the trans-

formation .xl_—..--ry,, ry,lz .)(, z'.—. —fw’, n.u‘ls Z, t’= -t .

Iype 3. M is the homogeneous space S0(3,C)/S0(2) , whe-
re S0(3,C) denotes the special complex orthogonal group
and S0(2) denotes

the subgroup ’f?‘_’;’_j___f’_“ of S0(3,C) .

0 1 4

The Riemann metric g in M is induced by the following
real invariant positive semi-definite form on the group

GL(3,C) of all regular

complex matrices X I A,

1 2 3 *
¢y e, e,

- - - — w,-a, \2
¥ = .?»2(04 w1+w2w2)+7(w:'+ a),f'+a):+ a);_')+ @’(—%L——’—)

where @, = a,da,+ & db, +e,de,, @, =a,da,+bdl;+

+ ¢dey, @ =ayda,+dl+cde,, and A,7, ®
are real parameters satisfying A >0, w >0, [2¢]< a2,
The typical symmetry at the origin of M is induced by the
following transformation of GL(3,C) :
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P 5, -b &

1 3

L, Ay gfl— -a, a, -T,f .

¢y % S, -C C4
Type 4.
M is the complex matrix & P % Here z,w denote
group depending of a 0 e,'m w complex variables
complex paresmeter A : 0 0 A and 't a real va-

riable.

1
Also, M is the space Ci(z,w)x]{ (t) with a (real)

Riemanm metric

A @t =
g = e PP xdz + M d i ¢ (db Y4 2 @ [e dzdw +

-t _
+e dz

-22t _ =22t _ 2 = 23t 2

d.w'] +xe (da+Ze  (dz)- o &)t & (A .

Here A, are complex parameters, @ & real parameter,

wcx + n2<A4/4 . In case that A + A = 0 =0 we ha-
& y

ve &=0 .

The typical symmetry at the point (0, 03 0) 1is the trans-

formation %z’ =4w , w'=4iz,t=-1t .
es S5a, 5b.

M is the homogenecus space S0(3)=S0(3)/S0(2), or
S0¢2,1=$0¢2,4)/S0(2) , where SO(2) denotes

the subgroup || cost =-aimt 0 cost wimt 0
mimt  cost O x [[-mint cost 0
(0] 0 4 0 0 1

The Riemann metric ¢ is induced bv the following real in-
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variant positive semi-definite form on the group GL(3,R)x

X GL(S,R) of all non-singular product matrices

~ ~ ~
Q;1 wz a,a a,,' al as
~/
b, by b x r, & |-
~ ~
cy Gy O e, S %

§ = ot [(w,+ D+ (3 + w,) ]+ p* (e, - Byt (B -, +

+ 3“1((4)34- 53)2 s

where @, = a,da,+8,db;  cooe, and &, &,,d, are given
W, = a,gd.a,4+lxadlr;1-z ogdec, by similar expressions in

~ ~ ~ vl ~
@, = a,day+ & dyt e de, &,,%, 2, ,d%,,4l; ,d2; .

Here o , (3,7 are positive real parameters, o = (3 , and
the (+) and (=) signs in w,,,,w; correspond to the el-

liptic case 5a and to the hyperbolic case 5b respectively.

The typical symmetry at the origin of M is induced by the
following transformation of GL(3,R) x GL(3,R):

% % % % % o n "% " [ %1 "% %
. ~ ~ ~ ~
LR AR B A ] B, Tylx|-%, 2 -9
~ ~r ~ ~r ~ ~
. e, -¢, ¢
04 ca_ 03 04 cz C,3 04 02 03 4 2 3

Types 6a, 6b.

M  is the homogeneous space SU(3)./ 8U(2), or SU(2,1)/SU(2).
Also, M is the submanifold of C3Cz'1, xa', x?)” given by the
relation z‘i" + z,nig + 23%z3_ + 4, The Riemann metric cn

M  is induced by the following hermitian metric on ¢d:
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§=2(d2'dz+ d2?d%?+ dz%dz?) +

+ @ (@'dZT + 22dz? £ 23R D) (51dat 4 m2d2? £ Eida?)
where A, w  are real parameters such that A >0, @F0
and w+t A > 0 . The (+) and (—) signs correspond to the

elliptic case 6a and to the hyperbolic 6b respectively.
The typical symmetry at the point (0,0,4) of M is indu-
ced by the following transformation of (3 :

x1’= 22 5 z21=_.£4 , ¢3/= 23 .

Remark. The case 6a was communicated to me orally by -
AW. Deicke. |

Type 7. .
Moo 0 0«
M is the real matrix group 0 e® 0 0 4
at
(t,x, g4, 4,0) are real te Moo w
~At
variables and A is a real 0 —te.'m' 0
parameter). 0 0 0 0 1

Also, M is the space Ks(\x,tyr,,w,qr,‘b) with a Riemann met-
ric g = (dt)?+ €2 M (tdx-_du)ls e (tdy +dv)? +

22t
+ule al.ata-y ea'ud.qa')-q- 27 (dydu - dxdar),
where A, w, 2 are real parameters, A = 0, « = 0, 'x‘l< -

The typical symmetry at the point (0,...40) is the

transformation x'=-#p, 4#'=x, u'=-, v'=u, t'=-t .
e 8b

M is the homogeneous space I® (.Ra)/50(2) or
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(%% /S0(2) , where I®(R®), or I™(R?) , denotes
the group of all positive affine transformations of the spa-
ce R? (x,y4,%) that preserve the differential form dx? +
+dy?+ dz?, or dx* + dy? - da? | respectively. ( 12(R3) is
the semidirect product of S0(3) and t(3) and I#(R3)
is the semidirect product of S0(2,4) and t(3) , where
+(3) denotes the translation group of Rr3 J)

Also, M is the submanifold of Ré(.x,:y',x; o,y )
given by the relation «?+ ps 2= -_t 1. The Riemann met-
ric on M is induced by the following non-singular invari-

ant quadratic form on Ré
¢ = dx’+ d@? + da?+ 22(de?s dpl+ dr?) +
+ [(u.nt (-1)](06d.x + 3dy * rdz)?
where A >0, @ >0 are real parameters. The (+) and (=)

signs correspond to the elliptic case 8a and to the hyperbo-

lic case 8b respectively. In the elliptic case ® #* 4. .

The typical symmetry at the point €0,0,0;0,1) of
M is induced by the following transformation of Ré:

x'=—4, @"""x; 2'=-2,x'=03, B==-ct, 7= -

All preceding exceptional spaces (types 1 - 8b) are of

order 4 .

Type 9. (Spaces of order 6 )
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o (s rr) 0 0 X

. 0 e 0 %
M is the matrix group
0 0 eV %
0 0 0 1

Also, M is the space Rs(x,fy—,z,u,nr) with a Riemann
metric
g = a2 (du? + drs dudv) + (1) (H Ty

+ & 2V2?) + (2% 2) (¥dxdy + e dxdz - & dyde) ,

-2u
2+e d@1+

where a >0, &>0 .
The typical symmetry at the point (0,...,0) is the trans-

formation X':’ty«, :y.’:_—z, ,’Z,= X; M’: v, 4)": —(,a,+4r) .

To conclude, let us remark that two Riemann spaces of
" different types are always non-isometric and within each ty-
pe, the corresponding paremeters are invariants of the Rie-

mann metric.
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