

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

15,1 (1974)

REGULARITY AND EXTENSION OF MAPPINGS IN SEQUENTIAL SPACES

R. FRIČ, Žilina

Abstract: The class of all topological spaces Y with unique sequential limits that satisfy the following property (*) is characterized:

(*) For each sequential space X and each continuous mapping f of a dense subspace X_0 of X into Y if f can be continuously extended onto each subspace $X_0 \cup (x)$, $x \in X$, then it can be continuously extended onto X.

 $\underline{\text{Key words}}\colon \text{Sequential space, regular soace, extension}$ of mappings, convergence.

AMS: Primary: 54D55, 54C20 Ref. Z. 3.961 Secondary: 54D10, 54A20

§ O

For the reader's convenience we shall in this section briefly outline how to construct a sequential space by means of convergent sequences (cf.[4],[5],[6]) and recall some facts about sequential spaces needed in the sequel.

In a non-empty set X we define a convergence \mathcal{Z} , i.e. we declare some sequences of points to converge to their limit points such that:

- (\mathcal{L}_4) constant sequences converge,
- (\mathcal{L}_{2}) subsequences of convergent sequences converge,
- (9) the set of limit points of any sequence is se-

quentially closed.

Notice that the condition

 (\mathcal{L}_0) - each sequence has at most one limit point implies (\mathcal{G}) . The convergence of sequences in every topological space satisfies Conditions $(\mathcal{L}_1), (\mathcal{L}_2), (\mathcal{G})$, while it may not satisfy (\mathcal{L}_0) .

Now, the set of all sequentially open sets forms a topology for X . In this sequential space a sequence < xm > converges to a point x iff every subsequence (xm) of $\langle x_m \rangle$ contains a subsequence $\langle x_m^n \rangle$ which \mathcal{L} -converges to x. The convergence & is sometimes called a priori and the convergence in the sequential space X is called a posteriori. Similarly, as in [6, Lemma 5] it can be proved that if £4,£2 are continuous mappings of a sequential space X into a sequential space Y with unique sequential limits such that $\mathbf{f_1}$ and $\mathbf{f_2}$ coincide on a dense subset of X , then they are equal. Finally, to each topological space Y, a sequential space >Y corresponds such that if f is a mapping of a sequential space X into Y, then f is continuous iff f is continuous as a mapping of X into by. The topology of the sequential space by consists of all sequentially open sets in Υ .

§ 1

It is well-known that if $\mathbf f$ is a continuous mapping of a dense subspace $\mathbf X_0$ of a topological space $\mathbf X$ into a regular space $\mathbf Y$ and $\mathbf f$ can be continuously extended onto each subspace $\mathbf X_0 \cup (\mathbf x), \mathbf x \in \mathbf X$, then $\mathbf f$ can be continuous-

ly extended onto X. Moreover, the regularity assumption is essential (cf.[1 , pp.857]). However, if X is supposed to be sequential, then the regularity condition can be weakened and, in view of \S 0, the weaker condition should concern the space $\mathscr{S}Y$.

<u>Definition 1.</u> A sequential space Y in which a sequence $\langle v_m \rangle$ converges to w whenever every closed neighbourhood of w contains v_m for all but finitely many m is said to be convergence regular or briefly c-regular. A topological space Y is called c-regular if xY is c-regular.

Theorem 1. In a sequential space Y the following conditions are equivalent:

- (a) Y is c-regular.
- (b) If $\langle y_m \rangle$ is a sequence and $y \in Y \overline{U(y_m)}$, then there is a closed neighbourhood 0 of y such that $y_m \in Y 0$ for infinitely many m.
- (c) If $\langle y_m \rangle$ is a sequence and $y \in Y \overline{U(y_m)}$, then there is a subsequence $\langle y_m \rangle$ of $\langle y_m \rangle$ such that y and $U(y_m)$ can be separated by disjoint open sets.
- <u>Proof.</u> (a) \Longrightarrow (b). If $\langle y_m \rangle$ is a sequence and $y \in Y \overline{U(y_m)}$, then $\langle y_m \rangle$ does not converge to y_m and (b) follows from Definition 1.
- (b) \Longrightarrow (a). Let $\langle y_m \rangle$ be a sequence and let every closed neighbourhood of y_n contain y_m for all but finitely many m. Then the same holds for any subsequence $\langle y_m^2 \rangle$ of $\langle y_m \rangle$ and by (b) we have $y \in \overline{\cup (y_m^2)}$ for any such $\langle y_m^2 \rangle$. It follows that $\langle y_m \rangle$ converges to y.

The proof of (b) (c) is easy and omitted.

Theorem 2. Let X_0 be a dense subspace of a sequential space X. Let f be a continuous mapping of X_0 into a c-regular space Y. If f can be continuously extended onto each subspace $X_0 \cup (x)$, $x \in X$, then it can be continuously extended onto X.

<u>Proof.</u> Without loss of generality we can obviously suppose that Y = AY. In this proof the bar always denotes the closure in X, Y respectively. Let for each $x \in X$ there be a continuous extension f_X of f onto the subspace $X_0 \cup (x)$. From the continuity of f_X it follows that

- (i) $f_x(x) \in \overline{f[A]}$ for each $A \subset X_0$, $x \in \overline{A}$. Moreover,
- (ii) if $y \in X_0 \cup (x)$ and $0 \in Y$ is an open set such that $f_X(y) \in 0$, then $y \in f^{\in}[0]$, since $f^{\in}[0] = f_X^{\in}[0] \cap X_0$ and X_0 is dense in X. Denote by F the mapping defined on X as follows:
 - (iii) P(x) = f(x) for $x \in X_0$, $P(x) = f_x(x)$ for $x \in X - X_0$.

We shall prove that F is continuous (i.e. sequentially continuous). Let $x = \lim_{n \to \infty} x_n$ in X and suppose that, on the contrary, $F(x) \in Y - \overline{U(F(x'_m))}$ for some subsequence $\langle x'_m \rangle$ of $\langle x_m \rangle$. Since Y is c-regular, there is a subsequence $\langle x'_m \rangle$ of $\langle x'_m \rangle$ and disjoint open sets $O_1, O_2 \subset Y$ such that $F(x) \in O_1$, $U(F(x''_m)) \subset O_2$. From (ii) it follows that for $m \in \mathbb{N}$ we have $x''_m \in \widehat{F}^{\bullet}[O_2]$ and hence

 $x \in \overline{U(x_m^n)}$ implies $x \in f^{\leftarrow}[0_2]$. On the other hand, from (i) and (iii) follows $F(x) \in f[f^{\leftarrow}[0_2]] \subset \overline{0_2} \subset Y - 0_1$. This is a contradiction and the theorem is proved.

Theorem 3. Let Y be a topological space with unique sequential limits which is not c-regular. Then there exist a sequential space X, a dense subspace X_0 of X and a continuous mapping f of X_0 into Y such that f can be continuously extended onto each subspace $X_0 \cup (x)$, $x \in X$, but cannot be continuously extended onto X.

<u>Proof.</u> Again, it is sufficient to prove the theorem in the case of Y = hY. According to (b) of Theorem 1 there is a sequence (y_m) and a point y_m in Y such that $y_m \in Y - U(y_m)$ and for every closed neighbourhood 0 of y_m we have $y_m \in 0$ for all but finitely many m. There are three possibilities:

1. The sequence $\langle y_m \rangle$ is totally divergent. We can suppose without loss of generality that $\langle y_m \rangle$ is one-to-one. Then there is a natural m such that the set $Y - \langle y_m \rangle$ is dense in Y. For otherwise there is a subsequence $\langle y_m \rangle$ of $\langle y_m \rangle$ such that the points y_m are isolated. Thus $U(y_m)$ is a closed-open set not containing y_m and we have a contradiction. Now, we enlarge the convergence in Y declaring all subsequences of $\langle y_m \rangle$ to be convergent to y_m and denote by x_m the induced sequential space. Clearly, the topology of x_m is coarser than that of y_m . Finally, let $x_0 = y_{-n > m} (y_m)$, let $y_m \in Y_m$ be the identical mapping on $y_m \in Y_m$ considered as a mapping of $y_m \in Y_m$. Since $y_m \in Y_m$ is dense in $y_m \in Y_m$. The identi-

cal mapping on each subspace $X_0 \cup (\psi_m), m > m$, is clearly the uniquely determined continuous extension of £, but it cannot be continuously extended onto X.

- 2. There is a one-to-one subsequence $\langle \psi_m^* \rangle$ of $\langle \psi_m \rangle$ converging to a point $q \in Y$. Since Y is a sequential space with unique sequential limits, the set (q) is closed and the open subspace Y' = Y (q) is sequential (cf. [2]). It is easy to see that in Y' we have $\psi \in Y' \bigcup (\psi_m^*)$ and $\psi_m^* \in 0$ for all but finitely many m for every closed neighbourhood 0 of ψ . Now we proceed similarly as in 1.
- 3. There is a point $x \in Y$ and a subsequence $\langle y_m' \rangle$ of $\langle y_m \rangle$ such that $y_m' = x, m = 1, 2, \dots$. Notice that Y is not Hausdorff in this case, since y_m and z_m cannot be separated by disjoint open sets. Let X be the union of a one-to-one double sequence $\langle x_m \rangle$ a one-to-one sequence $\langle x_m \rangle$ and a point x. We introduce into X a sequential topology by means of convergent sequences as follows: for each $z_m \in X$ the constant sequence $\langle z_m \rangle$ converges to z_m , for every z_m each subsequence $\langle z_m \rangle$ of $\langle z_m \rangle$ converges to z_m , each subsequence of $\langle z_m \rangle$ converges to z_m . Denote $z_m \in X U(z_m)$ the dense subspace of $z_m \in X$ and define a mapping $z_m \in X$ into $z_m \in X$ in the following way: $z_m \in X$ in the following way: $z_m \in X_m \in X$ the constant $z_m \in X_m \in X_m$ in the following way: $z_m \in X_m \in X_m$ the dense subspace of $z_m \in X_m$ and define a mapping $z_m \in X_m$ then $z_m \in X_m$ the following way: $z_m \in X_m \in X_m$ then $z_m \in X_m$ then $z_m \in X_m$ the following way: $z_m \in X_m$ then $z_m \in X_m$ then $z_m \in X_m$ the following way: $z_m \in X_m$ then $z_m \in X_m$ then $z_m \in X_m$ the following way:

Corollary. Let **y** be a topological space with unique sequential limits. Then the following conditions are equivalent:

(d) Y is c-regular.

(*) For each sequential space X and each continuous mapping f of a dense subspace X_0 of X into Y if f can be continuously extended onto each subspace $X_0 \cup (x)$, $x \in X$, then it can be continuously extended onto X.

Example. Let Y be the real line the topology of which is enlarged in such a way that the sets $(-\epsilon, \epsilon)$ - $-U(\pi/m)$, $\epsilon > 0$, are also neighbourhoods of 0. Then Y is a Hausdorff (Fréchet) sequential space which is not c-regular.

§. 2

In this section we shall study further properties of c-regular spaces. We start with mutual relations between cregularity and the separation axioms.

Theorem 4. A regular space is c-regular.

<u>Proof.</u> Let Y be a regular space. If $\langle y_m \rangle$ is a sequence and $y \in Y - \overline{U(y_m)}$ in xY, then there exists a subsequence $\langle y_m' \rangle$ of $\langle y_m \rangle$ such that $y \in Y - \overline{U(y_m')}$ in Y. Since Y is regular, y and $U(y_m')$ can be separated by disjoint open sets in Y and hence in xY.

For our purpose we shall generalize the notion of sequential regularity introduced by J. Novák ([6]) for convergence closure spaces.

<u>Definition 2.</u> A topological space Y is said to be sequentially regular if the convergence of sequences in Y is projectively generated by the set of all continuous func-

tions on Y, i.e. $\langle y_m \rangle$ converges to y in Y whenever for each continuous function f on Y we have $f(y) = \lim_{n \to \infty} f(y_m)$.

Notice that a sequentially regular space with unique sequential limits is completely Hausdorff.

Theorem 5. A sequentially regular space is c-regular. Proof. Let Y be a sequentially regular space. If $\langle \psi_m \rangle$ is a sequence and $\psi \in Y - \overline{U(\psi_m)}$ in hY, then $\langle \psi_m \rangle$ does not converge to ψ in Y. Consequently, there is a continuous function f on Y such that $\langle f(\psi_m) \rangle$ does not converge to $f(\psi)$. Hence there is a subsequence $\langle \psi_m^* \rangle$ of $\langle \psi_m \rangle$ such that $f(\psi) \in \mathbb{R} - \overline{U(f(\psi_m^*))}$ and from the regularity of \mathbb{R} follows the existence of disjoint open sets $0_1, 0_2 \in \mathbb{R}$ such that $f(\psi) \in 0_1, U(f(\psi_m^*)) \in 0_2$. The sets $f \in [0_1], f \in [0_2]$ are open in hY and separate ψ and $U(\psi_m^*)$.

<u>Proposition 1.</u> A c-regular sequential Hausdorff space need not be sequentially regular.

The well-knon example of a regular space on which every continuous function is constant constructed by J. Novák in [4] yields a counter-example.

<u>Proposition 2.</u> A c-regular sequential Hausdorff space need not be regular.

Consider the convergence space L₁₀ in [6, p.96]. The induced sequential space is a Hausdorff sequentially regular and hence, by Theorem 5, c-regular space. It is easy to verify that the space is not regular.

Notice that taking the disjoint topological sum (see Theorem 7) of the above two spaces we obtain a c-regular sequential Hausdorff space which is neither regular nor sequentially regular.

Theorem 6. A c-regular sequential T_{1} space is Hausdorff.

<u>Proof.</u> Let Y by a c-regular sequential T_1 space and let $x, y \in Y$, $x \neq y$. Then the constant sequence $\langle x \rangle$ and y satisfy the assumption of (c) in Theorem 1 and hence can be separated by disjoint open sets.

<u>Proposition 3.</u> A c-regular T_4 space need not be Hausdorff.

As a counter-example there can serve the space constructed by V. Koutník in [3, Example 3].

<u>Proposition 4</u>. A c-regular sequential space need not be Hausdorff.

The two-point accrete space is a trivial counter-example.

Theorem 7. The class of all c-regular spaces is closed under formation of subspaces, disjoint topological sums and products.

<u>Proof.</u> The first two statements are self-evident. Let $Y = \prod Y_L$ be a product of c-regular spaces Y_L , $L \in I$. Then Y is c-regular, for if $y \in Y - \overline{U(y_m)}$ in Y, then there is an index $\alpha \in I$ and a subsequence (w_m) of (w_m) such that $p_{\alpha}(w_k) \in Y_{\alpha} - \overline{U(p_{\alpha}(w_m))}$ in Y_{α} . Since Y_{α} is c-regular, the assertion follows immediately.

Proposition 5. A quotient of a sequential c-regular

space need not be c-regular.

Consider the convergence space L_{40} in [6, p.96]. The induced sequential space is c-regular (see Proposition 2). Let us identify the points (\S , 1), \S < ω_1 , with (1,1) and take the quotient space. The quotient space of a sequential space is sequential (see [2]). Since the quotient space is T_1 non Hausdorff ((1,1), (ω_1 ,1) cannot be separated), the proof follows from Theorem 6.

Proposition 6. Let G be a convergence commutative group. Then the induced sequential space need not be c-regular.

Consider the completion L_1 of the group of rational numbers constructed by J. Novák in [7]. The completion consists of the group of real numbers endowed with the sequential (Fréchet) Hausdorff topology finer than the usual one. The identical mapping on the rational numbers considered as a mapping on Q into L_1 can be continuously extended onto each subspace $Q_1 \cup (x)$, x irrational, but cannot be continuously extended onto R. Thus, by Theorem 2, L_1 is not c-regular.

I wish to express here my gratitude to V. Koutník for valuable suggestions in preparing the final form of the paper.

References

- [1] E. ČECH: Topological Spaces, Academia, Praha, 1966.
- [2] S.P. FRANKLIN: Spaces in which sequences suffice, Fund. Math. 57(1965), 107-115.
- [3] V. KOUTNÍK: On convergence in closure spaces, Proc.

Internat.Sympos.on Topology and its Applications(Herceg-Novi,1968),pp.226-230.Savez Društava Mat.Fiz.i Astronom.,Belgrade,1969.

- [4] J. NOVÁK: Regulární prostor, na němž je každá spojitá funkce konstantní, Časopis pěst.mat.fys.73 (1948),58-68.
- [5] J. NOVÁK: On some problems concerning multivalued convergences, Czechoslovak Math.J.14(89)(1964), 548-561.
- [6] J. NOVÁK: On convergence spaces and their sequential envelopes, Czechoslovak Math.J.15(90)(1965), 74-100.
- [7] J. NOVÁK: On completions of convergence commutative groups, General Topology and its Relations to Modern Analysis and Algebra III,pp.335-340 (Proc.Third Prague Topological Sympos.,1971), Academia, Prague, 1972.

Vysoká škola dopravní katedra matematiky Ol088 Žilina Československo

(Oblatum 24.1.1974)