

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log28

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 15,2 (1974)

EXISTENCE THEOREM FOR A GENERALIZED HAMMERSTEIN TYPE EQUATION

M. JOSHI, West Lafayette

 $\underline{\mathtt{Abstract}} \colon \mathtt{An}$ existence theorem is obtained for a generalized Hammerstein type equation.

Key words and phrases: Hammerstein equation, monotone operator, angle-bounded operator, mapping of type (M).

AMS: 47H15 Ref. Z.: 7.978.5

In [4] Browder has obtained an existence theorem for a generalized Hammerstein type equation

$$(1) u + \sum_{i=1}^{m} A_i F_i u = 0$$

where each A_i is a linear operator from a function space X to its dual space X^* and F_i is a nonlinear operator from X^* to X. Each linear operator A_i is assumed to be angle-bounded and the nonlinear operators F_1 , F_2 ,... ..., F_m satisfy a condition of the type

(2)
$$\sum_{i=1}^{m} (F_{i}(u) - F_{i}(v), u_{i} - v_{i}) \ge -c \sum_{i=1}^{m} \|u_{i} - v_{i}\|_{X^{*}}^{2}$$

where c is some constant and $u = \sum_{i=1}^{n} u_i, v = \sum_{i=1}^{n} v_i$.

Condition (2), though a natural generalization of the monotonicity condition, is rather hard to verify. In this paper we weaken this condition on the operators $F_1, ..., F_m$ by assuming additional hypothesis of compactness on the linear operators A_{\downarrow} . In the application of this theory to the case where the A_{\downarrow} are integral operators, the assumption of compactness is a natural one.

We now introduce the following definitions: Let X be a real Banach space, X^* its dual and let (w, u) denote the duality pairing between the elements w in X^* and u in X.

<u>Definition 1.</u> A mapping T from X to X^* is said to be of the type (M) if the following conditions hold:

 (M_4) - If a sequence $\{u_m\}$ in X converges weakly to an element u in X (written $u_m \longrightarrow u$), the sequence $Tu_m \longrightarrow w$ in X^* and $\lim \sup (Tu_m, u_m) \in (w, u)$, then Tu = w.

 (M_2) - T is continuous from finite dimensional subspaces of X to the space X^* endowed with the weak*-topology.

It should be observed that if T is monotone and continuous then T is of type (M) [2]. The concept of mappings of type (M) was first introduced by Brezis [2] using filters and later used by de Figueiredo and Gupta in [5].

<u>Definition 2</u>. If T is a bounded monotone linear map of X into X^* , then T is said to be angle-bounded

with constant $\alpha \ge 0$ if for all u, v in X $|(Tu, v) - (Tv, u)| \le 2\alpha \{(Tu, u)\}^{1/2} \{(Tv, v)\}^{1/2}.$

It is clear that every monotone map T which is symmetric is angle-bounded with a=0. In proving existence theorem we shall appeal to Proposition 3 of [5] and Theorem 4 of [3] which we now state.

<u>Proposition 1</u> (de Figueiredo and Gupta). Let X be a reflexive Banach space and T be a bounded mapping of type (M) from X to X^* . Suppose that the mapping T satisfies the following condition:

There exists R > 0 such that

(3)
$$(Tx,x) > 0 \text{ for } ||u|| > R$$
.

Then the range of T is all of X^* .

Theorem 1 (Browder and Gupta). Let X be a Banach space, X^* its dual, T a bounded linear mapping of X into X^* which is monotone and angle-bounded. Then there exists a Hilbert space H, a continuous linear mapping S of X into H with S^* injective and a bounded skew-symmetric linear mapping B of H into H such that $T = S^*(I+B)S$ and the following inequalities hold:

- (i) $\|B\| \le a$, with a the constant of angle-boundednes of T
 - (ii) $\|S\|^2 \le R$ if and only if for all u in X, $(Tu, u) \le R \|u\|_{\chi}^2$

(iii)
$$[(I+B)^{-1}h, h]_{H} \ge (1+a^{2})^{-1} \|h\|_{H}^{2}$$
 for

all h in H .

We are now in a position to state and prove our existence theorem.

Theorem 2. Let X be a Banach space and X^* its dual. Let $\{K_1, \ldots, K_m\}$ be a finite family of bounded, linear, monotone and compact operators from X to X^* with constant of angle-boundedness $a \geq 0$ and $\|K_i\| \leq K_0$ for each i. Let $\{F_1, \ldots, F_m\}$ be a corresponding finite family of continuous, bounded nonlinear operators from X^* to X which satisfy the following condition: For every m -tuple $\{u_1, u_2, \ldots, u_m\}$

(4)
$$\sum_{i=1}^{m} (F_{i}(u), u_{i}) \ge -c \sum_{i=1}^{m} \|u_{i}\|_{X^{*}}^{2} + \sum_{i=1}^{m} (F_{i}(0), u_{i})$$

where
$$u = \sum_{i=1}^{m} u_i$$
 and $c < (1 + \alpha^2)^{-1} K_0^{-1}$.

Then the equation

$$u + \sum_{i=1}^{n} K_{i} F_{i} u = 0$$

has a solution in x^* .

Proof: We first prove the following lemma.

Lemma 1. Let T be a continuous mapping from X to X^* such that $T = T_1 + T_2$ where T_1 satisfies the condition

(6)
$$(T_1 \times -T_1 y, x-y) \ge \phi(\|x-y\|)$$
 for all x, y
$$\phi(x) \ge 0, \ \phi(x) = 0 \quad \text{iff } x = 0$$
 and T_2 is compact.

Then T is of type (M) .

<u>Proof</u>: Since T is continuous, it suffices to show that T satisfies condition (M_4) of Definition 1. Let $u_m - u$ and $Tu_m - w$ and $\lim\sup_{n \to \infty} (Tu_m, u_m) \neq (w, u)$. Then we have

$$c(\|u_m-u\|) \leq (T_1u_m-T_1u,u_m-u)$$

$$= (Tu_m-Tu,u_m-u)-(T_2u_m-T_2u,u_m-u)$$

$$= (Tu_m,u_m)-(Tu_m,u)-(Tu,u_m-u)-(T_2u_m-T_2u,u_m-u).$$
Since $u_m \rightarrow u$ and T_2 is compact, there exists a subsequence (which in turn will be denoted by u_m) such that $T_2u_m \rightarrow y$. So we have

 $\lim \sup_{n \to \infty} c(\|u_m - u\|) \le \lim \sup_{n \to \infty} (Tu_m, u_m) - (w, u)$ $\le (w, u) - (w, u)$

which implies that $u_n \rightarrow u$. Since T is continuous $Tu_n \rightarrow Tu = w$, i.e. T satisfies condition (M_4) of Definition 1.

We now proceed to prove the main theorem. Since each K_i is angle-bounded, by Theorem 2 for each i there exists a Hilbert space H_i , a continuous linear mapping $S_i: X \longrightarrow H_i$ with S_i^* injective and a bounded linear skew-symmetric mapping B_i of H_i to H_i such that

(7)
$$K_{i} = S_{i}^{*}(I + B_{i})S_{i}, \|B_{i}\| \leq \alpha, \|S_{i}\|^{2} \leq K_{0}$$
 and
$$[(I + B_{i})^{-1}M_{i}, M_{i}]_{H_{i}} \geq (1 + \alpha^{2})^{-1}\|A_{i}\|_{H_{i}}$$
 for all M_{i} in H_{i} .

We form a Hilbert space H, as the orthogonal direct sum $H = \sum_{i=1}^{n} \oplus H_{i}$. An element h of H is an m-tuple $\{h_{i}, \dots, h_{n}\}$ with h; in H_{i} , while $\|h\|_{H}^{2} = \sum_{j=1}^{n} \|h_{j}\|_{H_{j}}^{2}$. We define a mapping $S: X \longrightarrow H$ by

Then $S * h = \sum_{i=1}^{n} S_{i}^{*} h_{i}$, $h = \{h_{i}, ..., h_{n}\}$.

If u is a solution of (5), then (7) gives

(8)
$$u + \sum_{i=1}^{n} S_{i}^{*} (I + B_{i}) S_{i} F_{i} u = 0$$
.

Since S^* is injective, there exists a unique n in H such that

(9)
$$S^*h + \sum_{i=1}^{n} S_i^* (I + B_i) F_i S^*h = 0$$

which implies that

(10)
$$h + \sum_{i=1}^{m} (I + B_i) S_i F_i S^* h = 0.$$

Taking projections we get

(11)
$$h_{i} + (I + B_{i}) S_{i} F_{i} S^{*} h = 0, i = 1, 2, ..., m$$

(12)
$$(I + B_i)^{-1} n_i + S_i F_i S^* h = 0, i = 1, 2, ..., m$$
.

This can be written as an operator equation

$$Th \equiv T_1h + T_2h = 0 \quad \text{in } H \quad ,$$

where

$$(T_1h)_i = (I + B_i)^{-1}h_i$$

- 288 -

$$(T_2h)_i = S_i F_i S*h .$$

(7) gives

$$\begin{aligned} [T_{1}h, h]_{H} &= \sum_{i=1}^{n} [(I + B_{i})^{-1}h_{i}, h_{i}]_{H_{i}} \\ &\geq (1 + a^{2})^{-1} \sum_{i=1}^{n} \|h_{i}\|^{2} \\ &= (1 + a^{2})^{-1} \|h\|_{H}^{2}, \end{aligned}$$

i.e.

(13)
$$[T_1 h, h I_H \ge (1 + a^2)^{-1} ||h||_H^2 .$$

Also using (4) and (7) we get

$$\begin{split} & [Th, h] = [T_{1}h, h] + [T_{2}h, h] \\ & = \sum_{i=1}^{n} [(I+B_{i})^{-1}h_{i}, h_{i}]_{H_{i}} + \sum_{i=1}^{n} [S_{i}F_{i}S^{*}h, h_{i}]_{H_{i}} \\ & \geq (1+\alpha^{2})^{-1} \|h\|_{H}^{2} + \sum_{i=1}^{n} (F_{i}(S^{*}h), S^{*}_{i}h_{i}) \\ & \geq (1+\alpha^{2})^{-1} \|h\|_{H}^{2} - c\sum_{i=1}^{n} \|S^{*}_{i}h_{i}\|^{2} + \sum_{i=1}^{n} (F_{i}(0), S^{*}_{i}h_{i}) \\ & \geq (1+\alpha^{2})^{-1} \|h\|_{H}^{2} - cX_{0} \sum_{i=1}^{n} \|h_{i}\|^{2} - \sum_{i=1}^{n} \|F_{i}(0)\| \|S^{*}_{i}h_{i}\| \\ & \geq (1+\alpha^{2})^{-1} \|h\|_{H}^{2} - cK_{0} \|h\|_{H}^{2} - (\sum_{i=1}^{n} \|F_{i}(0)\|^{2})^{1/2} (\sum_{i=1}^{n} \|S^{*}_{i}h_{i}\|^{2})^{1/2} \\ & \geq [(1+\alpha^{2})^{-1} - cX_{0})] \|h\|_{H}^{2} - (\sum_{i=1}^{n} \|F_{i}(0)\|^{2})^{1/2} X_{0}^{1/2} (\sum_{i=1}^{n} \|h_{i}\|_{H}^{2})^{1/2} \\ & = [(1+\alpha^{2})^{-1} - cK_{0}] \|h\|_{H}^{2} - (\sum_{i=1}^{n} \|F_{i}(0)\|^{2})^{1/2} X_{0}^{1/2} \|h\|_{H}^{2} \\ & = [c_{0} - (\sum_{i=1}^{n} \frac{\|F_{i}(0)\|^{2}}{\|h\|_{H}^{2}})^{1/2} X_{0}^{1/2} \end{bmatrix} \|h\|_{H}^{2} \end{split}$$

where $c_0=(1+\alpha^2)^{-1}-cK_0>0$ by assumption on the constants. Hence there exists R>0 such that [Th,hl>0 for all $\|h\|_H>R$.

Since each X_i is compact, by Amann [1] each S_i in the splitting (7) is compact and therefore T_2 is compact. Thus the continuous operator T is the sum of the operator T_1 and T_2 where T_1 is linear and satisfies (6) and T_2 is compact. Therefore by Lemma 1 T is of typ (M). Furthermore T is bounded because each S_i and F_i is bounded and satisfies the condition that [Th, h] > 0 for $\|h\|_{H} > R > 0$. So it follows by Proposition 1 that there exists a solution h in H of (10). This implies that S^*h is a solution of (8) and therefore of (5). This completes the proof.

Remark. Our Lemma 1 is similar to the Proposition 1.1 of [6] with the exception that our hypotheses are different.

References

- [1] H. AMANN: Hammersteinsche Gleichungen mit kompakten Kernen, Math.Ann.186(1970),334-340.
- [2] H. BRÉZIS: Equations et inéquations non-linéaires dans les espaces vectoriels en dualité, Ann.de l'Institut Fourier(Grenoble)18(1968),115-175.
- [3] F.E. BROWDER and C.P. GUPTA: Monotone operators and non-linear integral equation of Hammerstein type, Bull.Amer.Math.Soc.75(1968),1347-1353.
- [4] F.E. BROWDER: Nonlinear Functional Analysis and Nonlinear Integral Equations of Hammerstein and

Urysohn Type, Contributions to Nonlinear Functional Analysis Pub.No.27(1971),425-501.

- [5] D. de FIGUEIREDO and C.P. GUPTA: Nonlinear Integral
 Equation of Hammerstein type involving unbounded monotone linear mappings, J.Math.Anal.
 Appl.39(1972),37-48.
- [6] W.V. PETRYSHYN and P.M. FITZPATRIK: New existence theorems for nonlinear equations of Hammerstein type, Trans.Amer.Math.Soc.160(1971),39-63.

Purdue University
Department of Mathematics
West Lafayette, IN 47906
U.S.A.

(Oblatum 25.10.1973)