

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log36

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

SOME PROPERTIES OF A GENERALIZED HEAT POTENTIAL (Preliminary communication)

Jiří VESELÝ, Praha

Abstract: A generalized heat potential and its continuous extension from an open set with non-smooth boundary to its closure is studied.

Key words: generalized heat potential, boundary behaviour

AMS: 31B10 Ref.Z.: 7.972.26

For $x = [x_1, ..., x_{m+1}] \in \mathbb{R}^{m+1}$, $m \ge 3$ we shall write $x = [\hat{x}, x_{m+1}] = [x, t]$ where $x \in \mathbb{R}^m$, $t \in \mathbb{R}^4$. Similarly for the differential operator $\nabla = [\partial_1, ..., \partial_{m+1}]$ we put $\hat{\nabla} = [\partial_1, ..., \partial_m]$. Let G be the function defined on \mathbb{R}^{m+1} by

$$G(x) = x_{m+1}^{-\frac{m}{2}}$$
, exp(- $\|\hat{x}\|/4x_{m+1}$) for $x_{m+1} > 0$,
 $G(x) = 0$ for $x_{m+1} \le 0$.

Suppose D is an open set in \mathbb{R}^{m+1} with the boundary B for which $\mathbb{B}_{\tau} = \mathbb{B} \cap \{\mathbb{I} \times, t \} \in \mathbb{R}^{m+1}$, $t \leq \tau \}$ is compact for any $\tau \in \mathbb{R}^{1}$.

 ${\mathcal C}$ will denote the collection of all bounded continuous functions on ${\mathcal B}$ and ${\mathcal O}$ will be the space of all infinitely

differentiable functions g with compact support $g \in \mathbb{R}^{m+1}$.

For any $z \in \mathbb{R}^{m+1}$ and $g \in \mathcal{D}(z) = \{g \in \mathcal{D}; z \notin spt g\}$ we define

$$\mathbf{T}\varphi(\mathbf{z}) = -\int\limits_{\mathbf{D}} (\widehat{\nabla}_{\mathbf{w}} \, G(\mathbf{z} - \mathbf{w}) \cdot \widehat{\nabla} \varphi(\mathbf{w}) + G(\mathbf{z} - \mathbf{w}) \, \partial_{m+1} \varphi(\mathbf{w})) \, d\mathbf{w} \ .$$

The integral on the right-hand side is finite for any $\varphi \in \mathcal{D}(z)$. As $T\varphi(z)$ depends on values of φ in a neighborhood of boundary B only we can define $T\varphi(z)$ even for any $\varphi \in \mathcal{D}$ by means of

$$T\varphi(z) \stackrel{\text{def}}{=} T\widetilde{\varphi}(z)$$

where $\widetilde{\varphi} \in \mathcal{D}(z)$ and $\varphi(z) = \widetilde{\varphi}(z)$ in a neighborhood of B. $T\varphi(z)$ may be considered as a distribution over z and it is closely connected with classical heat potentials of single and double layer.

Three following questions are solved:

(1) When there is a measure y_x such that $T\varphi(x) = \int \varphi dy_x = \langle \varphi, y_x \rangle$

for every $\varphi \in \mathfrak{D}(z)$?

Replacing φ by \mathbf{f} we can define $T_{\mathbf{f}}(z) = \langle \mathbf{f}, \mathbf{j}_z \rangle$ for any $\mathbf{f} \in \mathcal{C}$ provided \mathbf{j}_z from (1) exists.

- (2) When Tf(z) is a well-defined function of the variable z on D for any $f \in \mathcal{C}$?
- (3) When this function Tf defined on D can be continuously extended from D to $D \cup B$ for any $f \in \mathcal{C}$?

The case m=1 was investigated for special D by M. Dont in [1] and similar questions were solved by J. Král in [2],[3] and by the author in [4].

Recall that for a measurable set $M \subset \mathbb{R}^{m+1}$ its perimetr P(M) is defined by

$$P(M) = \sup_{\omega} \int_{M} div \, \omega(w) dw$$

where $\omega = [\omega_1, ..., \omega_{m+1}]$ ranges over system of all functions with components $\omega_i \in \mathcal{D}$, i = 1, 2, ..., m+1 satisfying

$$\sum_{i=1}^{m+1} \omega_i^2(w) \le 1, \quad w \in \mathbb{R}^{m+1}$$

Put $\Gamma = \{x \in \mathbb{R}^m; \|x\| = 1\}$, $Z = (0, \infty) \times \Gamma$. We define for any z = [x, t] and $(\varphi, \gamma, \theta) \in (0, \infty) \times (0, \infty) \times \Gamma$

$$S_{x}(\varphi, \gamma, \theta) = [\hat{x} + \varphi \theta, x_{m+1} - \frac{\varphi^{2}}{4\tau}]$$

Given $(\gamma,\theta) \in \mathbb{Z}$ let $S(\gamma,\theta)$ be the parabola described by $S_2(\cdot,\gamma,\theta)$ on $(0,\infty)$. A point $\ell \in S = S(\gamma,\theta)$ is termed a hit of the parabola S on \mathbb{D} provided each neighborhood of ℓ meets both $S \cap \mathbb{D}$ and $S - \mathbb{D}$ in a set of positive \mathbb{H}_1 -measure where $\mathbb{H}_{\mathcal{R}}$ is the ℓ -dimensional Hausdorff measure. The number of all hits of $S(\gamma,\theta)$ on \mathbb{D} will be denoted by $n(z,\gamma,\theta)$. We put for any $z \in \mathbb{R}^{m+1}$

$$w(x) = \int_{\mathcal{Z}} e^{-y} \gamma^{\frac{m}{2} - 1} m(x, \gamma, \theta) dH_{m}((\gamma, \theta)).$$

The function w which is called the parabolic variation of D is a lower semicontinuous function on \mathbb{R}^{m+4} .

The answers to questions (1) - (3) can be formulated now in a form of necessary and sufficient conditions corresponding to (1) - (3) as follows:

- $(1) \qquad v(x) < \infty ,$
- (2) $P(D_{\tau}) < \infty$ for all $\tau \in \mathbb{R}^{1}$ where $D_{\tau} = D \cap \{[x,t] \in \mathbb{R}^{m+1}; t < \tau\}$,
- (3) $\sup \{ x(\xi); \xi \in B_{\varepsilon} \} < \infty$ for all $\varepsilon \in \mathbb{R}^{4}$.

Complete proofs of the formulated results and some further details are contained in a paper submitted for the publication in Czechoslovak Mathematical Journal.

References

- [1] M. DONT: On a planar heat potential (to appear in Czech. Math.Journal).
- [2] J. KRÁL: The Fredholm method in potential theory, Trans, Amer.Math.Soc. 125(1966),511-547.
- [3] J KRÁL: Flows of heat and the Fourier problem, Czech.
 Math.Journal 20(1970),556-598.
- [4] J. VESELT: On the heat potential of the double distribution, Cas.pro pest.mat.98(1973),181-198.

Matematicko-fyzikální fakulta Karlova universita Malostranské nám.25 110 00 Praha 1

(Oblatum 22.4.1974)