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Abstract: The main result of this paper relates to re-
sults of Héjkovéd and Palich, regarding the ordering of con-
sistency statements. We show that many of the same order
properties are possessed by binumerations themselves, and
by proof predicates. A result on independent sets of senten-
ces in the Lindenbaum Sentence Algebra follows.
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Introduction. The technique of arithmetization of a
theory T, which is central to many of the results of proof
theory, depends for its success in any instance on the par-
ticular representations one chooses for the metamathematical

. functions and predicates. For Gadel's original representa-
tion of the proof predicate the ngecond incompleteness theo-
rem" can be established for first order number theory, P .
For Rosser s representation, extensionally identical, it
cannot. Feferman [F-603] has established that for the set of
results related to the second incompleteness theorem, the
crutial decision is taken when membership in the set of

x) Research sponsored, in part, by grant from the National
Research Council of Canada.
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axioms is represented. The G5del results are obtained when
the logical complexity of the exiom description is not too
great. Terminology in this paper agrees generally with that
in [F 601 and [H T1l.

Feferman found that even among the "intensionally cor-
rect" representations of the axiom set; those for which
the Gddel second theorem holds, there are still major dif-
ferences which can be recognized by the theory. We use Fe-
fermen’s term, binumeration, for a formula of T with one
free variable, A0 , for which it holds that:

1f m is (the Godel number of) an axiom of T , then
- A0

1f m is not (the Gddel number of) an axiom of T , then
\_T_Ao(m.) .
We consider theories T = <A,L) where L is a first-or-
der language and A is a fixed set of axioms binumerated
by a formula obtained when a primitive recursive (p.r.)
characteristic function is equated to 0, as «wx =0 .We are
interested only in theories strong enough to represent p.r.
functions and in intensional binumerations.

Héjkové [H 71] studies the set of pe.r. binumerations
for first order arithmetic, P , preordered by the relation

« Fq = |- CONp—>CON, (P0,)
where CON, denotes the formula of P which naturally ex-
presses consistency of P relative to the binumeration.
Among other things, she shows that the equivalence classes
of binumerations for ‘l:‘he fixed axiom set A under the asso-

ciated partial order form a lattice, Bmg , and that the
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countable, atomless Boolean Algebra; hence any countable
partially ordered set (poset) can be ordered isomorphical-
ly injected into Binué . This last result might be inter-
preted‘to mean that restricting to p.re. binumerations, al-
though adequate to secure the proof of Godel ‘s theorem,
leaves an unfortunate disorder among representations of

the axiom set .A , even in the case of recognizing the equi-
valence of the consistency problem within the theory. One
can then ask whether the situation would change if ome
found conditions to restrict binumerations so that the equi-
valence of consistency could be established for all binume-
rations. Two other preorders of the binumerations spring to

mind:

(p0,) 06:32[3<—_.—> |- Prov x —> ?/omrn.x

(PO,) o 3, 3 ¢=> |- ex = 0— Bx=10 .

As in [F 601 and [H 71), we assume that such formulas
as appear behind the turnstile in (PO4) - (P03) lie in a
particular p.r. exténeion of P , which we denote by P*‘,but
omit the dot used in [F 60]. Since we often have to use ca-
re in stating where formulas, and proofs, lie, we will use
the notation EE]P+ of [F 60] for the result of applying the
standard p.r. procedure for eliminating p.r. definitions
from the formula E , of P+ , to get a formula of P. Upper
corners, as in g 5 denote the numeral for the Godel number
of EE]P*, when B is a sentence of P¥ .

Several of our results depend upon &an appplication of

a form of the recursion theorem for primitive recursive
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functions, and upon its assertion being provable in P",as
in Theorem 5.1 of [F 60] or, more appropriately, 2.12 of

[F 62]. Since the recursion theorem is a statement regard-
ing indices'for functions, we must have available a p.r. in-
dexing for the p.r. functions. We thus include in P*, a
symbol {m} composed of braces and a natural number, to
name the function, e ,of that index, m ,This is the only
proper nesme for o« in P* ,but we persist in writing «< when
there is no harm. This usage is at variance with [F 62] whe~
re {m3 is strictly a metamathematical object, but the same
theorem a8 2.12 holds in our P¥ and we cite it when requi-
red, In fact, the proof of Feferman’s 2.12 for P+ is a li-
teral translation of the proof of the informal theorem in
(X1 581.

The p.r. binumerations under #, clearly form a lat-
tice under the obvious p.r. definitions of v and A ,which
give

(x ARIX=O¢=>ex +fBx =0

(v A)x = 0¢= CeLx)  (Bx)= 0o .

As remarked above, H4jkovd has shown that the structure un-
der -.'»3 is also a lattice. But we reafrict the use of the
symbols A and v to the above nicaning throughout the pap-
er when they are applied to binumeration pairs. The same*)
can be shown for 52 as follows. Given two p.r. binumera-
tions w , f3 defined 2, -equivalent p.r. binumerationa
“I, (31 "

%) I.e. that the binumerations form a lattice under %, .
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0if (xx= 0A Yy,  (xn = BNV 34y, %, 'Vs‘x(“’*v*p*q
X - ATAS, (g, ) A CLOX,0))
4 otherwise

where: CL(x,4,) (is the formula of P* which) "says" that

x is (the GOdel number for) some universal closure of the
formula (whose GSdel number is) 44 , and Paf, (x,4) (is the
formula of PT which) says that x is a (GGdel number for a)
proof of (the formula whose Godel number is) 4 , from axiom
binumeration « .

Brovy (4) is 3x Befy (X,4) . Clearly, « and «’
binumerate the same axiom set and the equivalence of their
theorem sets can be proved in P*, establishing « =, =<’
and «’ R, « , The seme is done for (3,3’ , It is then easily
shown that the 4mf of x,3 in the 3, order is x’Ap’,
while the sup is «’v B’, as in [H 711, theorems 2.19 and
2.21.

In Section I we shall give a new proof that any/ count-
able poset P , can be injected into the 33 lattice, and pro-
ve also that P can be injected ir;to the =, order of each
3, equivalence class, and again, into the 3, -order of
many of the 3, equivalence classes. These injections are
carried out under an additional condition on the images which
allows yet another proof of a theorem recently published in
M 72], and earlier in [K 62]. Our results may be taken to
indicate there is little point in seeking conditions on p.r.

binumerations solely to ensure the interdeducibility of
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of consistency statements , or even provability, since
the same "disorder" will menifest itself at a more fundamen-
tal level. We are indebted to M. Héjkové for several helpful-
comments and criticisms of the present work and particularly
for grea?ly simplifying the original proof of Lemma 5. She
has further pointed out that the imbedding results of the
present paper extend to the lattices of all binumerétions, of
the fixed theory. P , regardless of axiom set, which se deno-
tes M; , in either of the two orders #, or 2, . This
is true because, given a « #,, (3 in B«'.rru,f," , there is always
A’ binumerating the same axiom set as < so that

w2340 33,38 . The existence of ' can be proved by a
recursion theorem construction like that used to prove Theo-
rem 1. The results do not extend to Bim.': under =, since
there are pairs = 44 3 in B«bruf,’ in which 3 enumerates
an axiom set obtained from the set A enumerated by « by the
addition of some single non-axiom theorem.

In recent work, Jeroslow [J 731 investigates the sugges-
tion of Kreisel [K 65] that the full description of a formal
system should include the detailed rules for production of
terms, formulas, and axioms within a context like a Post Nor-
mal System. From this viewpoint, the separate binumerations
used in [F 601, [H 711, and the present paper would not cor-
respond to the sume formal system but, of course, there will
be many different formal systems for the present system P,
and they will be recognizably distinct in ? . In another pa-
per we will investigafe the effect of restriction to sets of

axioms obtainable by substitution into a finite set of schemes.
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1. 'Injectiog theorems. We wish to show that arbitrary
countable posets, P, can be order-isomorphically injected in-
to the set of p.r. binumerations for arithmetic, ordered in
any one of the three ways above. Theorem 1 covers all cases,
by essuming an unspecified preorder relation (reflexive,
transitive), 3 , among the p.r. binu merations, subject to
the conditions (0) snd (1) below, and we consider T to be
enumerated as Mg, frg,eers fipmaee § with the inessential con-
dition that P has a greatest element, £, ,and a least ele-
ment, f, .The construction of the injection proceeds by in-
duction on a strengthened induction assumption necessary to
provide that "sufficient space" is left at each stage to con-
tinue. To make this precise, we require a definition.

Definition 1: Let L be a lattice with order & andF,,

F, two finite subsets of L . Write

B 2, F, for (Ax,y)(xeFy A eF Axcy)

| N for (Vx,nq)(x s.'f‘qAn*ePamxén;_J .
Similar definitions hold for 3, &and =, .A subset, M, of
L, is called digpersed (in L ) iff:

For each pair, I;, F, of finite subsets of M ,

whenever 4\5‘ < \{a , ‘then E, 3, F,

Note that the word "disjoint" may be inserted before "sub-
sets" and an equivalent definition results.

Each of the three preorder relations (PO,) - (PO,) is
induced on the set of p.r. binumerations by a (p.r.) mapp-
ing, written Mjx , from binumerations « to formulas M X,

of P¥ ,with at most one free variable, by the condition (0),
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below:

. *)
(0) w, 3 o, (= |-+M.x1x — Mg

where the mapping M satisfies an additional condition,
(1):

(1) If | oxm0—>oyx =0, then | M x—>M, x.

Theorem 1: Let P be an arbitrary countable poset,
as above and M & mapping satisfying (1). Let [dj, x5l ,
dy < %, ; be a non-degenerate interval of the p.r. binu-
merations- l1attice under 3 . Then P can be order iso-

morphically (and dispersively) injected into [y ol -

Proof: We begin the construction of an injection G,

as follows:

S(aqu) =,

gin,) = dp
The set of images {x,,dp § is a dispersed subset of the
lattice of p.r. binumerations under 3 . Suppose that €
has been defined fOT fi,, fp, s fvm and that &({ifi4,
frgyererfiy}) is a dispersed subset. We must extend 6 to

Am 44 o804 for this definition only, denote the strict
order of P by < , Let

A= {«,_;'1,...,0614} be the images & (f,) for fu, > fi, 4

3-{{31-_1 gy pémi be the images 6&(4,) for ./r»,,ll,ﬁ,,w,‘

D=Ad,, d",,q’} be the images &(pn,) for f,<f, 4

x) Free varisble formulas are intended to have the genera-
lity interpretation.
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V=i, 2,,m .
Define p.r. characteristic functions e ,d” by
o = ao,;« A &4’2'\ ses A 00,;,4
d= JL.‘ v Jhg Voeee va;“q' .
The primitive recursive recursion theorem, Kleene [K 581,

is used to define ox , to be designated 6(fiy,,) 1D such

a way that if 6‘('-(4»1,...,;'»”}) is dispersed, then so is
6({@4,...,4»0, Pmyq 8)

(2) [ Jx until a clause below applied

ox if 3¢‘,cww,"m7<.«,s,n,q~>">

Frx=y AVz,, Buf(z, ;Np(y,A,s,m‘u

wx if 3y, CPef (g, ;nncgr,A,s,n)")

L AVz,, Puf(z, WD, (A,B,D,2))1 .

vDefinition (2) should raise a number of questions, to be
answered below. The formulas ,rND and NDV are p.r. ex-—
pressions which correspond to the two ways in which dis-
persal could be lost when 7 is added. Note that 7x is,
and remains, dx if the failure of dispersal is first at-
tested by a proof, in P, of ND, or dispersal does not
fail; and becomes and remains «x if dispersal fails and
is first attested by a proof of 7ND . The latter never
happens, and the definition is (externally) fradulent, to

the extent that it never does more than define a new name
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for the characteristic function of the same fixed axiom
set.
Since, by the induction assumption, 6({fr seecs 2 3)

is dispersively injected, (0) and (1) give us:
(3) For each %,4, |- My x— M“ X
() 4
and hence, -, Mox — Kox .

Now, once we verify that (2) is a proper application of
the p.r. recursion theorem, Theorem 2.12 of [F 621 will en-

sure that (2) is provable in P* and, hence,

(4) For each %k, |- Mg x —> M x

For each 4, |-, Mru — M x
kg

ND, (A,B,D,y) expresses that the set AuBUDuU{y}
is not dispersed because the definition fails for some pair
F,, F, of subsets with 4 € F, . It is not difficult to see
that, in the present case, this is adequately expressed by

the finite disjunction of P* sentences of the form:

(5) Va (N, ppx—> N

o A v VBl )

one for each pair B,, B, of subsets of B with B’ #e. B2
By convention, the upper corners translate this sentence
into the language of P , and calculate its Godel number.
Similarly, TND(@*,A,‘B,D) expresses the other manner of dis-
persal failure, with o e F; by the finite disjunction of

sentences
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(6) Vx (O — My g2 %)

wAABAr™

For, if dispersal does fail when 9 is added there will
be an inequality (with ¢ on the left or right, but taken

left for illustration) so that for disjoint pairs of sets
1,2 1 2 1 52
ALA°csA; B,B°sB; D,D°<D,
yAAAAAB A AD 2 VARV VEBEY VDR

Since this expresses failure of dispersion and, by (4)
vy 3wy, 4= 4,0.,2L , we see that A2 = ¢ . Again by
(4), dp 3 o, R=4,... ¢ ,80 that unless D' = ¢ the in-
duction assumption is violated. Thus, a fortiori, an- ine-
quality of the form

%A ebA/\B"é d'v VBQ'
must follow, where 3! B B? , and this is of the form (6).
Finally, note that the incorporation of these formulas in-
to the definition of # requires' only that the index of 7"
appear in the defining clauses and, hence (2) is a proper
application of the p.r. recursion theorem.

We let 6(fp,,) be o and first show that the set
6‘({41.,,,...,{»0,41“+4;)hes the dispersion property, and
next that it is order isomorphically injected. If disper-
sion fails, there will be two disjoint sets, B and B? 5
as above "expressing" the failure of dispersion. There are

two cases to consider.

(i) 7€ e I‘,‘ ., Since dispersion fails, we have

(n e M A ABta X — Moy upe™
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and hence

ks o ND (7,A,3,D) .

Thus, there.is a natural number, m , for which

m

|-, Bef (O, z,ND(»y,A,B,D)").
and, by provability in Pt of (2),
h_V.x(m<x—>7.x=«..x) "

However, since o and o are, in fact, equal for all ar-

guments, we get in the usual way,

(8) I, V(= oex) o
Hence,
(9) I, Yx (AB A & A 7 (x)= AB'A o ()

and, by (1), (1), (9),

(10) |-, M x—> M

ABIA veive ¥
which contradicts the assumption of dispersion of
EUn,, Nygyeeny rpt) .

(ii) o e« F, , In this case we have, similarly,

QL B MAstae® — Huntvay e ®

and, by the same sort of argument, obtain
(12) 5 Y (% = )
b, Vs (VB &y g (x) = VB I(x)

and,again by (1), (11),(12),
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(13) I-+ M/\“A <X MVB"VJ’ ¥

contradicting the induction assumption. This proves the

dispersion of G ({ M ,eeey Ry myql)

It is immediate that the correct (strict) order pro-
perties are possessed by the new element & , by (4), the
contradiction yielded by (8) and (12), and the following.
Suppose that o were comparable to some (33 ; then either

(a): o2 f; or (b): B;= 7 . In case (a) we have
1 -
(14) +M°,u—+Mﬂéx

which leads again to the contradiction of (7) - (10). In

case (b) we have
(15) -'*'Mﬂ;‘_* M,‘.X

leading to the contradiction of (11) - (13). This shows
that the injection & can be extended and thus, by induc-

tion, the proof of Theorem 1 is complete.

Definition 2: A subset, M , of a lattice 1L will
be called independent (absolutely) independent in [M 721)
if, for no two disjoint subsets F,, F, of M , may we

have A 2V .
], R

Corollery 2: If the poset P , of Theorem 1, is an
antichain (no two elements comparable), then &(P) is an
independent set, in the sense of Definition 2.

By Theorem 3, below, it will be seen that it suffi-
ces to prove a restricted version of Theorem 1, in the ca-

se when P is an antichain, but the proof is not essen-
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tially simpler.

Theorem 3 was formulated and proved by M. Adams, of
Bristol University, in response to a question asked by
Myhill. The same result follows from Lemma 4.1 of [B 67]
and Theorem 3.10 of [BH 671. However, we give Adams’ proof

here to make the result available in the present context.

Theorem 3: If P is an arbitrary countable poset, and
1 is the free distributive lattice on a countable inde-
pendent set of generators, then P can be order isomorph-
jcally injected into L -

Proof: The proof is like that of Theorem 1, and we use.
a similar notation. The induction assumption is, again that
the subposet {ft,',-u,/h-m} has been order isomorphically in-

jected, by & , onto a dispersed subset of L . Let

A=4iq, |16 &man, 4 441'4‘3, A= e(A)

D=ding |16 ReEmAn, T Pnud) D= 6(D)
er.-/\G(A)=/A\' (instead of the previous notation AA’ )
d=Ve6(D)= ;C

We use a lemma of Balbes [B 671, Lemma 4.5.
Lemma: In the free distributive lattice on an inde-

pendent set of generators, if we have

(17) Av AV, A2 AVAvVv... YA
.,v51 Vsm T T ™

" where the sets S,‘,...,S,b-, T,‘,....,Th are finite, non-empty,
sets of generators, then for each S, , there is a T,— 80

that Té is a subset of S, .
4
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To prove the Theorem, note that by the induction as-
sumption of dispersion, ¢"< e« . Choose a "new" generator,
g , not yet used in forming 6(n;), 1¢4 &€ m , and con-

struct
(18) 6‘(/{»@+4)=7=m/\(d'vg,)=d’v(ecAg,) .

From the independence of the generators, o<y < « . Sup-
pose next, that for some 'l'\';;”mm” y §(pny) is related to
7 . Suppose 5'(1\%):‘ ¥, i.e.

(19) 6’(»11-,})5&/\(6'v9,)5d'vg,.
Then, for the appropriate finite sets of generators,

(20) Av... £ .

By Balbes Lemma, for each S; , there is a Ty (or {g} ),
Ty € S; (or 4¢3 = S; ). However, the parenthetical re-
mark is not possible and, again by the lemma, we conclude
6'(41-3;,)_4 &’ . This is not possible, since the inductien
assumption of dispersion would require 6(41-5) 2 6(ng) for’
some mfheD and by the induction assumption on order,

gy D g o Since we must have s =f1,,4 ,we get a contra-

diction to the choice of nylln, 4
If we suppose 7 = 6’(1»9-') ,then
xAg R(xAag)vdF 8'(4'»,'_)

and, for suitably chosen generator sets,

(21) AV.iev /\:(Y\V.._VA)Aq,f-/\v...v/s\
K T T Th 51 "
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where Ti=T;u{g}, 14« j £ » . In this case, Balbes’
lemma requires for each T{ , an 8; with §; = Tj.But
since g is a new generator, S$; & ’I‘é , and the lemma re-
quires ecz\ﬁ‘(ﬂé)'a contradiction is produced as before.
Thus the set 4y, -+ yfy,1,,,/is order isomorphically in-
Jected in L , It remains to show that the image set is dis-
persed.

It suffices to consider disjoint sets of §({f,, ..

v g ), /F\‘,ﬁ }: . There are three cases to consider,

(1): o &F4uF, ,which is trivial, (ii) ¢ & F; ; and (iii):

v € F, . Suppose (ii). Write

(22) N Aldvieag)lB2 YV .
B Fa

Hence

A Alxag)2\V .
Fﬂ'{f’ F’.

Write

= sae e AN =
R\{“\T!A& {S:V v%‘and.}__: /_é‘v v{r\k

where the sets S;,..., Sy ; T,,...,, T, are finite sets of ge-
nerators, excluding ¢ . Then

4

(23) Avi.v/ A2 Av..vA
S:I S,‘ Tq T

where Si=S;u<{g}.By Balbes  Lemma, for each S ,there
- ’
is a T:’-’Té; S:.v . But, also,T;); S_.v--[g,i , and hence,

(24) N ANZ2YV
Fp=dizl A Fa
Now, by the induction assumption of dispersion, there is
a pair, <e,¢), ec(F-{yNuA’, ¢eF, , so thates¢,
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If ¢ € P, ,the same pair < e, ¢> is effective for the
sets F,,F, in the dispersion definition. If e & F,,
then ¢ € A’ and since y &« € the pair <o, ¢) is effec-
tive, since o e F; .

If (iii), y e F, ,write

(25) A= V vd&vicag)
F»' Fg_"‘)"?

and, by the Balbes ‘Lemma argument, A3 VvV vd= V vV
F,  F-iy} R-{#i D

By the induction assumption, there is a pair, ¢ e Fy ,
¢ e(Fy-{r3)uD’, so that € £ ¢ . If $ & F, then the
pair < ¢, ¢ > 1is effective and, if not ¢ € D’ and

¢ 2y, re F, , so that the pair ¢, ) is effective.

Thus Theorem 3 is proved.

2. Separation theorems

A requirement of the basic injection result, Theorem
1, is a non-degenerate interval of binumerations Ed;, ®,],
dp < «, ,into which the injection takes place. ‘The exist-

ence of such intervals for the order =, , induced by con-

' sistency statements, is well known, and the properties of
the lattices of binumerations under this order are explored
in H4jkové [H 711. In this section we show the existence
of non-degenerate intervals (within each 2, equivalence
class) in the =, order, and, again (within almost all
3, equivalence classes) in the 2, order.

We first show that it is possible to choose inequi-
valent binumerations, # =<, 3’, which are equivalent in the
2, sense, f =, @B’ . This is quite easy for functions (3
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which satisfy a mild additional restriction; that for some
formula, F, of P, which is not an axiom, we shall be able
to preve, in P*, that neither F nor any conjunction of

F’s is an gxiom. I.E. we require:
(26) 1 3y (CIF g AB(y)=0)

where CIF is the obvious p.r. predicate. Although there
will be many p.r. characteristic functions of the axiom
set not satisfying (26) it is a very mild restriction which

amounts to requiring the theory to recognize that its axiom

set is contradiction free, with respect to propositional
deduction, i.e. it is sort of pre-consistency obtained by
enforcing an elementary degree of reasonableness on the

manner of expressing the axiom set.

Lemma 4: If 8 is a p.r. characteristic function of
the axiom set satisfying (26), there is another p.r. cha-

racteristic function, 8’,for the same axiom set, satisfy-

ing:

(27) (1) B Yx(Bx=0— f'x=0)
(ii) K Vx(fx = 0epx = 0)
(iii) hV«(?mpx <> Prov,,x) .

Proof: Let F be as required by (26). Then @’ has
e eimple definition from (3 A by cases:
s T
0 if CIPxA 3y, Iuf, (4, 0=1")
(28) A(x) =
% otherwise .
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The definition by cases is provable is P* and hence, im-

mediately,

(29 ]-;_px=0—>(s'.x=0
k, Provy x — Provy, X .
To show the reverse implication in (iii) it is only neces-

sary to observe the following free-variable deduction in

Pt :
chrﬂ,x,—v Bw'v'ﬂx
3 Paf, (y,0=1")
- CO.N’3
Pmp(w
yields:
(30) |-+?wp,x—>vakx .

Finally, if |, p%x =0~ Bx =0  then, using (28)
we obtain the contradiction hCONn .

Next, we turn to the production of inequivalent binu-
merations in the .42 order wjthin any =, equivalence
class.

Lemma 5: Let ﬁ be any p.r. characteristic function
of the axiom set. There is another, p’ , for the same axiom

set so that:
(31) (1) k ¥x (Pudw x — Brov ,x)
(ii) K, Y (Provx <« Prov , x)

(iii) k. cml,3 «> CON,,
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Proof: As in Definition 1.10 of [H 71], we take the
Rosser Sentence for the binumeration 3 to be that "solu-
tion" Rp (a sentence of Pt ) of the basic diagonalization

lemma for which
r 1
(32) R R e (Yg)DRef, (R 4) —>(32) (2 < g Pef (SR,T, 201
Then, as in Theorem 1.14 of [H 71] the basic properties of
J{“ can be summarized as:
fp
k Coﬁpﬁ-q?an ';, R’
+
Now, we form the extension theory P's P u '(CCON,‘]P } and
let ¢ denote the natural binumeration of the theory P/ ,

with Rt as associated Rosser Sentence. We form another

binumeration f' ,of P , as follows
(34) 0 if Bx=0 or (34, )I[Puf (RS,
= A Vg, ) Bt (R, 2IA CLCRY 00
4 otherwise .

We obtain immediately from (34):

(35) h?mﬁx—»h,o%,x

and, hence,

(36) hCQNP, - C().NfJ ;

To reverse the implication in (36) we formalize in P* the
following informal deduction. If —uCONa, , then from (34)
?m,,"—. JL/;' (since Pu < L'R,,l”} is inconsistent). From

(33), this yields —1(0Ny , and hence we have:
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(37) f CON,, <> CON,

Finally, if the reverse implication of (35), ie.

Brovy, x —> Brov, x , Were P* provable, then:-

k P,’x’ﬂw’n" .
By (33), e 5y

]—,,Pm R —»/.can
or
(38) };CON,,—»—-nPW.'R; .

However, by (32) and (34)

(39) l-:,-:Dm,l«,l FR,;*R‘

which, together with (38) yields the contradiction:
hcoun-»x‘ .

This completes the proof of Lemma 5.

3. Conclusion

We can state immediate consequence of the separation
results in Section 2, and Theorem 1, in the folldwing co-
‘rollaries. The first, for the 5,3' ordering, was already
obtained by Hédjkovd [H 71]. To obtain ot from Theorem 1 re-
quires a trivial change in Conditions (0) and (1), to re-
verse the implication on the right.

Corollary 6: An& countable poset, P, may be order-
isomorphically injected into the lattice of binumerations
in its =*, ordering.

Corollary 7: For any countable poset, P, and any
equivalence class, E ,of binumerations under the 3, order-
ing, P may be order-isomorphically injected into E. in its

3, ordering. - 241 -



Corollary 8: For any countable peset, P , and any
equivalence class, I , of binumerations under the -‘37_. or-
dering, where elements of F satisfy, in addition, the
preconsistency condition of Lemma 4, T mwmay be order-iso-

morphically injected into F , in its 2, order.

The order of the lattice of binumerations, =, is
just the anti-isomorphic image of the order among consis-
tency statements for P in the Lindenbaum Sentence Algebra
(LSA) for P . The orders =, and =4 are similarly iso-
morphic copies of the order in the Lindenbaum Algebra of
formulas with one free variable (LFA). As noted earlier,
the dispersion condition on the injection of Theorem 1,
when applied to a countable anti-chain P , yields a set of
injection images which are independent in the parent algeb-
ra. There is a history to this problem. In a recent paper,
Myhill [My 711 includes a proof of the existence of a set
of Z: sentences independent in the LSA of P . He comments
that the result can be strengthened to prove the existence
of a single ) formula, with one free variable, Ax , for
which the set {AO,AOM’,...,AO(“),...} is independent.
Kripke has proved this latter result in [Krp 62] and cre-
dits earlier solutions to Mostowski [Mo 60] and to Fefer-
man and Scott. Another proof is implicit in Lemma 3.1 and
Theorem 3.1 of [J 72].

The uniformity condition leading to the set uo,Ao“’,
ey A0, ...} can be built into the proof of our Theo-
rem 1, by including an additional variable in the defini-

tion of 7,(2) .
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This variable would be used to “"regulate" the lengths of
the clauses 7ND and ND, to provide for the successive
injection of more elements of the anti-chain P . Hence we
state one further corollary which "improves" the Kripke re-
sult to formulas with no unbounded quantifiers.

Corollary 9: There is a p.r. formula LF 60] of P
with two free variables, Ax4g , so that the set {AuO,AxOHn
...,Axo“?".} is independent in the LFA.
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