

Werk

Label: Article Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log16

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 15,1 (1974)

A NOTE ON OPERATOR CONVERGENCE FOR SEMIGROUPS Ryotaro SATO, Sakado

Abstract: Let $\Gamma = \{T_t; t > 0\}$ be a strongly continuous semigroup of linear contractions on a Hilbert space H and let $f \in H$. It is proved that if weak-lim $T_t f = f_\infty$ for some $f_\infty \in H$ then strong-lim $\int_0^\infty a_m(t) T_t f dt = f_\infty$ for any sequence $\{a_m\}$ of nonnegative Lebesgue integrable functions on $(0, \infty)$ such that $\int_0^\infty a_m(t) dt = 1$ for each m and $\lim_{n \to \infty} \|a_m\|_\infty = 0$.

 $\underline{\text{Key-words}}$ Strongly continuous semigroup, weak and strong convergence.

AMS, Primary: 47D05, 47A35 Ref. Z. 7.976.7

Let H be a Hilbert space and let $\Gamma = \{T_t; t > 0\}$ be a semigroup of linear contractions on H, i.e., each T_t is a bounded linear operator from H to H with $\|T_t\| \leq 1$ and $T_t T_b = T_{t+b}$ for all t, b > 0. In this note we shall assume that Γ is strongly continuous. This means that $\lim_{t \to \infty} \|T_t f - T_b f\| = 0 \quad \text{for all } f \in H \quad \text{and all } b > 0.$ It follows that for any complex-valued Lebesgue integrable function a(t) on $(0, \infty)$, the vector-valued function $t \to a(t) T_t f \quad \text{on } (0, \infty)$ is also Lebesgue integrable. The purpose of this note is to prove the following result, which is a continuous version of the Blum-Hanson theorem [1] (see also [21]).

Theorem. Let $f \in H$ and weak- $\lim_{t \to \infty} T_t f = f_\infty$ for some $f_\infty \in H$. Then for any sequence $\{a_m\}$ of nonnegative Lebesgue integrable functions on $(0,\infty)$ such that $\int_0^\infty a_m(t) \, dt = 1 \quad \text{for each } m \quad \text{and} \quad \lim_{m \to \infty} \|a_m\|_\infty = 0 \;, \; \text{we}$ have $strong-\lim_{m \to \infty} \int_0^\infty a_m(t) \; T_t \; f \; dt = f_\infty$.

<u>Proof.</u> Since $T_t f_{\infty} = f_{\infty}$ for all t>0, we may and will assume without loss of generality that $f_{\infty} = 0$. Since $\|T_t\| \le 1$ for all t>0, $\lim_{t\to\infty} \|T_t f\|$ exists. Thus for a given $\epsilon>0$, there exists a positive number M such that

$$|\langle T_{t}f, f \rangle| < \varepsilon$$
 and $||T_{t}f||^{2} - ||T_{t+b}f||^{2} < \varepsilon^{2}$

for all t > M and all b > 0. It then follows that $\|T_b^* T_{t+b} f - T_t f\|^2 = \|T_b^* T_{t+b} f\|^2 + \|T_t f\|^2 - 2\|T_{t+b} f\|^2$

$$\leq \|T_{t}f\|^{2} - \|T_{t+\Delta}f\|^{2} < \varepsilon^{2}$$

for all t > M and all s > 0, and hence

$$\begin{split} |\langle T_{t+h}f, T_hf \rangle| & \leq |\langle T_{t+h}f, T_hf \rangle - \langle T_tf, f \rangle| + |\langle T_tf, f \rangle| \\ & \leq |\langle T_h^*T_{t+h}f - T_tf, f \rangle| + \varepsilon \\ & \leq ||T_h^*T_{t+h}f - T_tf|| ||f|| + \varepsilon \\ & \leq \varepsilon (||f|| + 1) \end{split}$$

for all t > M and all s > 0. Therefore

$$\begin{split} \| \int_{0}^{\infty} a_{m}(t) \, T_{t}f \, dt \|^{2} &= \langle \int_{0}^{\infty} a_{m}(t) \, T_{t}f \, dt, \int_{0}^{\infty} a_{m}(t) \, T_{t}f \, dt \rangle \\ &= \int_{0}^{\infty} \int_{0}^{\infty} \langle a_{m}(t) \, T_{t}f, \, a_{m}(h) \, T_{h}f \rangle \, dt \, dh \\ & \leq \int_{0}^{\infty} \int_{0}^{\infty} a_{m}(t) \, a_{m}(h) \, |\langle \, T_{t}f, \, T_{h}f \rangle \, |dt \, dh \\ & \leq \| f \|^{2} \| a_{m} \|_{\infty} \, (2M) \int_{0}^{\infty} a_{m}(t) \, dt \\ & + \epsilon (\| f \| + 1) \int_{0}^{\infty} a_{m}(t) \, dt \int_{0}^{\infty} a_{m}(h) \, dh \\ & = \| f \|^{2} \| a_{m} \|_{\infty} \, (2M) + \epsilon (\| f \| + 1) \, , \end{split}$$

where the fourth inequality follows from Fubini's theorem. Since $\lim_{n\to\infty}\|a_n\|_{\infty}=0$ by Hypothesis, this completes the proof.

References

- [1] BLUM J.R., HANSON D.L.: On the mean ergodic theorem for subsequences, Bull.Amer.Math.Soc.66(1960), 308-311.
- [2] JONES L., KUFTINEC V.: A note on the Blum-Hanson theorem, Proc.Amer.Math.Soc.30(1971),202-203.

Department of Mathematics Josai University Sakado, Saitama 350-02 Japan

(Oblatum 28.11.1973)

