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Abstract: The concept of M -unione in categories is
defined and discussed and a characterization of coreflecti-
ve subcategories by means of this concept is given.
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1. Introduction. This paper will be concerned with
categorial unions ‘in two settings. First, in an E-M catego-
ry, M -unions will be defined and discusses. It will be
shown that the definition of M -unions can be made stron-
ger than the expected definition and that M-unions exist
in many E-M categories.

Second, looking at coreflective subcategories, a cha-
racterization of M -coreflective subcategories will be ob-
tained with the use of M -unions and M -images.

Categorical unions have never attracted much attenti-
on because coproducts are generally a stronger and more ba-
sic idea. However, categorical unions are the generaliza-

x) This research was conducted under the direction of Pro-
fessor Temple H. Fay and partiallg supported by Arkansas
Educationsl Research Development Council grant 036.
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tion-of a very intuitive concept that appears in many si-
tuations. For example, unions in the category of all topo-
logical spaces take on a 8impler form than do coproducts
and are more useful in applications.

The categorical definitions not staled in tﬁia paper

can be found in Mitchell [4], MacLane [3], or Herrlich and
Strecker [1).

2. E-M category. E-M categories arise naturally in
all categories where some notion of images is introduced.

This is stated categorically in terms of factorizations of

morphisms.

Definition 1. Let § be a category and let E and M
be classes of morphisms which are closed under composition
with all isomorphisms. We call§ an E-M category if and
only if:

1) Every morphism in § has an E-M factorization. That
is, given a morphism f£: A—» B, there exist morphisms e :

tA=—>C and m:A—>C with eeE and m e M such
that ﬂe:f .

2) § has the unigue E-M diggonal property. That is,
given a commutative square mg.=fe with eeE and m e
€M , there exists a unique morphism Q such that mq = £
and qe = % -

Examples. Any category is an E-M category, where E
is the class of all morphisms (all isomorphisms) and M is

the class of all isomorphisms (resp. all morphisms).
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The categories of all sets, semigroups, monoids,
groups, Abelian groups, rings, commutative rings, and com-
pact Hausdorff spaces are E-M categories where E is the
class of all surjective morphisms and M is the class of
all injective morphisms.

The categories of all topological spaces, Hausdorff
spaces, compact spaces, and connected spaces are E-M cate-
gories, where E is the class of all dense maps (surjec-
tive maps, quotient maps) and M is the class of all clo-
sed embeddings (resp. embeddings, injective maps).

The categories of all topological spaces and all Haus-
dorff spaces are E-M categories, where E is the class of
all final maps and M is the class of all bijective mapls.

The categories of all topological spaces, compact spa-
ces, and connected spaces are E-M categories, where E is
the class of all bijective maps and M is the class of all
cofinal maps. ‘

It follows from the definition that, in an E-M cate-
gory, E-M factorizations are essentially unique. Therefore,
given a morphism g,sA—»fB in an E-M category, Q«E:A-—u Q(A)
and Q! ¢(A)— B will denote the essentially unique
E-M factorization of g .

3. M -union. M -unions are a generalization of usu-

al categorical unions.

Definition 2. Let M be a class of morphisms and let

{d;: Di—>X|4+ eI} be a family of morphiems in M . Let
(D, &) be a pair, where D is an object and A :D— X is
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a morphiem in M such that there exists a femily of mor-
phiems {#;:2;—»D|4 €1} for which hawy = d; for all
4el.

We say (D, ) is the M -union of {d; |+ el} if
and only if

(U) Whenever ¢: C~—»X is a morphism in M and
{%;:D,—C|4+ €I} a family of morphisms such that ch, =
.=0di for all ¥ el , it follows that there exists a uni-
que morphism- ¢ : D—» C  such that cqg=Hh .

L7

We say (D, k) is the strong M -uniop of {d;|4e1}
if and only if ’ )

(SU) Whenever £:X— A  is a morphism, ¢: C—A
@ morphiem in M , and { &y : Dy—> CH el} a. femily of
morphisms such that £d; = chk,; for all 4 el , it follows
that there exists a unique morphism 2:D—C such that
cg =£h .
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Strong M -unions are more useful in E-M categories
while M -unions suffice in other settings (such as core-
flective subcategories).

Although the two unions differ by definition, they
coincide in E-M categories under very weak hypothesis. Mo-

re precisely:

Theorem 1, In an E-M category that has weak pull-
backs, let {d;:Dy—>X |4+ €1} bea family of morphism
in M.Let A:D—X be a morphism in M through whic

each d‘; factors. Then the following are equivalent:

1) (D,A) is the strong M -union of id; |4 el

2) (D,hk) ia the M -union of {d, |¥ eI} .

Proof. That 1) implies 2) is clear by setting £ =4y
in the definition of strong M -union.

To show 2) implies 1), let £: X— A be a morphisr
c1 L— A amorphismin.I.,and{k&sl)‘-,—-»(}l&el}
a family of morphisms such that chy; =£d; for all 1el.

Then let the following diagram be a weak pullback diagram.
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By the unique E-M diagonal property, there exists a morph-
iem g: #(P)—> C such that cq = £, and Q&g = 4 . The-
refore the following is a weak pullback diagram.

9 £

He) —p—=1%

Since oky = fd; , from the definition of weak pullback
there exists for each 4+ € I a morphism 2yt D, —» & (P)
such that gz, = &, and Az, = d;

Hence, from the hypotheai‘s, there exists a morphism
2:D — &(P) such that &ya = & , Therefore gx:D—>C
is a morphism such that cgx = £yn =£Hh .

To show uniqueness, let sn,m*: D—»C be morphisms such that
com=cmt= £h -From the definition of weak pullback, there exist
morphisns d,d*:D— H(P) such that gd = m., Lyd = b, gd* w m*,
and fyd*= A . But from the hypothesis, d = at . Therefore m =
=qd = 9d*= m* .

Exguples. In the category of all sets, let M be the
class of all injective functions. Given a family of sets
{),sX |4 €11, the M -union of their inclusions ds: Dy —»

—+ X is the pair (UD;,)») , where UD . is the usual
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set-theoretic union and A : UD, — X is the inclusion
function.

In the c‘ategory of all groups, let M be the class
of all injective homomorphisms. Given a family of subgroups
{D; |lv eI} of the group X , the M -union of their
inclusion functions d;:D; — X is the pair’

(¢<D; 3>, 4) , where <{Dgi) is the subgroup genera-
ted by the subgroups D; and M : <{Dy 3>— X 1is the
inclusion homomorphism.

In the category of all topological spaces, let X be
a topological space and consider a family of spaces {D; |

|+ € 13, where each set D; is a subset of the set X -

1) When M is the class of all embeddings and each
inclusion dj:D;—> X is en embedding, the M -union of
the d; is the pair (UD, , A ) , where UD; is the set-
theoretic union of the sets D; . Here UD; is endowed
with the subspace topology and M.t UD, —> X is the in-

clusion map.

2) When M is the class of all injective maps and
each inclusion dg: Dy — X is an injective map, the
M -union of the dj; is the pair (UD;, k), where UD,
is the set-theoretic union of the Dj , Here UD; is en-
dowed with the topclogy defined by the following:

A subset 0 is open in UD, if and only if 0ND,;
is open in D; for all 12 €l .

 The map 4:UD;— X is the inclusion map.

3) Let XM be the class of all closed embeddings and

each inclusion d-:,=34—"’ X a closed embedding. Then
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the M -union of the d; is the pair (el(UD;), A) where
el (UD;)  is the closure of the set-theoretic union of
the D; . Here o£ (UD;) is endowed with the subspace
topology and A : e (UD,)—> X is the inclusion map.

For an arbitrary E-M category § , it is next shown
that the existence of strong M -unions iz guaranteed when

g has coproducts and M consists entirely of monomorp-

hisms.

Proposition 1. In an E-M category where M is a class
of monomorphisms, let {d;:Dy—X |4 6€1? be a fanily of
morphisms in M . Let the family of morphisma {4« : D;—>
— U, ]1’.« €1} be the coproduct of the D; . Furthermore,
let p: UDy,~—> X Dbe the unique morphism guaranteed by
the definition of coproduct such that puy =d; for all
4 el . It then follows that (p (UD,),pny) is the
strong M -union of the d; .

Proof. First, there exists the family of morphisms
{ngay 1 D;— p (UD;)|4 61} such that Py = iy = dy

L d

.

for all 4+ el ,

Second, let £: X—> A be a morphism, ¢: C— A a
morphism in M , end {k; :D;—>C|i e 1} a family of mor-
phisms such that chk; =£d; for all 4 el . Then let =z :
vUd;~— ¢ be the unique morphism auch that z«; = fe;
for all 4 &« I , It follows that cx = £f , By the unique
E-M diagonal property, there exists a morphism

~@i (UDy)—>C such that cq=£ny and qpg = % -

Therefore q, is the required morphism. Because ¢ is a
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monomorphism, g is unique.

Tt is well known that whenever f£:X— ¥ is &
function and 4D, S X |4 € It a family of sets, then
£(UDy) = US(D) . This property stated categorically is
important in the relationship between M -unions and strong

‘M -unions.

‘Theorem 2. Let g be an E-M category. The follow-

ing are equivalent:
1) § has strong M -unions.

2) S has M -unions and E-M images distribute over
M unions. That is, let 4dy:D;—>X|ieli Dbed fami-
ly of morphisms in M and let (D, ) be itsa M -union.
Then, given any morphism £: X—» Y it follows that
(£m (D) ,(£h)y) is the M -union of 1(€d )y !

s fdy (D)—Y |4 eld .

Proof. Clearly any category that has gtrong M -uni-
ons also has M -unions. Therefore, to show that 1) implies
2), let -td..;:n‘-,—bxl&el.} be a family of morphisms
in M . Let (D, &) be the strong M -union of this femi-
ly. By the definition of strong M -union there exists a
family of morphisms {7 : D, —Dliel} such that
Somy =d; for all v el .

Let £:X—»Y be any.morphism. By the unique E-M die-
gonal property, there exists for each 4+ el a morphism
qy 1 £dj (D) —> £A(D)  such that (Ehiyqs = (2odu 272

oy (£d,)g = (Ehdg vy .
Therefore, to show that cem (D).(EARYY) 18 the
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M -union of (fdidy 4+ el , let ec: C—Y be a
morphism in M and let < %y: £y (Dy)—Cliel} be
a family of morphisms such that ok = (folg)y  for all
4el . Since £1X—Y is a morphiam, c¢: C—Y a
morphism in M , end 4 S (£d;);: D;—Cli6l} a family
of morphism such that ch, Cfd; ) =£d; forall iel,
it follows from the definition of strong M -union that
there exists a morrhism m : D— C such that em =£fh .
By the unique E-M diagonal property, there exists a morph-
ism p: £h(D)—> C such that cp=(£h)y and r(£h) g =
=m . Hence 4 is the required morphism.

To show uniqueness, let &, &#*3£H (D)—> ¢ be mor-
phisms such that clr = c&*= (£h)y . Therefore c& (fh); =
= c&*(€m)p = €4 . But from the definition of strong M -
union, A (fh)g = &*(£h)g . By the unique E-M diagonal
property, & = b¥*

To show that 2) implies 1), let {d;:D;—X|isli be
a family of morphisms in M and let (D, %) be ita M -
union. Let £:X—» A be a morphism, ¢: C—» A a morph-
ismin M , and <Ay :D;—>C|i eI} a family of mor-
phisms such that chk,; = fd; for all 4+ € I . By the uni-
que E-M diagonal property, there exists for each 4 € 1 a
morphism @ : £d;(D;)—> C such that cgy = (fd;)y end
¥ (fdde = Ay

Because E-M images distribute over M -unions, it fol-
lows that (£w (D), (fh)y) is the M -union of {(€d;)y |
|4 e I%. Therefore there exists a morphism Q:£h(D)— C
such that eq = (f&)y , Hence 9 fh)g:D— C is a mor-
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phism such that cq_(i‘h)e =£fh .

To show uniquenesa, let &,&*:D— C be morphisms
such that clr= ¢c&¥= £ . Applying the unique E-M diagonal
property twice, we get mﬁrphim m,m*; £ (D)— C
such that e¢m = (£h)y , m(£h)g = &, cm* = (£h)y , and
m*(£m)g = &* . From the definition of M -union it fol-
lows that m = m* . Therefore & = m (£h)g =

= m*(fh) = &* .

4. Coreflective subcgtegories. The only subcategories
considered in this paper will be assumed to be both full

and replete. That is, given X a subcategory of § :

1) Whenever A and B are objects in X and £: A—3B
is a morphism in § ,then £ must also be a morphism in K

(X is_full) .

2) Whenever A is an object in X and B is isomor-
phic to A , then B must also be an object in X (K is
replete).

Definition 3. Let X be a subcategory of § -

X ia a coreflective subcategory of § if and only

if for every object A in § , there exists an object Ay
in X and a morphism % :Ay—> A such that whenever B

is an object in X and £: B—> A is a morphism, it fol-
lows that there exists a unique morphism ¢:B—> Ay such
that &g = £, In this case J is the coreflection morph-
ism of A in X .

Given ‘a class of morphisms M , let X be a coreflec-
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tive subcategory of § . X is an M —coreflective subca-
tegory of § if and only if each coreflection morphism is
a morphism in M . .

Henceforth, it is assumed that M. is a class of mo-

nomorphism which is closed under composition.

Proposition 2. M -coreflective subcategories are
closed under M -uniong. That is, if X ia an M -coreflec-
tive subcategory of §¢ , {dy:1D;— X|i €I} a family
of morphisms in M where each D; is an object in X ,
and (D, /) the M -union of this family, then D is al-
80 an object in X .

Proof. From the definition of M -union, there exists
a family of morphisms 4w, :D;—>D|i e I3 such that
hw, =d; forall i el .

Let & :Dy—>D be the coreflection morphism of D in
K . There exists for each i € I , a morphism 94i:Di —

—> Dy such that kg, = o, .

i

Hence hh:bk—» X is a morphism in M and
{i9atDy—>Dli eI} a family of morphisms such that
Mig; = d; for all 4 e I . By the definition of M -
uniou, it follows that & is an isomorphism.

Since X is replete, D) ias an obﬁect in X .

E-M factorizations are too powerful in tt;is setting,

80 a simpler factorization is defined.

Definition 4. Let £3 A—»3B be a morphism. The M -
image of £ is @ morphism Ip: C—B in M such that:
1) There exists a morphism e:A—> C such that I¢e=£.
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2) Whenever m:D—» B is a morphism in M and %:
+A—>D) a morphism such that m& = £ ,it follows that
there exists a unique marphism g :C—D such that
mgq = If, .

Remark. All categories which have coproducts and M -

images have M -unions.

Proposition 5. M -coreflective subcategories are clo-
sed under M -images. That is, if XK ia‘ an M -coreflective
subcategory of § , £ A—3B a morphism such that A is
an object in X , and Ip: C~— B  the M -image of £ ,
then C is also an object in X .

. Proof. From the definition of M -image, there exists
a morphism e : A— C such that Ic;e = £, Let i
1Ck—C Dbe the coreflection morphism of C in X .Because
A is an object in X , there exista a morphism g tA—>Cy
such that &g = e .

Hence, [ & 1Cx— B is a morphism in M and ¢: A —
—> C, a morphism such that Ickg = Ice = £ . Therefo-
re, from the definition of M -image, A& is an isomorphism.

Because X ia replete, C is an object in K .

The following proposition is similar to one stated in
a paper by Herrlich and Strecker [2] except that it uses
. M -unions and M -images rather than coproducts and extre-

mal epimorphisms.

Theorem 3. Let § be an M -locally small category
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that has M -unions and M -images. Let X be a subcate-

gory of § . The following are equivalent:

1) X is an M -coreflective subcategory of § .

2) X is closed under M -unions and M -images.:

Proof. That 1) implies 2) has already been shown. The-
refore, to show 2) implies 1), let A be an object in § .
Let {diy:D;— Al|iel} be a representative family
of M -morphisms with codomain A auch that each D; is an
object in X .

Let (D, &) be the M -union of the dj . Because X
is closed under M -unions, D is an object in X . It will
be shown that $v is the coreflection morphism of A in X .

Let B be an cbject in X and let £:B—+ A be a mor-
phism. Let Io:C—>A be the M-image of £, Because X is
closed under M ~-images, C is an object in X . Since I;:
t C—> A is a morphism in M , there exista some F & I

and an isomorphism g : C—> D;’, such that dé—i =Ip .

Therefore, since there exists a morphism e : B—C
such that Ige = f and a family of merphiema {7y :D;—D|
|+ €I} such that Mwy =d; for all4i el , then wige:
13— D is a morphism such that haypge = £ .

Because 5 is a monomorphism, this induced morphism

is unique. Thus % is the coreflection morphism of A in X.
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