#3D
VAL 7

—/

Werk

Label: Article
Jahr: 1974
PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log18

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Commentationes Mathematicae Universitatis Carolinae

15,1 (1974)

NOTES ON RADICAL FILTERS OF IDEALS
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Abstract: Let R be a ring and M be a non-empty
set of left ideals of R . Denote by #%(M) the radical
filter generated by M .In this paper we give a certain
characterization of §(m) .
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In the following, R will be an associative ring with
unit and the word "module" means a unitary left R -module.
Further, we shall denote by R-mod  the category of all
the X -modules and < (M) will be the set of all sub-
modules in M for any M e R-mod . Let M = ¥(R) be

a non-empty subset. Consider the following six conditions

for M .

(F) If IeM,Ke SCR) and IsK, then Xe M .
(Fp) If Ie€ M and A e R , then (I:AM) =4pl@p ek,
prelrem

(F) If I,XeM , then InXeMm .

(F) If I,XeM, then I.KeM . and

(Pg) If I1eM,Xed(R),KsI and (K:A)eMVAel,then Xem.
(Fg) If 1 e M,X € Y(R) and (K:A)eMVAel, then Xe M .
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The set M is called a filter (a radical filter) if it
satisfies the conditions (E ), (Fp), (F3) ((F,), (F,),
(F5)). As it is easy to show, any radical filter satisfies
all the six conditions (F4) ... (Fg). Recall that there is
a one-to-one correspondence between radical filters and
so called hereditary radicals. A hereditary radical is an
arbitrary subfuncter of the identity x having the follo-

wing properties:

(1) )L(M/IL(M))-- OVY M eR-mod ,

(II) AN =NAX M) VHeR-mod YNe SM) .

If M is a radical filter, then the subfunctor x ,
given by (M) =4im 1(0:m )e M3% , is a hereditary

radical. Conversely, if x 1is a hereditary radical then
{I1] e Y(R), )L(R/I) = X/I } is a radical filter. (For the

proof see e.g. [4].) A non-empty class of modules ¥ is
said to be a hereditary torsion class, if it is closed un-
der submodules, homomorphic images, extensions and direct

sums. In this case, the subfunctor s, x (M) =Ne‘!tSM)nmN

is a hereditary radical. Conversely, if x is a hereditary
radical then {MIrx (M) =M3% is a hereditary torsion
class. Since the intersection of any set of radical fil-
ters is a radical filter, we can consider the complete
lattice & (R) of all radical filters of the ring R
Finelly, denote by X (R) the set of all the subsets
M s $CR)  which satisfy the conditions (E;) and (F,).
It is obvious that X (R) is a sublattice in the lattice
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2':!(&) of all subsets of ¥(R) .

2, If MeR-mod and X e (M) then we denote
by €71C(X,M) the set {NINe (M), Xc N} and by
E2(K,M) the set <NINe «(M), XX  ana Vx
is essential in 'M/.K} : Furthef, E3(K,M) will be
ELCK, M) U iXx3 .

2.1. Lemma. Let M € R-mod and X,L,Ne M)
be such that X s L € N . Then:

(1) Ne €2(X ,M) iff NaX=X implies X=X for
arbitrary X e (M) .
(11) N« €2¢L, M) implies N e E2¢X,M) .
(iii) L e €2(X ,M) implies N e €2¢X,M)
Proof. Obvious.

Before we proceed further, let us introduce the fol-
lowing notation. If M € R~mod and 4+ M c (M) ,
then by 74  we shall mean the hereditary radical corres-
ponding to the hereditary torsion class, which is genera-
ted by all the factor-modules M/.N' , N €M . Further
put A (M) =4SISeSM),3me M\S

VYmeM YALeRN(S:m) YNeM3ce(N:m) such that
CAm € S}t and BM) = S(M)INALI(M) . Thus

BM)=4S15ed M), Yme M\SIme MIALeR\(S:m)INc T

such that (N:m )= (S: Am) ¥ .

2.2, Lemma. Let M € R- mod,, Ae (M) and
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Mg LU), Then Ae AL (M) iff there is m €
¢ M\ A  such that
Home (B/N /A) = 0
for all Ne M anda Be €T¢N, M) .
Proof. (i) Let A € @ (M) .Then there is m e M\ A
such thet (N:m) £ (As A m) for any me M, Ne M

A
e 7A ia non-

Rm+A

and Le€R\CA:m ), If @: B/.N—-

zero, then g9 (& + N)=@om +A % 0 for some & e€B and
e€R . Hence pe R\(Aim) and (N: &) & (A:pm) , a

contradiction.

(ii) Let A satisfy the condition of the lemma. If (N:m)g
s(A:Am) for scme Ne M and A € R\ (A:m) ,then the

Rm + N Rm s+ A
mapping @: N — /A defined by
glepm + N)=pAm +A Yo e R , is a non-zerc homomor-

phism, a contradiction.

2.3. Lemma. Let M e R-mod , Xe F(M) and
f+Me (M) be such that X e B(M) . Then:

(1) S €2¢X,N) , where S/x.;;m(}"/x) .

.- M
(ii) Jt,m( /X) %+ 0 ,. provided M+ X

Proof. (i) Let m e A\ X be arbitrary. In view
of Lemma 2.2, there is N e M and B.e (M) such that

EBm+X
el

NeB and HmR(B/.N, )* 0 . Since

m,m(B/N) = B/.N’, (J!m.+

X
Xm /K.) + 0 . However,
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Rm + X Rm+ X s S
)bm( /X ) = /XA /K , and consequently /X

M
is essential in ~ /X .

(i) There ia m e M\ K

B Rm+X
HmR( /.N, /K)#O for some NeM anda B €

, and hence (by Lemma 2.2)

Rem +X M
¢ "N, M) . mus 0 & a, (" /%) € x, (C/x)

2.4, Lemma. Let M€ R-mool, Ke ¥(M) anaf+Ms
€ YC(M) . Then the following are equivalent:

(1) X, WA aim + 4 .
(ii) K, M)A QM) % £ .

(iii) There are AGESCK,M) and Se ¥(M) such that
Ag S and xm(s/A) =0

(iv) There are A e 64(}(,)1) and Se (M) such that

AES and );,m(s/A) =0 .

(v) )c,m(M/K )= ®ox

Proof. (i) implies (ii) and (iii) implies (iv) trivi-
ally. (i) implies (iii). Let Ae €3(X,M) A (M) . By
Lemma 2.2, there is me M\ A such that

A
m + 4

B R
Hom (/X ) =0 forall NeM and Be

€ €1C.N, M) . From this, one can easily derive

Rm+ R A
)Lm( /A) = (0 ,Now it is sufficient to put S = m /A
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Similarly we can prove (ii) implies (iv).

M M S
(iv) impties (v). If {om( /J() = /X , then Jz.m( /A) =

s -
= /A for all A,Seﬁ‘(K,M) such that A< S

(v) implies (i). Assume, on the contrary, that Ke B(7),

and therefore, in view of Lemma 2,3, S e e*(K,M) , where
S M
/X = Lm( /JC) . Using Lemma 2.3 again, we get
M
)Lm( /S) #+ 0 , a contradiction.

2.5. Theorem, Let M & ¥(R) Dbe a non-empty sub-
set. Then F(M)=4I11e $C(R), e(I,R) = B(M)} =

=4IlTe $(R), €XI,R) € Bm)}

Proof. The theorem follows from Lemma 2.4, since

Femy = i111e 9R), 2, /1) = F/130,

2.6. Corollary. A non-empty subset B = Y(R) 1is a

radical filter iff it satisfies the following condition:

(Fy) If T e $CR) and YKe ' (IL,R) Vo e R\K3s ¢
€ceR3AeRN(X:2)3Le R such that (L:»)s(X:Ax),
then 1e R .

Proof. This corollary is only a transcription of Theo-

rem 2.5.

For a non-empty subset M = Y (R) put C(M) =

1{J13LeR3IXeMm such that (X:A)s 1} and (M) =

1{IlYA eXN1 3 peRN (I:0) such that (1:@h)e
eMm%y .
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2,7. Corollary. Let M = Y (R) be a non-empty
subset. Then F(M)={IlIe $CR), €¢I, R)cDCMN}=

={IlIe¥(R), €¥I,R)e DCC(MN} .
In particular, if M  satisfies (F,) and (F,), then
FM)=4I1ENLRY e DOMY=I1ECI,R) s DM} .

Proof. The corollary follows from Theorem 2.5, since
B(M) = HCC(M)) , as one may check easily.
As a very easy consequence of 2.7 and 2.1 we get the

following well-known result (see [3]).
2.8. Corollary. Let M & Y(R) be a non-empty sub-
set satisfying (¥, ), (F,) and let €*(0,RYS M . Then

F(M)=Dm)

2.9. Corollary. Let M & 4Y(R) be a non-empty sub-
set and let # (M) =4I1Ie J(R),IAeR\I3NeM3neR such
that (Nim) € (I:A)} , Then F(M)=<Ile'(I R)NIRI}E

sHmy .

Proof. (i) Let Ie #(M), I 4R . Then, by 2.6 (for
=41 ), there are m eR, A €eR\(I:4)=K\1 gana Ne
eM with ¢(N:m) s (1:2) ,

(ii) Let Ie€ (R  and 4ECI,RINARI} s (M) .

Set /1= )bm(x/I) ., If S=R , then obviously ITe
e F(M) . Suppose S #= R . By the hypothesis, there are

AeR\S,NeM and m eR such that (N:m)=s(S:A).

a con-

Thus (S:A) € F(M) and .ﬂ.-rSE)L,m(R/S)

7

R
tradiction since "'m( Z8) = 0
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2.10. Corollary. Let I € Y(R) be a two-sided ide-
al, 9: R — Jt'/I " be the canonical epimorphism and

R s 3(1/1) be a radical filter. Put ¥ = {X[(X'e Y(R),
IeX and ¢(X)e€R3¥ . Then g(L)e R for all
Leg(z).

Proof. Let L € F(X) be arbitrary and X € S(RI\{R}
be such that Is X and ¢(L) € ¢(X) . By 2.9, there
are Ne £, reR eand € e R\X with (N:x) s (X:6).
Since ] is a two-sided ideal, I (N:x) and Is(X:6).
Hence ¢ (UN:xN=(gp(N):i@gr)) = g((X:6)) = (¢(K): p(6)) .

However, ¢(N) e R and ¢(&) ¢ @(X) . Thus we have pro-

R
ved {84(93(1,)) \ { /I}} S¥(R), and therefore
9(1‘) e« R (by 2.9).

2.11. Corollary. The lattice &£(R) is distributive,
and it is complementary iff R is a semiartinian ring.

Proof. For U,V e X (R) put Up? iff F(U) =
=X(V) ., Pron 2.9 it is easy to see that @ 1is a congruen-

ce relation on the lattice M (R) and that

X (R)
/go =z L(R), If, further, &£(R) is complementary,

then the radical filter A which is generated by all ma-
ximal left ideals possesses a complement T, and conse-
quently R = $(R) (since AR ={R} implies =

= iR} ). For the converse implication suppose that R
is semiertinian and :QL e £(R) is an element. Denote

Y=41I|1le $(R) ‘is meximal eand I € 4 ¥ and
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%=4I11e SCR) is meximal and T & % or I=R7.
Obviously, %,% e X (R), Further, since R is semiar-
tinian, F(”) =% and F(F(U) v F(E)) = $(R) .
Finally, let #(?%) A F(Z) %= {R3? . Then there is I e
eEFV)AF(X), I+ R is a maximael left ideal. By 2.9,
(I:A)e % for some A € R\I , However, 1= oA+ <,
where pe R and <« € I are suitable, and so I = (Ifso.l)=
= (I:A):@)e X . Thus I € £ ¥, a contradiction.

Let us note here that the preceding corollary was al-
ready proved before in [1] for the case of commuative noe-

therian rings.

3. In this paragraph we generalize some results from
2] to get a characterization of (M) , where MM is a
countable set of two-sided ideals. Let ’ffi=-{I1,Iz,...? be
a countable subsystem of ¥(R) . A sequence {A,,A,,..}
of elements from R will be called M -regular if the set
{41, € I; % is infinite for any 4 =1,2,... . Denote
by U(M) the set of all the M -regular sequences and
put G (M) ={I11V4A,N),...3e L(M)VoeR 3m =1 such
that A, .2 eI} .

3.1. Theorem. Let M = {I,,I,,... ¥ be a countable
subsystem of & (R ) . Then:
(i)  G(M) is a radical filter.
(i1) g m) ¢ Fm)

(iii) G (M) = F(M) provided every ideal from M is

two-sided.



Proof. (i) The condition (F,) is obvious. Now (F,).
Let Te€ G(M) and @ € R be arbitrary. If {i,,A,,.76
€ 9L(M) eand ¢ €R , then (by the hypothesis) there is
m 241 such that A,..A,00e 1, ice. Ay Xy @ €CI:6).
Finally (F;). Let Ie $(R), X € G (M) and (I:se)e G (M)
for each 2 € X ., Given {A4,A,,.}e (M) and p€eRrR,
there is m 2 41 with ﬂm -..5\19 e X .However, the sequen-
ce Ay, s dp g0 3 is also M -regular and (I:dg,...A Q)€
€ G (M) , Hence there is m = 4 such that Agpim -

o PSVRE | €(LidyMyp) and 80 Apypy ey lqg 9 €1 4

(ii) Suppose, on the contrary, that there exists Ie
€ G(M), I&d(M). Hence (by (Fs)) there is A, @« I; such
that (I:2,) € F(M) . Further, I, nI, € #(M) and
therefore there is 1, € I, n I, such that (154, 14) =
=((I:A4):4,) € (M) .. Repeating this argument, we get
a sequence 4).4,912,... ? having the following properties:

() J\.éc Laln..n I, forevery 3=4,2,..,

() (Tedyen ) & FCM) for every 4 = 1,2,.. .

From (o) we see that iA,,Ag,-.3 is an M -regular se-
quence. Hence,by the hypothesis, am...ﬂ4.4_ el for some
m Z 4 , and consequently (I:hp. .?.4) =R , which is a

contradiction with ().

) (iii) Obvious, since I?._ € 9(771) whenever Is.‘ is a
two-sided ideal.
3.2. Corollary. Let M = {I,,...,1,% be a finite set
of two-sided ideals. Then F(M)=4II1VA,,Ay,... 61,000
e A1y 3m 2 4 such that Ap «+0 A, 6 I3 .
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Proof. Denote by O the set defined above. From 3.1
it is obvious that #(M) ¢ J , 1In order to prove the
converse inclusion we need only to observe the following
fact. If { Ay, Ag,e 5 @ CL(M) , then there exist 1 &
& Ly< By<24<.. such that .’A.,gi . 2-2’.’.4 .ﬂ-g‘_" elLn.nl,
for all 3 = 4,2,.. .

3.3. Corollary. Let M be a finite set of two-sided
ideals. Then 0 € F(M) iff lﬁmI is right T -nil-
€

potent.

References

[1] L. BICAN: The lattice of radical filters of a commuta-
tive noetherian ring, Comment.Math.Univ.Caroli-
nee 12(1971),53-59.

[2] L. BICAN, P. JAMBOR, T. KEPKA and P. NEMEC: Rings with
trivial torsion parts, Bull.Austral.Math.Soc.9
(1973),275-290.

[3) V. DLAB: Distinguished submodules, J.Austr.Math.Soc.&
(1968),661-670.

[4] P. GABRIEL: Des catégories abéliennes, Bull.Soc.lath.
France 90(1962),323-448.

Matematicko-fyzikdlni fakulta
Karlova universita
Sokolovskd 83, 18600 Praha 8

Ceskoslovensko

(Oblatum 21.1.1974)

- 159 -






	
	Article


