

Werk

Label: Article Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log18

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

15,1 (1974)

NOTES ON RADICAL FILTERS OF IDEALS

Tomáš KEPKA, Praha

Abstract: Let R be a ring and m be a non-empty set of left ideals of R. Denote by $\mathcal{F}(m)$ the radical filter generated by m. In this paper we give a certain characterization of $\mathcal{F}(m)$.

 $\underline{\text{Key words}} \colon \text{Radical filter, hereditary torsion class, hereditary radical.}$

AMS, Primary: 13C99

for m .

Ref. Ž. 2.723.211

In the following, R will be an associative ring with unit and the word "module" means a unitary left R-module. Further, we shall denote by R-mod the category of all the R-modules and $\mathcal{G}(M)$ will be the set of all submodules in M for any $M \in R-mod$. Let $m \subseteq \mathcal{G}(R)$ be a non-empty subset. Consider the following six conditions

- (F_1) If $I \in \mathcal{M}$, $K \in \mathcal{G}(\mathbb{R})$ and $I \subseteq K$, then $K \in \mathcal{M}$.
- (F₂) If $I \in \mathcal{M}$ and $A \in \mathbb{R}$, then $(I : A) = i \varphi | \varphi \in \mathbb{R}$, $\varphi A \in I \} \in \mathcal{M}$.
- (F_3) If $I, K \in \mathcal{M}$, then $I \cap K \in \mathcal{M}$.
- (F4) If I, $K \in \mathcal{M}$, then I. $K \in \mathcal{M}$. and
- (F_5) If $I \in \mathcal{M}, K \in \mathcal{G}(\mathbb{R}), K \subseteq I$ and $(K:\lambda) \in \mathcal{M} \ \forall \lambda \in I$, then $K \in \mathcal{M}$.
- (F₆) If $I \in \mathcal{M}, K \in \mathcal{G}(\mathbb{R})$ and $(K: \lambda) \in \mathcal{M} \ \forall \lambda \in I$, then $K \in \mathcal{M}$.

The set \mathfrak{M} is called a filter (a radical filter) if it satisfies the conditions (F_4) , (F_2) , (F_3) $((F_4)$, (F_2) , (F_5)). As it is easy to show, any radical filter satisfies all the six conditions (F_4) ... (F_6) . Recall that there is a one-to-one correspondence between radical filters and so called hereditary radicals. A hereditary radical is an arbitrary subfunctor of the identity κ having the following properties:

(i)
$$\kappa \left(\frac{M}{\kappa} (M) \right) = 0 V M \in \mathbb{R} - mod$$
,

(II) $\kappa(N) = N \cap \kappa(M) \forall M \in \mathbb{R} - mod \forall N \in \mathcal{G}(M)$.

If m is a radical filter, then the subfunctor x , given by $\pi(M) = \{m \mid (0:m) \in M \}$, is a hereditary radical. Conversely, if x is a hereditary radical then $\{I \mid I \in \mathcal{G}(R), \kappa(R/I) = R/I\}$ is a radical filter. (For the proof see e.g. [4].) A non-empty class of modules 2% said to be a hereditary torsion class, if it is closed under submodules, homomorphic images, extensions and direct sums. In this case, the subfunctor κ , $\kappa(M) = \sum_{N \in \mathcal{L}(M) \cap \mathcal{R}(M)} N$ is a hereditary radical. Conversely, if κ is a hereditary radical then {Mix(M) = M3 is a hereditary torsion class. Since the intersection of any set of radical filters is a radical filter, we can consider the complete of all radical filters of the ring R . lattice £(R) Finally, denote by $\mathcal{K}(\mathbf{R})$ the set of all the subsets $m \subseteq \mathcal{G}(\mathbb{R})$ which satisfy the conditions (\mathbb{F}_1) and (\mathbb{F}_2) . It is obvious that $\mathcal{K}(R)$ is a sublattice in the lattice

2. If $M \in \mathbb{R}$ -mod and $K \in \mathcal{G}(M)$ then we denote by $\mathcal{E}^1(K,M)$ the set $4N!N \in \mathcal{G}(M)$, $K \subseteq N$ and by $\mathcal{E}^2(K,M)$ the set $4N!N \in \mathcal{G}(M)$, $K \subseteq N$ and $M \setminus K$ is essential in $M \setminus K$? Further, $\mathcal{E}^3(K,M)$ will be $\mathcal{E}^2(K,M) \cup \{X\}$.

2.1. Lemma. Let $M \in \mathbb{R}$ -mod and $K, L, N \in \mathcal{G}(M)$ be such that $K \subseteq L \subseteq N$. Then:

- (i) $N \in \mathcal{E}^2(K, M)$ iff $N \cap X = K$ implies X = K for arbitrary $X \in \mathcal{G}(M)$.
- (ii) $N \in \mathcal{E}^2(L, M)$ implies $N \in \mathcal{E}^2(K, M)$.
- (iii) Le $\varepsilon^2(K,M)$ implies $N \in \varepsilon^2(K,M)$.

Proof. Obvious.

Before we proceed further, let us introduce the following notation. If $M \in R-mod$ and $\emptyset \neq M \subseteq \mathcal{G}(M)$, then by \mathcal{K}_{M} we shall mean the hereditary radical corresponding to the hereditary torsion class, which is generated by all the factor-modules $M \setminus N$, $N \in M$. Further put $\mathcal{Q}(M) = \{S \mid S \in \mathcal{G}(M), \exists m \in M \setminus S \}$ and $\mathcal{B}(M) = \mathcal{G}(N : m)$ such that $\mathcal{C}(M) = \{S \mid S \in \mathcal{G}(M), \forall m \in M \setminus S \in M\}$. Thus $\mathcal{B}(M) = \{S \mid S \in \mathcal{G}(M), \forall m \in M \setminus S \in M\}$ and $\mathcal{B}(M) = \mathcal{G}(M) \setminus \mathcal{C}(M)$. Thus such that $(N : m) \subseteq (S : \mathcal{A}_{M})$?

2.2. Lemma. Let $M \in \mathbb{R}$ - mod, $A \in \mathcal{G}(M)$ and

 $\emptyset + M \subseteq \mathcal{G}(M)$. Then $A \in \mathcal{Q}(M)$ iff there is $m \in M \setminus A$ such that

 $\operatorname{Hom}_{\mathbb{R}}(^{\mathbb{B}}/\mathbb{N}, ^{\mathbb{R}m+A}/A) = 0$

for all $N \in \mathcal{M}$ and $B \in \mathcal{E}^1(N, M)$.

Proof. (i) Let $A \in \mathcal{Q}(\mathcal{M})$. Then there is $m \in M \setminus A$ such that $(N:m) \not= (A:Am)$ for any $m \in M$, $N \in \mathcal{M}$ and $A \in \mathbb{R} \setminus (A:m)$. If $g: \stackrel{B}{\longrightarrow} N \longrightarrow \stackrel{\mathbb{R}m+A}{\longrightarrow} A$ is nonzero, then $g(\mathcal{U}+N) = gm + A \neq 0$ for some $\mathcal{U} \in B$ and $g \in \mathbb{R}$. Hence $g \in \mathbb{R} \setminus (A:m)$ and $(N:\mathcal{U}) \subseteq (A:gm)$, a contradiction.

(ii) Let A satisfy the condition of the lemma. If $(N:m) \subseteq \subseteq (A:\lambda m)$ for some $N \in M$ and $A \in \mathbb{R} \setminus (A:m)$, then the mapping $g: \mathbb{R}^{m+N} \setminus \mathbb{N} \longrightarrow \mathbb{R}^{m+A} \setminus \mathbb{A}$ defined by $g(pm+N) = p\lambda m + A \vee p \in \mathbb{R}$, is a non-zero homomorphism, a contradiction.

2.3. Lemma. Let $M \in \mathbb{R}$ -mod, $K \in \mathcal{G}(M)$ and $\emptyset \neq m \subseteq \mathcal{G}(M)$ be such that $K \in \mathcal{B}(m)$. Then:

(i) $S \in \mathcal{E}^2(X, M)$, where $S/K = \kappa_m (M/K)$.

(ii) $n_m(^M/K) \neq 0$, provided $M \neq K$.

Proof. (i) Let $m \in M \setminus K$ be arbitrary. In view of Lemma 2.2, there is $N \in M$ and $B \in \mathcal{G}(M)$ such that $N \subseteq B$ and $Hom_R \binom{B}{N}, \frac{Rm+K}{K} \neq 0$. Since $n_m \binom{B}{N} = \frac{B}{N}, n_m \binom{Rm+K}{K} \neq 0$. However,

 n_{m} $\binom{Rm+K}{K} = \binom{Rm+K}{K} \frac{S}{K}$, and consequently $\frac{S}{K}$ is essential in $\frac{M}{K}$.

(i) There is $m \in M \setminus K$, and hence (by Lemma 2.2) $\operatorname{Hom}_{\mathbb{R}}\binom{\mathbb{B}}{/N}, \overset{\mathbb{R}m+K}{/K} \neq 0 \text{ for some } N \in \mathbb{M} \text{ and } \mathbb{B} \in \mathbb{E}^1(\mathbb{N}, \mathbb{M}) \text{ . Thus } 0 \neq \pi_{\mathbb{M}}\binom{\mathbb{R}m+K}{/K} \subseteq \pi_{\mathbb{M}}\binom{\mathbb{M}}{/K} \text{ .}$

2.4. Lemma. Let $M \in \mathbb{R}$ -mod, $K \in \mathcal{G}(M)$ and $\emptyset \neq M \subseteq \mathcal{G}(M)$. Then the following are equivalent:

- (i) $\varepsilon^3(X,M) \cap Q(m) \neq \emptyset$.
- (ii) $\varepsilon^1(K,M) \cap \alpha(m) \neq \emptyset$.
- (iii) There are $A \in \mathcal{E}^3(X, M)$ and $S \in \mathcal{G}(M)$ such that $A \subseteq S$ and $\kappa_m(S/A) = 0$.
- (iv) There are $A \in \mathcal{E}^1(X,M)$ and $S \in \mathcal{C}(M)$ such that $A \subseteq S$ and $x_m(S/A) = 0$.

(v)
$$x_m(^{M}/K) + ^{M}/K$$
.

<u>Proof.</u> (i) implies (ii) and (iii) implies (iv) trivially. (i) implies (iii). Let $A \in \mathcal{E}^3(X,M) \cap \mathcal{Q}(m)$. By Lemma 2.2, there is $m \in M \setminus A$ such that

 $\operatorname{Hom}_{\mathbb{R}}({}^{\mathbb{B}}/\mathbb{N},{}^{\mathbb{R}m+A}/\mathbb{A})=0$ for all $\mathbb{N}\in\mathbb{M}$ and $\mathbb{B}\in\mathbb{C}^1(\mathbb{N},\mathbb{N})$. From this, one can easily derive $n_{\mathfrak{M}}({}^{\mathbb{R}m+A}/\mathbb{A})=0$. Now it is sufficient to put $\mathbb{S}={}^{\mathbb{R}m+A}/\mathbb{A}$.

Similarly we can prove (ii) implies (iv).

(iv) implies (v). If $\kappa_m({}^M/K) = {}^M/K$, then $\kappa_m({}^S/A) = {}^S/A$ for all A, $S \in \mathcal{E}^4(K,M)$ such that $A \subseteq S$.

(v) implies (i). Assume, on the contrary, that $K \in \mathcal{B}(m)$, and therefore, in view of Lemma 2,3, $S \in \mathcal{E}^2(K,M)$, where ${}^S/K = \kappa_m({}^M/K)$. Using Lemma 2.3 again, we get $\kappa_m({}^M/S) \neq 0$, a contradiction.

2.5. Theorem. Let $m \subseteq \mathcal{G}(\mathbb{R})$ be a non-empty subset. Then $\mathcal{F}(m) = \{I \mid I \in \mathcal{F}(\mathbb{R}), \ \mathcal{E}^1(I,\mathbb{R}) \subseteq \mathcal{B}(m)\} = \{I \mid I \in \mathcal{F}(\mathbb{R}), \ \mathcal{E}^3(I,\mathbb{R}) \subseteq \mathcal{B}(m)\}$.

<u>Proof.</u> The theorem follows from Lemma 2.4, since $\mathcal{G}(m)=\text{fill}\in\mathcal{G}(\mathbb{R})$, $\kappa_m(^\mathbb{R}/I)=^\mathbb{R}/I$? .

2.6. Corollary. A non-empty subset $\mathcal{R} \subseteq \mathcal{G}(\mathbb{R})$ is a radical filter iff it satisfies the following condition: $(F_{\gamma}) \text{ If } I \in \mathcal{G}(\mathbb{R}) \quad \text{and } YK \in \mathcal{E}^1(I,\mathbb{R}) \text{ } V\kappa \in \mathbb{R} \setminus K \exists s \in \mathbb{R} \text{ } \exists \lambda \in \mathbb{R} \setminus (K:\kappa) \exists L \in \mathcal{R} \quad \text{ such that } (L:s) \subseteq (K:\lambda \kappa),$ then $I \in \mathcal{R}$.

<u>Proof.</u> This corollary is only a transcription of Theorem 2.5.

For a non-empty subset $m \subseteq \mathcal{G}(R)$ put C(m) == $\{I \mid \exists \lambda \in R \exists K \in m \text{ such that } (K; \lambda) \subseteq I \}$ and $\mathcal{D}(m) =$ = $\{I \mid \forall \lambda \in R \setminus I \exists g \in R \setminus (I; \lambda) \text{ such that } (I; g\lambda) \in$ $\in m \}$. 2.7. Corollary. Let $m \subseteq \mathcal{G}(\mathbb{R})$ be a non-empty subset. Then $\mathcal{F}(m) = \{I \mid I \in \mathcal{G}(\mathbb{R}), \ \mathcal{E}^1(I,\mathbb{R}) \subseteq \mathcal{D}(C(m))\} = \{I \mid I \in \mathcal{G}(\mathbb{R}), \ \mathcal{E}^3(I,\mathbb{R}) \subseteq \mathcal{D}(C(m))\}$.

In particular, if m satisfies (F_1) and (F_2) , then $\mathcal{F}(m) = \{I \mid \mathcal{E}^1(I, \mathbb{R}) \subseteq \mathcal{D}(m)\} = \{I \mid \mathcal{E}^3(I, \mathbb{R}) \subseteq \mathcal{D}(m)\}$.

<u>Proof.</u> The corollary follows from Theorem 2.5, since $\mathfrak{B}(\mathfrak{M})=\mathfrak{D}(\mathfrak{C}(\mathfrak{M}))$, as one may check easily.

As a very easy consequence of 2.7 and 2.1 we get the following well-known result (see [3]).

2.8. Corollary. Let $\mathfrak{M} \subseteq \mathcal{G}(\mathbb{R})$ be a non-empty subset satisfying (\mathbb{F}_1) , (\mathbb{F}_2) and let $\mathfrak{E}^2(\mathfrak{0},\mathbb{R}) \subseteq \mathfrak{M}$. Then $\mathfrak{F}(\mathfrak{M}) = \mathfrak{D}(\mathfrak{M})$.

2.9. Corollary. Let $m \subseteq \mathcal{G}(\mathbb{R})$ be a non-empty subset and let $\mathcal{H}(m) = \{I \mid I \in \mathcal{G}(\mathbb{R}), \exists \lambda \in \mathbb{R} \setminus I \exists N \in \mathbb{M} \exists m \in \mathbb{R} \text{ such that } (N:m) \subseteq (I:\lambda)\}$. Then $\mathcal{G}(m) = \{I \mid \mathcal{E}^1(I,\mathbb{R}) \setminus \{\mathcal{R}\}\} \subseteq \mathcal{H}(m)\}$.

<u>Proof.</u> (i) Let $I \in \mathcal{F}(m)$, $I \neq \mathbb{R}$. Then, by 2.6 (for n = 1), there are $m \in \mathbb{R}$, $\Lambda \in \mathbb{R} \setminus (I:1) = \mathbb{R} \setminus I$ and $N \in \mathbb{R}$ with $(N:m) \subseteq (I:\lambda)$.

(ii) Let $I \in \mathcal{G}(\mathbb{R})$ and $\{\mathcal{E}^1(I,\mathbb{R}) \setminus \{\mathbb{R}\}\} \subseteq \mathcal{H}(\mathbb{M})$. Set $S/I = n_m\binom{\mathbb{R}}{I}$. If $S = \mathbb{R}$, then obviously $I \in \mathcal{E}(\mathbb{M})$. Suppose $S \neq \mathbb{R}$. By the hypothesis, there are $A \in \mathbb{R} \setminus S$, $N \in \mathbb{M}$ and $m \in \mathbb{R}$ such that $(N:m) \subseteq (S:A)$. Thus $(S:A) \in \mathcal{F}(\mathbb{M})$ and $A + S \in n_m\binom{\mathbb{R}}{S}$, a contradiction since $n_m\binom{\mathbb{R}}{S} = 0$. 2.10. Corollary. Let $I \in \mathcal{G}(\mathbb{R})$ be a two-sided ideal, $\varphi: \mathbb{R} \longrightarrow \mathbb{R}/I$ be the canonical epimorphism and $\mathcal{R} \subseteq \mathcal{G}(\mathbb{R}/I)$ be a radical filter. Put $\mathcal{Z} = \{X \mid X \in \mathcal{G}(\mathbb{R}), I \subseteq X \text{ and } \varphi(X) \in \mathbb{R}\}$. Then $\varphi(L) \in \mathcal{R}$ for all $L \in \mathcal{F}(\mathcal{Z})$.

Proof. Let $L \in \mathcal{F}(\mathcal{Z})$ be arbitrary and $K \in \mathcal{G}(\mathbb{R}) \setminus \{\mathbb{R}\}$ be such that $I \subseteq K$ and $\varphi(L) \subseteq \varphi(K)$. By 2.9, there are $K \in \mathcal{X}$, $\kappa \in \mathbb{R}$ and $\sigma \in \mathbb{R} \setminus K$ with $(N:\kappa) \subseteq (K:\sigma)$. Since I is a two-sided ideal, $I \subseteq (N:\kappa)$ and $I \subseteq (K:\sigma)$. Hence $\varphi((N:\kappa)) = (\varphi(N):\varphi(\kappa)) \subseteq \varphi((K:\sigma)) = (\varphi(K):\varphi(\sigma))$.

However, $\varphi(N) \in \mathbb{R}$ and $\varphi(\mathscr{E}) \neq \varphi(X)$. Thus we have proved $\{\mathcal{E}^1(g(L)) \setminus {R \atop / I}\} \subseteq \mathcal{H}(\mathcal{R})$, and therefore $\varphi(L) \in \mathcal{R}$ (by 2.9).

2.11. Corollary. The lattice $\mathscr{L}(\mathbb{R})$ is distributive, and it is complementary iff \mathbb{R} is a semiartinian ring.

<u>Proof.</u> For $\mathcal{U}, \mathcal{V} \in \mathcal{K}(\mathbb{R})$ put $\mathcal{U} \circ \mathcal{V}$ iff $\mathcal{F}(\mathcal{U}) = \mathcal{F}(\mathcal{V})$. From 2.9 it is easy to see that φ is a congruence relation on the lattice $\mathcal{K}(\mathbb{R})$ and that

 $\mathfrak{R}(R)$ $\mathfrak{P} \cong \mathfrak{L}(R)$. If, further, $\mathfrak{L}(R)$ is complementary, then the radical filter \mathfrak{R} which is generated by all maximal left ideals possesses a complement \mathfrak{T} , and consequently $\mathfrak{R} = \mathfrak{L}(R)$ (since $\mathfrak{T} \cap \mathfrak{R} = \mathfrak{L}(R)$ implies $\mathfrak{T} = \mathfrak{L}(R)$). For the converse implication suppose that R is semiartinian and $\mathfrak{U} \in \mathfrak{L}(R)$ is an element. Denote $\mathfrak{V} = \{ \mathbb{I} \mid \mathbb{I} \in \mathfrak{L}(R) \}$ is maximal and $\mathbb{I} \in \mathfrak{U}$ and

 $\mathfrak{X}=\{I\mid I\in \mathcal{S}(\mathbb{R}) \text{ is maximal and } I\notin \mathcal{U} \text{ or } I=\mathbb{R}\}$. Obviously, $\mathfrak{Z}, \mathcal{V}\in \mathcal{H}(\mathbb{R})$. Further, since \mathbb{R} is semiartinian, $\mathcal{F}(\mathcal{V})=\mathcal{U}$ and $\mathcal{F}(\mathcal{F}(\mathcal{U})\cup\mathcal{F}(\mathcal{Z}))=\mathcal{F}(\mathbb{R})$. Finally, let $\mathcal{F}(\mathcal{V})\cap\mathcal{F}(\mathcal{Z})\neq\{\mathbb{R}\}$. Then there is $I\in \mathcal{F}(\mathcal{V})\cap\mathcal{F}(\mathcal{Z})$, $I\neq\mathbb{R}$ is a maximal left ideal. By 2.9, $(I:\lambda)\in\mathcal{Z}$ for some $\lambda\in\mathbb{R}\setminus I$. However, $\lambda=\varrho\lambda+\infty$, where $\varrho\in\mathbb{R}$ and $\infty\in I$ are suitable, and so $I=(I:\varrho\lambda)=(I:\mathcal{L})\circ\varrho\in\mathcal{Z}$. Thus $I\in\mathcal{Z}\cap\mathcal{V}$, a contradiction.

Let us note here that the preceding corollary was already proved before in [1] for the case of commutative noetherian rings.

3. In this paragraph we generalize some results from [2] to get a characterization of $\mathcal{F}(m)$, where m is a countable set of two-sided ideals. Let $m=\{I_1,I_2,\ldots\}$ be a countable subsystem of $\mathcal{F}(R)$. A sequence $\{\lambda_1,\lambda_2,\ldots\}$ of elements from R will be called m -regular if the set $\{i\mid\lambda_i\in I_j:\}$ is infinite for any $j=1,2,\ldots$. Denote by $\mathcal{H}(m)$ the set of all the m -regular sequences and put $G(m)=\{I\mid\forall\{\lambda_1,\lambda_2,\ldots\}\in\mathcal{H}(m)\forall g\in R:\exists m\geq 1\}$ such that $\lambda_m\ldots\lambda_1g\in I_j:$

3.1. Theorem. Let $m=\{I_1,I_2,\dots\}$ be a countable subsystem of $\mathcal{G}(\mathbb{R})$. Then:

- (i) G(M) is a radical filter.
- (ii) $G(m) \subseteq F(m)$.
- (iii) G(m) = F(m) provided every ideal from m is two-sided.

Proof. (i) The condition (F_4) is obvious. Now (F_2) . Let $I \in \mathcal{G}(\mathcal{M})$ and $\sigma \in \mathbb{R}$ be arbitrary. If $\{\Lambda_1,\Lambda_2,...\}_{\mathfrak{C}} \in \mathcal{H}(\mathcal{M})$ and $\mathfrak{G} \in \mathbb{R}$, then (by the hypothesis) there is $m \geq 1$ such that $\lambda_m \ldots \lambda_1 \mathfrak{G} \in I$, i.e. $\lambda_m \ldots \lambda_1 \mathfrak{G} \in (I:\sigma)$. Finally (F_6) . Let $I \in \mathcal{G}(\mathbb{R})$, $K \in \mathcal{G}(\mathcal{M})$ and $(I:\mathfrak{R}) \in \mathcal{G}(\mathcal{M})$ for each $\mathfrak{R} \in \mathbb{K}$. Given $\{\lambda_1,\lambda_2,...\}_{\mathfrak{C}} \in \mathcal{H}(\mathcal{M})$ and $\mathfrak{G} \in \mathbb{R}$, there is $m \geq 1$ with $\lambda_m \ldots \lambda_1 \mathfrak{G} \in \mathbb{K}$. However, the sequence $\{\lambda_{m+1},\lambda_{m+2},...\}$ is also \mathcal{M} -regular and $(I:\lambda_m \ldots \lambda_1 \mathfrak{G}) \in \mathcal{G}(\mathcal{M})$. Hence there is $m \geq 1$ such that $\lambda_{m+m} \ldots \lambda_{m+4}$. $\{\in (I:\lambda_m \ldots \lambda_1 \mathfrak{G})\}$ and so $\lambda_{m+m} \ldots \lambda_m \ldots \lambda_1 \mathfrak{G} \in I$.

(ii) Suppose, on the contrary, that there exists $I \in \mathcal{G}_{r}(\mathcal{M})$, $I \notin \mathcal{F}(\mathcal{M})$. Hence (by (F_{6})) there is $\lambda_{1} \in I_{1}$ such that $(I:\lambda_{1}) \notin \mathcal{F}(\mathcal{M})$. Further, $I_{1} \cap I_{2} \in \mathcal{F}(\mathcal{M})$ and therefore there is $\lambda_{2} \in I_{1} \cap I_{2}$ such that $(I:\lambda_{2}\lambda_{1}) = ((I:\lambda_{1}):\lambda_{2}) \notin \mathcal{F}(\mathcal{M})$. Repeating this argument, we get a sequence $\{\lambda_{1},\lambda_{2},\dots\}$ having the following properties: (α) $\lambda_{2} \in I_{1} \cap I_{2} \cap \dots \cap I_{2}$ for every $j = 1,2,\dots$, (β) $(I:\lambda_{2}\dots\lambda_{1}) \notin \mathcal{F}(\mathcal{M})$ for every $j = 1,2,\dots$. From (α) we see that $\{\lambda_{1},\lambda_{2},\dots\}$ is an \mathcal{M} -regular sequence. Hence, by the hypothesis, $\lambda_{1}\dots\lambda_{1} \in I$ for some $m \geq 1$, and consequently $(I:\lambda_{1}\dots\lambda_{1}) = R$, which is a contradiction with (β) .

(iii) Obvious, since $I_{2} \in G(m)$ whenever I_{2} is a two-sided ideal.

3.2. Corollary. Let $m = \{I_1, ..., I_m\}$ be a finite set of two-sided ideals. Then $\mathcal{F}(m) = \{I \mid \forall \lambda_1, \lambda_2, ... \in I_1 \cap ... \dots \cap I_m \mid \exists m \geq 1 \}$ such that $\lambda_m \dots \lambda_1 \in I_1$.

<u>Proof.</u> Denote by \Im the set defined above. From 3.1 it is obvious that $\Im(m)\subseteq \Im$. In order to prove the converse inclusion we need only to observe the following fact. If $\{\lambda_1, \lambda_2, \dots \} \in \Im(m)$, then there exist $1 \le \ell \le \ell_1 \le \ell_2 \le \ell_3 \le \dots$ such that $\lambda_{\ell_2} \cdot \lambda_{\ell_2-1} \dots \lambda_{\ell_{2-1}} \in I_1 \cap \dots \cap I_m$ for all $\frac{1}{2} = 1, 2, \dots$.

3.3. Corollary. Let \mathcal{M} be a finite set of two-sided ideals. Then $0 \in \mathcal{F}(\mathcal{M})$ iff $\bigcap_{I \in \mathcal{M}} I$ is right T-nilpotent.

References

- [1] L. BICAN: The lattice of radical filters of a commutative noetherian ring, Comment.Math.Univ.Carolinae 12(1971),53-59.
- [2] L. BICAN, P. JAMBOR, T. KEPKA and P. NEMEC: Rings with trivial torsion parts, Bull.Austral.Math.Soc.9 (1973),275-290.
- [3] V. DLAB: Distinguished submodules, J.Austr.Math.Soc.8 (1968),661-670.
- [4] P. GABRIEL: Des catégories abéliennes, Bull.Soc.Math. France 90(1962), 323-448.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, 18600 Praha 8 Československo

(Oblatum 21.1.1974)