

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log20

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 15,1 (1974)

UNIONS IN E-M CATEGORIES AND COREFLECTIVE SUBCATEGORIES x) John TILLER, Conway

Abstract: The concept of M -unions in categories is defined and discussed and a characterization of coreflective subcategories by means of this concept is given.

Key-words: M -union, M-image, factorization, coreflective subcategory.

AMS: 18A30, 18A40

Ref. Z. 2.726.23

1. <u>Introduction</u>. This paper will be concerned with categorial unions in two settings. First, in an E-M category, M -unions will be defined and discusses. It will be shown that the definition of M -unions can be made stronger than the expected definition and that M-unions exist in many E-M categories.

Second, looking at coreflective subcategories, a characterization of M -coreflective subcategories will be obtained with the use of M-unions and M-images.

Categorical unions have never attracted much attention because coproducts are generally a stronger and more basic idea. However, categorical unions are the generaliza-

x) This research was conducted under the direction of Professor Temple H. Fay and partially supported by Arkansas Educational Research Development Council grant 036.

tion of a very intuitive concept that appears in many situations. For example, unions in the category of all topological spaces take on a simpler form than do coproducts and are more useful in applications.

The categorical definitions not stated in this paper can be found in Mitchell [4], MacLane [3], or Herrlich and Strecker [1].

2. E-M category. E-M categories arise naturally in all categories where some notion of images is introduced. This is stated categorically in terms of factorizations of morphisms.

<u>Definition 1.</u> Let § be a category and let E and M be classes of morphisms which are closed under composition with all isomorphisms. We call § an E-M category if and only if:

- 1) Every morphism in f has an E-M <u>factorization</u>. That is, given a morphism $f: A \longrightarrow B$, there exist morphisms $e: A \longrightarrow C$ and $m: A \longrightarrow C$ with $e \in E$ and $m \in M$ such that me = f.
- 2) ξ has the <u>unique</u> E-M <u>diagonal property</u>. That is, given a commutative square mq = fe with $e \in E$ and $m \in E$. M, there exists a unique morphism q such that mq = fe and qe = q.

Examples. Any category is an E-M category, where E is the class of all morphisms (all isomorphisms) and M is the class of all isomorphisms (resp. all morphisms).

The categories of all sets, semigroups, monoids, groups, Abelian groups, rings, commutative rings, and compact Hausdorff spaces are E-M categories where E is the class of all surjective morphisms and M is the class of all injective morphisms.

The categories of all topological spaces, Hausdorff spaces, compact spaces, and connected spaces are E-M categories, where E is the class of all dense maps (surjective maps, quotient maps) and M is the class of all closed embeddings (resp. embeddings, injective maps).

The categories of all topological spaces and all Hausdorff spaces are E-M categories, where E is the class of all final maps and M is the class of all bijective maps.

The categories of all topological spaces, compact spaces, and connected spaces are E-M categories, where E is the class of all bijective maps and M is the class of all cofinal maps.

It follows from the definition that, in an E-M category, E-M factorizations are essentially unique. Therefore, given a morphism $q:A \to B$ in an E-M category, $g_E:A \to g(A)$ and $g_M:g(A) \to B$ will denote the essentially unique E-M factorization of g.

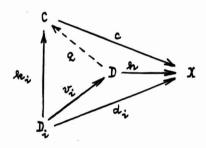
3. M -union. M -unions are a generalization of usual categorical unions.

<u>Definition 2</u>. Let M be a class of morphisms and let $\{d_i: D_i \rightarrow X \mid i \in I\}$ be a family of morphisms in M. Let (D, h) be a pair, where D is an object and $h: D \rightarrow X$ is

a morphism in M such that there exists a family of morphisms $\{w_i: D_i \longrightarrow D \mid i \in I\}$ for which $w_i = d_i$ for all $i \in I$.

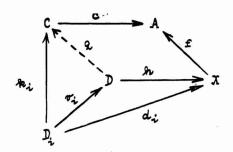
We say (D, h) is the M <u>-union</u> of $\{d_i \mid i \in I\}$ if and only if

(U) Whenever $c: C \rightarrow X$ is a morphism in M and $\{k_i: D_i \rightarrow C \mid i \in I\}$ a family of morphisms such that $ck_i = ck_i$ for all $i \in I$, it follows that there exists a unique morphism $q: D \rightarrow C$ such that $cq = k_i$.



We say (D, %) is the strong M -union of $\{d_i \mid i \in I\}$ if and only if

(SU) Whenever $f: X \longrightarrow A$ is a morphism, $c: C \longrightarrow A$ a morphism in M, and $\{ \mathcal{H}_i : D_i \longrightarrow C \mid i \in I \}$ a family of morphisms such that $fd_i = c\mathcal{H}_i$ for all $i \in I$, it follows that there exists a unique morphism $q: D \longrightarrow C$ such that $cq = f\mathcal{H}$.



Strong M -unions are more useful in E-M categories while M -unions suffice in other settings (such as coreflective subcategories).

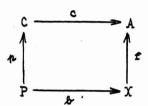
Although the two unions differ by definition, they coincide in E-M categories under very weak hypothesis. More precisely:

Theorem 1. In an E-M category that has weak pull-backs, let $\{d_i: D_i \rightarrow X \mid i \in I \}$ be a family of morphism in M. Let $h: D \rightarrow X$ be a morphism in M through whice each d_i factors. Then the following are equivalent:

- 1) (D, A) is the strong M -union of $\{a_i \mid i \in I\}$.
- 2) (D, h) is the M -union of $\{d_i \mid i \in I\}$.

<u>Proof.</u> That 1) implies 2) is clear by setting $f = 1\chi$ in the definition of strong M -union.

To show 2) implies 1), let $f: X \longrightarrow A$ be a morphism $c: C \longrightarrow A$ a morphism in M, and $\{k_i: D_i \longrightarrow C \mid i \in I\}$ a family of morphisms such that $ck_i = fd_i$ for all $i \in I$. Then let the following diagram be a weak pullback diagram.



By the unique E-M diagonal property, there exists a morphism $q\colon \ell^*(P)\longrightarrow \mathcal{C}$ such that $cq=f\ell_M$ and $q\ell_E=\ell^*$. Therefore the following is a weak pullback diagram.



Since $ck_i = fd_i$, from the definition of weak pullback there exists for each $i \in I$ a morphism $z_i : D_i \longrightarrow \mathcal{U}(P)$ such that $qz_i = k_i$ and $\mathcal{U}_M z_i = d_i$

Hence, from the hypothesis, there exists a morphism $x:D\longrightarrow b(P)$ such that $b_M n=h$. Therefore $qx:D\longrightarrow C$ is a morphism such that $cqn=fb_M n=fh$.

To show uniqueness, let $m, mm^*: D \rightarrow C$ be morphisms such that $cm = cm^* \pm fh$. From the definition of weak pullback, there exist morphisms $d, d^*: D \rightarrow b(P)$ such that qd = m, $k_M d = h$, $qd^* = m^*$, and $k_M d^* = h$. But from the hypothesis, $d = d^*$. Therefore $m = qd = qd^* = m^*$.

Examples. In the category of all sets, let M be the class of all injective functions. Given a family of sets $\{D_i \subseteq X \mid i \in I\}$, the M-union of their inclusions $d_i: D_i \longrightarrow X$ is the pair (UD_i, h) , where UD_i is the usual

set-theoretic union and $h: UD_i \longrightarrow X$ is the inclusion function.

In the category of all groups, let M be the class of all injective homomorphisms. Given a family of subgroups $\{D_i \mid i \in I \}$ of the group X, the M-union of their inclusion functions $d_i:D_i \longrightarrow X$ is the pair $(\langle \{D_i\} \rangle, \mathcal{H})$, where $\langle \{D_i\} \rangle$ is the subgroup generated by the subgroups D_i and $\mathcal{H}: \langle \{D_i\} \rangle \longrightarrow X$ is the inclusion homomorphism.

In the category of all topological spaces, let X be a topological space and consider a family of spaces $\{D_i\}$ | $i \in I$; where each set D_i is a subset of the set X.

- 1) When M is the class of all embeddings and each inclusion $d_i: \mathbb{D}_i \longrightarrow X$ is an embedding, the M-union of the d_i is the pair $(U\mathbb{D}_i, h)$, where $U\mathbb{D}_i$ is the settheoretic union of the sets \mathbb{D}_i . Here $U\mathbb{D}_i$ is endowed with the subspace topology and $h: U\mathbb{D}_i \longrightarrow X$ is the inclusion map.
- 2) When M is the class of all injective maps and each inclusion $a_i: D_i \longrightarrow X$ is an injective map, the M -union of the a_i is the pair (UD_i, h) , where UD_i is the set-theoretic union of the D_i . Here UD_i is endowed with the topology defined by the following:

A subset 0 is open in UD; if and only if $0 \cap D$; is open in D; for all $i \in I$.

The map $A_1: \cup D_2 \longrightarrow X$ is the inclusion map.

3) Let M be the class of all closed embeddings and each inclusion $d_i: D_i \longrightarrow X$ a closed embedding. Then

the M-union of the d_i is the pair $(cl(\cup D_i), h)$ where $cl(\cup D_i)$ is the closure of the set-theoretic union of the D_i . Here $cl(\cup D_i)$ is endowed with the subspace topology and $h: cl(\cup D_i) \longrightarrow X$ is the inclusion map.

For an arbitrary E-M category \S , it is next shown that the existence of strong M -unions is guaranteed when \S has coproducts and M consists entirely of monomorphisms.

<u>Proposition 1.</u> In an E-M category where M is a class of monomorphisms, let $\{d_i: D_i \rightarrow X \mid i \in I\}$ be a family of morphisms in M. Let the family of morphisms $\{u_i: D_i \rightarrow \mathbb{ID}_i \mid i \in I\}$ be the coproduct of the D_i . Furthermore, let $p: \mathbb{ID}_i \rightarrow \mathbb{X}$ be the unique morphism guaranteed by the definition of coproduct such that $pu_i = d_i$ for all $i \in I$. It then follows that $(p(\mathbb{ID}_i), p_M)$ is the strong M -union of the d_i .

<u>Proof.</u> First, there exists the family of morphisms $\{n_E u_i : D_i \rightarrow p(\coprod D_i) | i \in I\}$ such that $n_M p_E u_i = pu_i = d_i$ for all $i \in I$.

Second, let $f: X \to A$ be a morphism, $c: C \to A$ a morphism in M, and $\{k_i: D_i \to C \mid i \in I \}$ a family of morphisms such that $ck_i = fd_i$ for all $i \in I$. Then let $\alpha: C \to C$ be the unique morphism such that $\alpha: C \to C$ be the unique morphism such that $\alpha: C \to C$ for all $i \in I$. It follows that $c\alpha = f\alpha$. By the unique E-M diagonal property, there exists a morphism $Q: A \cap C \to C$ such that $CQ = f\alpha$ and $CA \to C$. Therefore Q is the required morphism. Because C is a

monomorphism, q is unique.

It is well known that whenever $f: X \longrightarrow Y$ is a function and $iD_{i} \subseteq X \mid i \in I$ a family of sets, then $f(\cup D_{i}) = \cup f(D_{i})$. This property stated categorically is important in the relationship between M -unions and strong M -unions.

Theorem 2. Let \$ be an E-M category. The following are equivalent:

- 1) & has strong M -unions.

Proof. Clearly any category that has strong M -unions also has M -unions. Therefore, to show that 1) implies 2), let $id_i: D_i \longrightarrow X \mid i \in I$? be a family of morphisms in M. Let (D, h) be the strong M -union of this family. By the definition of strong M -union there exists a family of morphisms $\{w_i: D_i \longrightarrow D \mid i \in I\}$ such that $\|w_i\| = d_i$ for all $i \in I$.

Let $f: X \to Y$ be any morphism. By the unique E-M diagonal property, there exists for each $i \in I$ a morphism $Q_i: fd_i(D_i) \longrightarrow fh(D)$ such that $(fh)_M Q_i = (fd_i)_M$ and $Q_i: fd_i)_E = (fh)_E v_i$.

Therefore, to show that (fh(D).(fh)M) is the

M -union of $(fd_i)_M$ iel, let $c: C \longrightarrow Y$ be a morphism in M and let $(M_i: fd_i(D_i) \longrightarrow C \mid i \in I)$ be a family of morphisms such that $cM_i = (fd_i)_M$ for all $i \in I$. Since $f: X \longrightarrow Y$ is a morphism, $c: C \longrightarrow Y$ a morphism in M, and $iM_i(fd_i)_E: D_i \longrightarrow C \mid i \in I$ a family of morphism such that $cM_i(fd_i)_E = fd_i$ for all $i \in I$, it follows from the definition of strong M -union that there exists a morphism $m: D \longrightarrow C$ such that cm = fh. By the unique E-M diagonal property, there exists a morphism $p: fh(D) \longrightarrow C$ such that $cp = (fh)_M$ and $p(fh)_E = m$. Hence p is the required morphism.

To show uniqueness, let b, b^* , $fh(D) \longrightarrow C$ be morphisms such that $cb = cb^* = (fh)_M$. Therefore $cb \cdot (fh)_E = = cb^*(fh)_E = fh$. But from the definition of strong M union, $b \cdot (fh)_E = b^*(fh)_E$. By the unique E-M diagonal property, $b = b^*$.

To show that 2) implies 1), let $\{d_i: D_i \rightarrow X \mid i \in I\}$ be a family of morphisms in M and let (D, \mathcal{H}) be its M - union. Let $f: X \rightarrow A$ be a morphism, $c: C \rightarrow A$ a morphism in M, and $\{\mathcal{H}_i: D_i \rightarrow C \mid i \in I\}$ a family of morphisms such that $c\mathcal{H}_i = fd_i$ for all $i \in I$. By the unique E-M diagonal property, there exists for each $i \in I$ a morphism $g_i: fd_i(D_i) \rightarrow C$ such that $cg_i = (fd_i)_M$ and $g_i: fd_i)_E = \mathcal{H}_i$.

Because E-M images distribute over M -unions, it follows that $(fh(D), (fh)_M)$ is the M -union of $(fd_i)_M$ | i.e. I.g.. Therefore there exists a morphism $q:fh(D) \longrightarrow C$ such that $cq = (fh)_M$. Hence $q(fh)_E:D \longrightarrow C$ is a mor-

phism such that $cq(fh)_E = fh$.

To show uniqueness, let ℓ , ℓ *: $\mathbb{D} \to \mathbb{C}$ be morphisms such that $c\ell = c\ell^* = f\ell$. Applying the unique E-M diagonal property twice, we get morphisms m, m^* : $f\ell$ (\mathbb{D}) $\to \mathbb{C}$ such that $cm = (f\ell)_M$, $m(f\ell)_E = \ell$, $cm^* = (f\ell)_M$, and $m^*(f\ell)_E = \ell^*$. From the definition of M-union it follows that $m = m^*$. Therefore $\ell = m(f\ell)_E = \ell^*$.

- 4. Coreflective subcategories. The only subcategories considered in this paper will be assumed to be both <u>full</u> and <u>replete</u>. That is, given K a subcategory of §:
- 1) Whenever A and B are objects in K and $f:A \rightarrow B$ is a morphism in \S , then f must also be a morphism in K (K is full).
- 2) Whenever A is an object in K and B is isomorphic to A, then B must also be an object in K (K is replete).

Definition 3. Let X be a subcategory of } .

K is a coreflective subcategory of § if and only if for every object A in §, there exists an object A_K in K and a morphism $k:A_K \longrightarrow A$ such that whenever B is an object in K and $f:B \longrightarrow A$ is a morphism, it follows that there exists a unique morphism $q:B \longrightarrow A_K$ such that kq=f. In this case k is the coreflection morphism of A in K.

Given a class of morphisms M, let K be a coreflec-

tive subcategory of \S . K is an M -coreflective subcategory of \S if and only if each coreflection morphism is a morphism in M .

Henceforth, it is assumed that M is a class of monomorphism which is closed under composition.

<u>Proposition 2.</u> M -coreflective subcategories are closed under M -unions. That is, if K is an M -coreflective subcategory of \S , $\{d_i:D_i\to X\mid i\in I\}$ a family of morphisms in M where each D_i is an object in K, and (D,h) the M -union of this family, then D is also an object in K.

<u>Proof.</u> From the definition of M -union, there exists a family of morphisms $\{v_i: D_i \longrightarrow D \mid i \in I\}$ such that $\mathcal{N}v_i = d_i$ for all $i \in I$.

Let $A:D_k \to D$ be the coreflection morphism of D in K . There exists for each $i \in I$, a morphism $q_i:D_i \to D_k$ such that $A:q_i = v_i$.

Hence $hk: D_K \longrightarrow X$ is a morphism in M and $iq_i: D_i \longrightarrow D_K \mid i \in I$; a family of morphisms such that $hkq_i = d_i$ for all $i \in I$. By the definition of Munion, it follows that k is an isomorphism.

Since K is replete, D is an object in K .

E-M factorizations are too powerful in this setting, so a simpler factorization is defined.

<u>Definition 4.</u> Let $f:A \longrightarrow B$ be a morphism. The Mimage of f is a morphism $I_f:C \longrightarrow B$ in M such that:

1) There exists a morphism $e:A\longrightarrow \mathbb{C}$ such that $I_{\mathfrak{p}}e=f$.

2) Whenever $m: D \longrightarrow B$ is a morphism in M and $k: A \longrightarrow D$ a morphism such that mk = f, it follows that there exists a unique morphism $g: C \longrightarrow D$ such that $mq = I_C$.

Remark. All categories which have coproducts and M - images have M - unions.

<u>Proposition 5.</u> M -coreflective subcategories are <u>closed under M -images</u>. That is, if K is an M -coreflective subcategory of \S , $f: A \rightarrow B$ a morphism such that A is an object in K, and $I_f: C \rightarrow B$ the M-image of f, then C is also an object in K.

<u>Proof.</u> From the definition of M-image, there exists a morphism $e:A \longrightarrow C$ such that $I_f e = f$. Let &: $:C_K \longrightarrow C$ be the coreflection morphism of C in K. Because A is an object in K, there exists a morphism $q:A \longrightarrow C_K$ such that &q=e.

Hence, $I_{CK} \rightarrow B$ is a morphism in M and $Q: A \rightarrow C_K$ a morphism such that $I_{CK} = I_{CC} = f$. Therefore, from the definition of M -image, & is an isomorphism. Because K is replete, C is an object in K.

The following proposition is similar to one stated in a paper by Herrlich and Strecker [2] except that it uses

.M. -unions and M. -images rather than coproducts and extremal epimorphisms.

Theorem 3. Let & be an M -locally small category

that has M -unions and M -images. Let K be a subcategory of ξ . The following are equivalent:

- 1) K is an M -coreflective subcategory of & .
- 2) K is closed under M -unions and M -images.

<u>Proof.</u> That 1) implies 2) has already been shown. Therefore, to show 2) implies 1), let A be an object in \S . Let $\{d_i:D_i \longrightarrow A \mid i \in I \}$ be a representative family of M-morphisms with codomain A such that each D_i is an object in \S .

Let (D, h) be the M-union of the d_i . Because X is closed under M-unions, D is an object in X. It will be shown that h is the coreflection morphism of A in X.

Let B be an object in K and let $f: B \to A$ be a morphism. Let $I_f: C \to A$ be the M-image of f. Because K is closed under M-images, C is an object in K. Since $I_f: C \to A$ is a morphism in M, there exists some $j \in I$ and an isomorphism $q: C \to D_j$ such that $d_j q = I_f$.

Therefore, since there exists a morphism $e: B \to C$ such that $I_{,e} = f$ and a family of morphisms $\{v_{,i}: D_{,i} \to D\}$ $| i \in I \}$ such that $hv_{,i} = d_{,i}$ for all $i \in I$, then $v_{,i} \neq e$: $B \to D$ is a morphism such that $hv_{,i} \neq e = f$.

Because \mathcal{H} is a monomorphism, this induced morphism is unique. Thus \mathcal{H} is the coreflection morphism of \mathcal{A} in \mathcal{K} .

References

[1] H. HERRLICH and G.E. STRECKER: Category Theory, Allyn and Bacon, Boston, 1973.

- [2] H. HERRLICH and G.E. STRECKER: Coreflective subcategories, Trans.Amer.Math.Soc.157(1971), 205-226.
- [3] S. MacLANE: Categories for the Working Mathematician, Springer-Verlag, New York, 1971.
- [4] B. MITCHELL: Theory of Categories, Academic Press, New York, 1965.

Hendrix College (sophomore)
Conway
Arkansas, U.S.A.

(Oblatum 28.8.1973)

