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CONCERNING THE STRUCTURE OF DENDRITIC SPACES
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Abstract: A dendritic space is a nondegenerate connec-
ted Hausdorff space such that each two of its points are
separated by a third point. In this paper we obtain some
structure theorems for general dendritic spaces and for
dendritic spaces satisfying certain weak compactness condi-
tions stated in terms of the convergence of nets of point
sets.
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1. Definition. Suppose {U, ,m €D} is a net of point
sets in a topological space. Then Am sufy Uy is the set
_ of all points X such that for each open set U containing
X  and each m/ there is.an m = m such that UpNU% F,
and pMmv imf Uy is the set of all points x - such that
for each open set U containing X  there is an m  such
that if m 2z m then U, NU + & .

It should be noted that it does not follow, even for
sequences, that if x € Lim 4imf Uy, , then for each.m the-
re exists a point x, of U, such that x is a cluster
point of the net {.x,,,,n» €D 3 . Consider the following coun-

terexample.
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Example. For each positive integer m let U, be the
set of all ordered pairs (m,m) of integers such that
D€mem , 1let x=(0,0) and let X=U,U,U{x?, Let
Y be the collection of all point seta. U in X such
that either x ¢ U or x e U and X-U is a choice set
for the collection of all Um ,i.e., for each m there ex-
ists a point x, of U, such that Up ~U=1x,3 ., Taxe ¢
as a subbase for the open sets in X . Thus. X is a Hausdorff
space, and X - {x? is discrete. Furthermore, {x{ = tim infll, =
= fim pup Um ,but x is not a cluster point of any sequence

XygyXgpooe such that for each m , Xm € Uy o

The proofs of the following fundamental theorems paral-

lel the proofs of similar theorems on nets of points and are
omitted.

Theorem 1. If {U,,meD} ie a net of point sets with
the point x in its Aim Aun , then some subnet of
{Up,meD}? has x in its Lim imf .

Theéorem 2. If ¥ is a collection of point sets snd
" is a limit point of UY » then there exists a net of elements
of  having x in ite Um inf .

Some very general classes of topological spaces may be
defined by stipulating that certain nets of point sets of a
certain gort have a non-empty m/ At . In what follows
- Wwe consider one such class of spaces, which is of interest
in connection with dendritic spaces. If M is a point set,
then the boundary of M  is denoted by M and the cardi-
nal of M  ia denoted by IM| .
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Definition. If X is a topological s;zace and & is
a cardinal, then X is /& -cohesive if and only if the
following condition holds. If {Uy,m €D} is a net of
connected open sets in X such that (1) if m % m , then
Um NUp =0 or Um = Uy ,(2) for eachm, 0< 13U, lak,
and (3) Mm imfly+J ,then im sup Uy + £ .

Theorem 3. If the space X is either compact or lo-
cally connected, then for each finite cardinal % , X is
& -cohesive.

Proof. Let {U,,m €D} be a net satisfying the con-
ditions of the above definition, and for each m 1let
OUp =4Xpmq yo0es Xy § . If there is an m such that for each
m=m, Up = Um ,then clearly Lim sup dU, #F . Hence
we assume that for each m  there isa an m >m such that
Un * Uy, . Let x € &m imf U, . Thus for each m, x €
€X ~-Uy . If X is compact, then the net {x,,,m 6D}
has a cluster point 4 and hence 4 € Lim sup dU, . Suppose
X is locally connected and X 1is not a cluster point of
{%ps,med? for 4 =4,..., % . For each 4 there ex-
ist an open set V; containing x and an m; such that
if m z m, ,then Xx,; ¢ V; . Let V be a connected open

set containing x and lying in nt V; , and let meD

4=1
such that for each 4+, m Zmj; eand U, NV 4+ g . Since V
is connected and contains both a point of U, and a point
of X-Um » V contains a point of 38U, , which is a
contradiction. Therefore X is a cluster point of

{%pi,m eDi for some 4 , and hence Lm sup AU, + § .
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2, Dendritic spaces

Theorem 4. If x is a point of the dendritic space
X and U is a component of X ~ 4x?, then U is open
and X is a limit point of U .

m. Let 4 €U . There is a point A+ such that
X~4{pt is the union of two disjoint open sets V and
¥  such that x € V  ana Yy eW . Since WU{ipf is
connected and does not contain x, WUifn? €U . Hence U
is oren. Since X is connected and each component of

X -4xi is open, x is a limit point of U .

Theorem 5. For each two points x and 4 of the den-
dritic space X there exists one and only one component
of X~4i{x,4% with x and 4 as limit points.

Proof. Let C be the component of X -~ {x3} con-
taining 4 . From Theorem 4, x is a limit point of C . The-
Te is a point 0 of X such that X - {n3? is the union
of two disjoint open sets U and V with x el and g4 e
. €Y . Clearly, pec ~4i413%.Let X be the component of
C-443 containing f .Now C  is dendritic, and hence
% 1is a limit point of K .Since C -X is a connected
subset of X ~{pn i containing 4, C~X € V . Hence x
is not a limit point of C - X s S0 that X is a limit
point of K . Suppose H is & connected subset of X -
-4X,4% containing X . Since freHeX-4xt, HeC .
Since peHsC-4947, H = X ., Hence H=X , 80
that X is a component of X - 4x,4¥% with limit points
¥ and 4 .If L is a component of X ~{x,4 } different
from X with limit points x and 4 ,then LN X = g ,
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and hence no point of X separatea X from 4 .

Definition. If a. and & are two points of the connec-

ted space X , then the interval a4 of X ,denoted simply by
a4 , is the set of all points x of X such that x = a ,

X =& or x separates @ from & in X.Iﬁx,/y—sw,
then x < 4 if and only if X=a and 4 #a,0r x sepa-

rates & from {g,&% in X .

Simple examples may be given to show that intervals in
dendritic spaces may be neither compact nor connected. It
follows from the next theorem that they are, however, closed.
An example is then given of a dendritic space in which each

interval is totally disconnected.

Iheorem 6. If @ and & are points of the dendritic

space X , then there exists a collection & of disjoint
connected open sets in X such that X- U¥=af and for
each element U of & there exists a point x of afr such
that U =4x1 .

Proof. For each point X of atr let oy denote the
set of all components ¢ of X-4{x?% such that C con-
tains neither @ nor & and let Uy = U¥y . Let ¥ =
= U{Y, I x e alr? . It follows from Theorem 5 that for each
two points x and 4 of X ‘there is a unique component
Cxy of X —4x,4} that has x and 4 as limit
points and such that if x and g4 are in af ,then x <4 .
Let Kyq = Cxy Ufx,43 . Suppose p e X -(USUak).
Since X =Ug UUgpUKgy 5 p €Xgg . Let I Dbe the
collection of all -Kwy. such that @ £x <g £ & and
f e ery, . Partially order ¥ by set inclusion. Let P
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be a meximal chain in J , and let X = NP, Ifagx< &,
let 'Vx be the component of X -~ {x? containing a if
X% a andlet Vy=f if x=a ,and let Wy be the
component of X - {x} containing & if X 4 £ and let
V=0 if x=0 .

Case 1. For each two points ar and % such that
VEwex £ & and X, € P there exist two points
% and 4 such that w<x<ng <z and Ky € P . Let
Y _be the union of all Yy such that for some point & ,
¥<x<m<l and Kyy € P . Let ¥ be the union of all
Wy  such that for some point x )y ¥<X <y <t and
.K,W,E P X.-Km= uu,) Uty uu,) e v, UW,," .
Furthermore, Vy and W',w are disjoint connected open sets
containing @ " and & respectively. It follows that X -X =
=YUW and V and W are disjoint connected open sets
containing a and & respectively. Suppose X contains
two boundary points x and n of V . Some point q of
X separates X from % . Since V U 4x,y3 is connected,
9 €V . For some ar and x such that Ky, € P, g €V, .
But K., ia a connected subset of X - {‘2«,3 containing x
and 4 . Therefore X contains only one boundary point X
of ¥ and anly one boundary point z of W . Clearly,
¥<xXx<x<Al and K =K, .There exists a point 4 such
that x < 4 <z . Now 'fbequ, or n equ ,828y 4 €
€ Xyy . Hence K,x” € U, and Xxy is a proper subset

of every element of P s Which contradicts the maximality

of P .,

- 298 -



Case 2. There exists a point « such that a &€ w < &
and for each two points x and 4 such that w & x <g & &
and K,,,‘ e P, x=aw . LetV=VwUII‘,.Let W be the
union of all Wy ~such that w< g < & and Ky € P .

It follows that X - X =Y UW , ¥V and W are disjoint
open sets, W is connected, & € W , and if w$ a, €V,
We again err.ive at a contradiction if X contains two boun-
dary points of W . Hence X contains only one boundary
point z of W . Clearly, asw<z< & and X = Xory *
There exists a point 4 such that w < <z neXyy.
Kwa‘, is then a proper subset of every element of P,

which is a contradiction.

Case 3. There exists a point x such that <z £ &
and for each two points x and a4 such that @ £ X<y £x

and Ky, € P, g =2 . Thus Case 3 is similar to Case 2.

Exsmple. Let X be the set of all points X= Xq,Xgy*
of Hilbert space such that x4 > 0 , for each m , Xa = 0,
and for all but finitely many m , Xm = 0 . For each point'x
of X and for each positive number x let 4 be the lar-
gest integer m euch that Xm >0 and let Dy, be the
set of all points 4 of X such that (1) Xm = %m fOT
mti endmei+d, (2 0&Ix-gl<rn , and
(3) if X% 4, Yi,q > 0 ., Thus Dy, is the .inter-
section with X of a semicircular region together with the
point x . Note that if 4 € Dyy , 4 ¥+ X and >0,
then Dy, ﬂD@»-iw and Dy, J':DW . For each x in X
end each map £ of X into the positive reals let U, =

=4{x? , let U, =Dy ey » for each m >4 let
1,

- 299 -



Uy = U{D*’“w lnp € Upy= Up.g 3 , and let Uys = Up Um -
Now if zeUye N Uyq and h=£fAg , then Uyg, & Uye N
NUyg . The collection of all such sets Uys  is then
taken as a base for the open sets in. X . In order to show
that X is connected suppose X is the union of two dis-
joint open seta U and V and first show that the set of
all pointa X of X such that X, =0 for m >4 is a
subset of one of the two sets U and V', say U , then
show that for each positive number t the set of all points
X of X such that x4 =t and Xp=0 for m>2 is a
subset of U , and finally conclude that V = 7 . Now sup-
pose @ and & are two points of X, ag = 0 for m >4,
and & is the largest integer m such that Ay, =% & . For
m=0,.., % let pf™e X  such that 2 = a and for
m>0, g7 =, for i&m and py = 0 for 4 >m .
The interval a® of X is the union of the straight line

intervals [ p™, n™*1)

of Hilbert space for m = 0, .-
veeyM =4, In the apace X , s is a limit point of al
_if ané only if for some m such that 0<m < & , p = A" .
Similar considerations vvill sbc;v that each interval of X
has at most finitely many limit points and hence is totally

disconnected.

Theorem 7. If X is dendritic and 4 -cohesive, then
each interval of X is connected.

Proof. Let o and & be two points of X , and sup--
rese afr is not connected. Since it follows from Theorem
6 that afr is closed, alr is the union of two disjoint

closed sets XM and X . Let ¥ be the collection mentio-
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ned in Theorem 6, let ¥, = fUe 10U s H3 , let
h=fledldl X3, let H'=UY, , and let X'= UYy .
Since X is. connected, some point of H is a limit point
of X’ or some point of X is a limit point of H’ .Assume
the point p of H is a limit point of X’ , It follows
from Theorem 2 that there exists a net {Up,m €D}i of ele-
ments of % having 4 in its Aim inf . Now since for
each m., |18Uyl=4 and X is 4 -cohesive, there exists
a point @ in Limaup {dUy,m €D} . Since X is closed,
.q &K , s0o that qo & @ . From Theorem 1, some subnet
{311,.,‘,1';:2} of §3U, ,meD}? has @ in its lmimnf .
Thus {Up, ,4 €E 3 is a net whose range is a collection of
disjoint connected sets in X such that both # and ¢
are in its fim imf and for each i, pe X -m . It fol-
lows that no point separates jp from q in X , which is a

contradiction.

Theorem 8. If a and & are two non-cut points of
the connected 2 -cohesive space X and every point of
X ~-4a,&1 separates X into two connected sets one
containing @ and the other containing & , then X is an
arc from @ to & . .

Proof. It follows from known results without the use
of 2-cohesiveness that X is an arc from a to & in its
order topology and that each order intierval of X of the
form Ca,x), (x,4), or (4,&] is open and connected in
the original topology of X . It remains to be shown that
the original topology of X has a base whose elements are

intervals of the above type. Let U be an open set contai-
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ning 4 , and suppose that for each x in (a, &), (x,&1-
- U % # . There exists an increasing well-ordered se-
quence 4{x, ,x <A} of paointa of X -1U converging to

&  in the order topology. For each o let Uy = (X, Xoyq) -
Since (x,, &#J] 1is open, & is not a limit point of
La,x,), and herice & is a limit point of Ug Uy . Fur-
tﬁcrmore, for each o¢, 38Uy = fXx, Xxyq } . Therefore the-
re exists a net {U,,meD} of elements of {Uglec < A ?
having & in its Aim imf . But & & Lim sup {3U,,meD?,

which contradicts the assumption that X is 2 -cohesive.

Therefare (x, &J is open, and similar considerations will

show that intervals of the type [a,x) and (x,s4) are
open.

Theorem 9. If X is dendritic and 2 -cohesive, then
each interval of X is an arc.

Proof. Let @ and & be twa points of X . From Theo-
rem 7, af is connected. If a <g <X, [a,4)=U{la,x]ll
la<x<#& 3} and hence [a,4) is connected. Similarly,
‘(uy, A& ] is connected. Therefore afr - f4 % is the union
of iwo disjoint connected sets one containing a and the
other containing & , Let ¥ be the collection mentioned
in Theorem 6, and for each subset U of a® let U/ =
=UUULV e g3V s U} ., Itis easily seen that if U

is open and connected relative to a# , then U’ is open

and connected and that for each point £ , # is a bounda-
Ty point of U relative to af if and only if n is a
boundary point of U’ . Furthermore, if U,V & alr, then

Unv =g if and only if U’ NV'= § . Therefore the
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2 -cohesiveness of X implies the 2 —cohesiveness of af .

It then follows from Theorem 7 that efr is an arc.

Example. Let X be the get of all points (x,4) in
the plane such that 0 < x £ 20 and 4 = A 1/%
together with the point (0,0) . In its subspace topolo-
gy X is dendritic and 1 —cohesive but is not 2 -cohesi-

ve, and X is an interval of itself but is not an arc.

Theorem 10. If X is dendritic, arcwise connected,
and 4 -cohesive, then X is locally connected.

Proof. Suppose X is not connected im kleinen at
the point 4 . Then there is an open set U containing 4v
such that for each open set V¥ containing 4 and lying in
U there is a point =z of ¥ such that no connected set
containing both f# and % lies in 1 . Hence there exists
an indexed set M = {zx | eAi of pointa of U -4pn}?
such that p is a limit point of M . and for each o« in
A the arc pz, intersects X -1U . For each o« letXg
be the first point of U on A%« » let o€ X-U such
that Xyt 2o and let Cx Dbe the component of X — { Xy}
containing X, - Now for each o, X« separates fv from
x, » 80 that Cy N pxo=f . Hence if Xg F Xa and
Ca NCr*A , then a¥y U nXp and ¢ U Cg are two
connected sets with intersection {x%g,%p3 and therefore
no point of X separates X from xg o It follows that
for each o« and 3 in A either Co =Cap oOT CcNCs=/F.
Since X is 4 -cohesive, there is a net 19Cy,n €D} of
elements of 48Cy lec € A} with a point g in its Lm, gy
Hence some subnet {Cnm. , 1eE3% of {Cp,meD} has
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both 4 and g in its Lm imf , and 4 % q since
el and @ € X - U . It follows that no point of X
separates h  from q . Therefore X is connected im klei-

nen at each of its points and hence is locally connected.

Theorem ll1. In order that the dendritic space X be

locally connected, it is necessary and sufficient that it

be 2 -cohesive.

Proof. Theorem 11 follows from Theorems 3, 9, and 10.

Theorem 12. If the dendritic space X is 2 -cohesi-
ve, then for each finite m , X is m -cohesive.

Proof. Theorem 12 follows from Theorems 3 and 11.

It follows from Theorems 9 and 11 that every locally
connected dendritic space is arcwise connected, a result
which is already known from Whyburn’s extension of his cyc-
lic element theory to non-metric spaces in [31 and which is
mentioned by Proizvolov [2] and attributed to Gurin [11].

In connection with Theorem 11 we note that Gurin [1] proved
that in order that a dendritic space be locally connected
it is sufficient that if be locally peripherally compact.

The condition is not, however, necessary.
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