

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log15

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae 15,1 (1974)

ON A QUESTION OF PULTE REGARDING CATEGORIES OF STRUCTURES

James WILLIAMS, Bowling Green

Abstract: It is known that every constructive structure can be realized as a structure based on a power (under composition) of the contravariant power-set functor. It is proved here that one can use the covariant one instead.

Key-words and phrases: Categories of structures, realize, majorize, covariant power set functor.

AMS: Primary: 18B15

Ref. Z. 2.726.11

Secondary: 08A20

Aleš Pultr has given a definition which allows one to describe models of higher order theories in terms of first-order structures defined in the range of a functor from Set to Set. This suggests the question: which functors generate structures comparable with those of ordinary nth order logic (for some m)? Pultr has given a partial answer by finding a class of categories of models that can be realized in $S((P^-)^m \circ V_A)$, the category of all models (X,U) whose structure U consists of a distinguished subset of $((P^-)^m \circ V_A)(X)$, where P^- is the usual contravariant power set functor and V_A is a sum of the identity functor and a constant functor. The present paper gives a similar partial answer by showing that these same categories can be realized in $S((P^+)^m \circ V_A)$, where P^+

is the usual covariant power set functor. As with Pultr's work, if one is willing to allow infinite powers of P^+ , then the class of functors involved can be enlarged by taking limits and colimits over small categories.

When not specified, the terminology is as in [1]. Set denotes the category of sets and functions. For any function $f\colon X\longrightarrow Y$, let f^\vee equal $(P^-)(f)\colon \mathcal{P}(Y)\longrightarrow \mathcal{P}(X)$, and let f^\vee ambiguously represent $(P^+)^{\text{fl}}(f)\colon \mathcal{P}^{\text{fl}}(X)\longrightarrow \mathcal{P}^{\text{fl}}(Y)$.

1 Lemma: $S((P^-)^2)$ is realizable in $S((P^+)^4)$; $(P^-)^2$ is majorized by $(P^+)^5$.

Proof. For any $\mathcal{U} \subseteq \mathcal{P}(X)$ and $A \subseteq X$, define A to be \mathcal{U} -substantial iff $YU \subseteq X$, $U \in \mathcal{U}$ iff $U \cap A \in \mathcal{U}$. Step I: For any function $f: X \longrightarrow Y$ and $\mathcal{U} \subseteq \mathcal{P}(X)$, if A is \mathcal{U} -substantial, then f[A] is $f^{\vee \vee}(\mathcal{U})$ -substantial. Since $f^{\vee \vee}(\mathcal{U}) = \{V \subseteq Y: f^{\vee}(V) \in \mathcal{U}\}$, we have that $YV \subseteq Y$, $Y \cap f[A] \in f^{\vee \vee}(\mathcal{U})$ iff $f^{\vee}(Y \cap f[A]) \in \mathcal{U}$; but $f^{\vee}(Y \cap f[A]) = f^{\vee}(Y) \cap f^{\vee}(f[A])$, and $f^{\vee}(Y) \cap f^{\vee}(f[A]) \in \mathcal{U}$ iff $f^{\vee}(Y) \cap A \in \mathcal{U}$, iff $f^{\vee}(Y) \in \mathcal{U}$ iff $Y \in f^{\vee \vee}(\mathcal{U})$. Hence f[A] is $f^{\vee \vee}(\mathcal{U})$ substantial.

Define a functor $R: Set \longrightarrow Set$ as follows: for any set X, R(X) is the set of all pairs $\{\mathcal{X}, Q, \}$ such that

- i) £ 5 {{ u}}: u = x } ,
- ii) $\emptyset \in UQ$, $Q \subseteq \{\{Q_1, Q_2\}: Q_1, Q_2 \subseteq X\}$ and $Q \supseteq \{\{Q_1, Q_2\}: Q_1 \neq Q_2 \text{ and } Q_1, Q_2 \in UQ_3\}$,
 - iii) UUX = UUQ, ;

for any map $f: X \longrightarrow Y$ let $R(f) = (P^+)^4(f)$. By nonstandard convention, we shall consider phrases such as.

" $4\mathfrak{X}, \mathbb{Q} \in \mathbb{R}(X)$ " to abbreviate " $4\mathfrak{X}, \mathbb{Q} \in \mathbb{R}(X)$, \mathfrak{X} satisfies (i), and \mathbb{Q} satisfies (ii)".

Step II: If $f: X \to Y$, $4\mathfrak{X}, \mathbb{Q} \in \mathbb{R}(X)$, $4\mathfrak{Y}, \mathfrak{R} \ni \mathbb{R}(Y)$, and $f^{\infty}(4\mathfrak{X}, \mathbb{Q} \ni) = \{\mathfrak{Y}, \mathfrak{R} \ni$, then $f^{\infty}(\mathfrak{X}) = \mathfrak{Y}$ and $f^{\infty}(\mathbb{Q}) = \mathfrak{R}$. Suppose not; then $f^{\infty}(\mathbb{Q}) = \mathfrak{Y}$ and $f^{\infty}(\mathfrak{X}) = \mathfrak{R}$. Now if UUQ, were non-empty, $f^{\infty}(\mathbb{Q})$ would contain a nontrivial pair of the form $4\mathfrak{Q}, f[\mathbb{Q}] \ni$. But \mathfrak{Y} contains only singletons. Hence $\mathbb{Q} = \{4\mathfrak{Q} \ni \mathfrak{Z}\}$ since $\mathfrak{Q} \in \mathbb{U} \mathbb{Q}$. Consequently $f^{\infty}(\mathbb{Q}) = 44\mathfrak{Q} \ni \mathfrak{Z}$. Similarly, $\mathbb{U} f^{\infty}(\mathfrak{X}) = \mathbb{U} \mathbb{R}$ must be empty, so that $\mathfrak{R} = 44\mathfrak{Q} \ni \mathfrak{Z} = \mathfrak{X}$. Hence $f^{\infty}(\mathfrak{X}) = \mathfrak{Y}$ and $f^{\infty}(\mathbb{Q}) = \mathfrak{R}$.

For any $\{\mathfrak{X}, \mathbb{Q}\} \in \mathbb{R}(X)$, define \mathbb{Q} , to be significant iff $\forall \{\mathbb{Q}_1, \mathbb{Q}_2\} \in \mathbb{Q}$, $\mathbb{Q}_1 \cap \mathbb{Q}_2 = \emptyset$.

Step III: It is easy to see that given $f: X \longrightarrow Y$ and $\{\mathfrak{X}, \mathbb{Q}\} \in \mathbb{R}(X)$, $f^{\sim}(\mathbb{Q})$ is significant iff \mathbb{Q} is significant and $\forall \mathbb{Q}_1, \mathbb{Q}_2 \in \mathbb{U} \mathbb{Q}$, $\mathbb{Q}_1 \neq \mathbb{Q}_2$ implies $\{\mathbb{Q}_1\} \cap f[\mathbb{Q}_2] = \emptyset$.

A realization of $S((P^-)^2)$ in S(R) can now be given as follows: for each X and $\mathcal{U} \subseteq \mathcal{P}^2(X)$, let \mathcal{U}^* be the set of all $\{\mathfrak{X}, \mathbb{Q}, \} \in R(X)$ such that if \mathbb{Q} , is significant, then for some $\mathcal{U} \in \mathcal{U}$, UUQ is \mathcal{U} -substantial and $\mathsf{U}\mathfrak{X} = \{\mathsf{U} \in \mathcal{U} : \exists \mathcal{Q} \subseteq \mathsf{UQ}, \; \mathsf{U} = \mathsf{UQ} \}$. Let $f: X \rightarrow Y, \; \mathcal{U} \subseteq \mathcal{P}^2(X)$, and $\mathcal{V} \subseteq \mathcal{P}^2(Y)$ be arbitrary. Step IV: If $R(f)[\mathcal{U}^*] \subseteq \mathcal{V}^*$, then $f^{\mathsf{VV}}[\mathcal{U}] \subseteq \mathcal{V}$. Pick $\mathcal{U} \in \mathcal{U}$. Let \mathbb{Q} be the set of all pairs $\{f^{\mathsf{V}}(A), f^{\mathsf{V}}(B)\}$

such that A, $B \subseteq Y$, $A \cap B = \emptyset$, and card A, card $B \ne 1$. Let $\mathcal{X} = \{\{U\}: U \in \mathcal{U} \text{ and } \exists \mathcal{Q} \subseteq U \mathcal{Q}, U = U \mathcal{Q}\}$. Then $\{\mathcal{X}, \mathcal{Q}\} \in \mathcal{U}^*$, and thus $f^{\sim}(\{\mathcal{X}, \mathcal{Q}\}) \in \mathcal{V}^*$, $f^{\sim}(\mathcal{Q})$ is clearly significant, and thus we may choose $\mathcal{V} \in V$ so that $UUf^{\sim}(\mathcal{Q})$ is \mathcal{V} -substantial and $Uf^{\sim}(\mathcal{X}) = \{V \in \mathcal{V}: : \exists \mathcal{B} \subseteq Uf^{\sim}(\mathcal{Q}), V = U \mathcal{B}\}$. We need to show $\mathcal{V} = f^{\vee\vee}(\mathcal{U})$. From the choice of \mathcal{V} and the definition of \mathcal{Q} , it is clear that $Uf^{\sim}(\mathcal{X}) = \{Y \in \mathcal{V}: V \subseteq f[X]\}$. Hence $Uf^{\sim}(\mathcal{X}) = \mathcal{V} \cap \mathcal{U}$ since f[X] is \mathcal{V} -substantial. From the definitions of \mathcal{X} and \mathcal{Q} , it is clear that

 $Uf^{\sim}(\mathfrak{X}) = \{ V \subseteq f[X] : f^{\vee}(V) \in \mathcal{U} \}$

= iVef vv(U); Vef[X]3 .

Hence $\mathbb{U}f^{\sim}(\mathfrak{X}) = f^{\vee\vee}(\mathfrak{U}) \mid f \vdash X \rceil$ since $f \vdash X \rceil$ is $f^{\vee\vee}(\mathfrak{U})$ —substantial, so that $\mathcal{V} \mid f \vdash X \rceil = f^{\vee\vee}(\mathfrak{U}) \mid f \vdash X \rceil$. But then $\mathcal{V} = f^{\vee\vee}(\mathfrak{U})$ by substantialness. Therefore $f^{\vee\vee} \vdash \mathcal{U} \rceil \subseteq \mathcal{V}$.

Step V: If $f^{\vee}[\mathcal{U}] \subseteq \mathcal{V}$, then $R(f)[\mathcal{U}^*] \subseteq \mathcal{V}^*$. Pick $\{\mathfrak{X}, \mathbb{Q}, \mathfrak{F} \in \mathcal{U}^*\}$. If $f^{\vee}(\mathbb{Q})$ isn't significant, then $R(f)(f\mathfrak{X}, \mathbb{Q}, \mathfrak{F}) = \{f^{\vee}(\mathfrak{X}), f^{\vee}(\mathbb{Q})\} \in \mathcal{V}^*$. If $f^{\vee}(\mathbb{Q})$ is significant, then so is \mathbb{Q} , and for some $\mathcal{U} \in \mathcal{U}$, UUQ is \mathcal{U} -substantial and $U\mathfrak{X} = \{\mathcal{U} \in \mathcal{U} : \exists \mathcal{Q} \subseteq \mathcal{U} \mathcal{Q}, \mathcal{U} = \mathcal{U} \mathcal{Q}\}$. But then $f^{\vee}(\mathcal{U}) \mathcal{Q}$ is $f^{\vee\vee}(\mathcal{U})$ -substantial and $f^{\vee\vee}(\mathcal{U}) \in \mathcal{V}$. To see that $f^{\vee}(\{\mathfrak{X}, \mathbb{Q}\}) \in \mathcal{V}^*$, we need to show that

 $Uf^{\sim}(\mathfrak{X}) = \{V \in f^{\vee \vee}(\mathfrak{U}) : \exists \mathfrak{Q} \subseteq U \mathfrak{Q}, V = Uf^{\sim}(\mathfrak{Q})\}$.

Pick $V \in Uf^{\infty}(\mathfrak{X})$; then for some $U \in \mathcal{U}$ and $\mathcal{L} \subseteq U \mathcal{Q}$, $\mathcal{U} = U\mathcal{Q}$ and $f[\mathcal{U}] = \dot{V}$. We have $f^{\vee}(f[\mathcal{U}]) \cap UU \mathcal{Q} = \mathcal{U}$,

since if not, there would be some $Q_1 \in Q$ and $Q_2 \in UQ - Q$ such that $f[Q_1] \cap f[Q_2] \neq \emptyset$, in which case $f^{\sim}(Q)$ wouldn't be significant. Consequently, $f^{\vee}(f[U]) \in \mathcal{U}$ since UUQ is \mathcal{U} -substantial. Hence $f[U] \in f^{\vee\vee}(\mathcal{U})$. Conversely, if $V \in f^{\vee\vee}(\mathcal{U})$ and for some $Q \subseteq UQ$, $V = Uf^{\sim}(Q)$, then $f^{\vee}(V) \cap UUQ = UQ$ again since $f^{\sim}(Q)$ would otherwise not be significant. Since $f^{\vee}(V) \cap UUQ \subseteq \mathcal{U}$ and UUQ is \mathcal{U} -substantial, $f^{\vee}(V) \cap UUQ \subseteq \mathcal{U}$. Hence $f^{\vee}(V) \cap UUQ \subseteq U\mathcal{X}$, and $f[f^{\vee}(V) \cap UUQ] = f[UQ] = V \in Uf^{\sim}(\mathcal{X})$.

Therefore $f^{\sim}({\{\mathfrak{X},\mathfrak{Q},\!\}})\in\mathcal{V}^*$, as required.

We have just shown that the map $\, \mathcal{U} \mapsto \mathcal{U}^{m{st}} \,$ induces a realization of $S((P^-)^2)$ in S(R). Since for each structure $\mathcal{U} \subseteq \mathcal{P}^2(X)$, $\mathcal{U}^* \subseteq (P^+)^+(X)$, the same construction may be considered as a realization of $S((P^-)^2)$ in $S((P^+)^4)$. Using a similar construction, we can now show that $(P^+)^5$ majorizes $(P^-)^2$. For each set X, each $\mathcal{U} \subseteq \mathcal{P}(X)$, and each \mathcal{U} -substantial $A \subseteq X$, let \mathcal{U}_A such that UUQ = A be the set of all $\{\mathfrak{X},\mathfrak{A}\}\in\mathbb{R}(A)$ and if Q is significant, then $U\mathscr{X} = \{U \in \mathcal{U} : \exists \Omega \subseteq U Q$, U = UQ 3 . Define a functor E : Set → Set as follows: for each set X , let $E(X) = \{\mathcal{U}_A : \mathcal{U} \subseteq \mathcal{P}(X)\}$ is \mathcal{U} -substantial $f: \mathcal{X} \longrightarrow \mathcal{Y}$ and $\mathcal{U}_A \in E(X)$, let $E(f)(\mathcal{U}_A) = (P^+)^5(f)$. E is in fact a functor, as a result of the following Step VI: For any given $f: X \longrightarrow Y$ and $\mathcal{U}_A \in E(X)$, $E(f)(\mathcal{U}_A) = f^{\vee\vee}(\mathcal{U})_{f[A]}$. The argument of step V

shows that $E(f)(\mathcal{U}_A) \subseteq f^{vv}(\mathcal{U}_A)_{f \in AI}$. Now pick $\{\mathcal{Y},\mathcal{R}\}\in\mathfrak{f}^{\vee\vee}(\mathcal{U})_{\mathfrak{f}[A]}$. Let $\mathfrak{X}=\{\{\mathfrak{f}^{\vee}[Y]\cap A\}:Y\in UY\}$, and let $Q = \{(f^{\vee}(R_4 \cap A), f^{\vee}(R_2 \cap A)\}: \{R_4, R_2\} \in \mathcal{R}\}$. Clearly, $f^{\sim}(\{\mathfrak{X},\mathbb{Q}\})=\{\mathfrak{V},\mathfrak{R}\}$ and $\mathbb{U}\mathbb{U}\mathfrak{X}\subseteq\mathbb{U}\mathbb{U}\mathbb{Q}=\mathbb{A}$, so that $\{\mathfrak{X},Q\}\in\mathbb{R}(A)$. If \mathcal{R} isn't significant, neither is Q, and thus $\{\mathfrak{X},\mathfrak{Q}\}\in\mathcal{U}_{A}$. Assume \mathfrak{R} is significant; then so is \mathcal{Q} . To see that $\{\mathcal{X},\mathcal{Q}\}\in\mathcal{U}_A$, we need to show that $U\mathcal{X}=$ = $\{\mathcal{U} \in \mathcal{U}: \exists \mathcal{Q} \subseteq \mathcal{U} \mathcal{Q}, \mathcal{U} = \mathcal{U} \mathcal{A} \}$. First pick $\mathcal{U} \in \mathcal{U} \mathcal{X}$; then $f[U] \in UY$, so that for some $\mathfrak{A} \subseteq U\mathcal{R}$, $f[U] = U\mathcal{A}$ and $f[U] \in f^{vv}(U)$. But if $Q = \{f^v[B] \cap A : B \in B\}$, then $\alpha \leq U \Omega$, $u = f'(f[u]) \cap A = U \alpha$, and $u \in u$ since A is \mathcal{U} -substantial and $f^{\vee}(f[\mathcal{U}]) \in \mathcal{U}$, since $f[\mathcal{U}] \in \mathcal{U}$ $\ensuremath{\mathfrak{e}}\xspace \ensuremath{\mathfrak{f}}^{\ensuremath{\mathsf{vv}}}(\ensuremath{\mathcal{U}})$. Conversely, if $\ensuremath{\mathfrak{U}}\xspace \ensuremath{\mathfrak{U}}$, $\ensuremath{\mathfrak{a}}\xspace \ensuremath{\mathfrak{U}}\xspace$, and $\ensuremath{\mathfrak{U}}\xspace = \ensuremath{\mathfrak{U}}\xspace$, and \ensuremat then $f[U] = Uf^{\sim}(Q)$ with $f^{\sim}(Q) \subseteq U \mathcal{R}$. Moreover, $f^{\vee}(f[U]) \cap A = U \in \mathcal{U}$, so that $f^{\vee}(f[U]) \in \mathcal{U}$ and f[U] $\in f^{vv}(U)$, so that f[U] $\in UY$. But then $\mathfrak{U}=\mathfrak{f}^{\vee}(\mathfrak{f}[\mathfrak{U}])\cap A\in \mathfrak{UX}$. Therefore $\{\mathfrak{X},\mathfrak{Q}\}\in \mathfrak{U}_{A}$.

For each set X, let φ_X be the inclusion map from E(X) to $(P^+)^5(X)$. φ is clearly a monotransformation from E to $(P^+)^5$. Now define an epitransformation ψ from E to $(P^-)^2$ as follows: $Y\mathcal{U}_A \in E(X)$, $\psi_X(\mathcal{U}_A) = \mathcal{U}$. Each ψ_X is well-defined since each \mathcal{U}_A contains a pair $\{\mathfrak{L}, \mathfrak{Q}, \mathfrak{L}, \mathfrak{L},$

Therefore (P+)5 majorizes (P-)2.

2 Theorem. If $G_1, ..., G_m$ are constructively majorizable functors and $\Delta_1, ..., \Delta_m$ are types, then $S((G_1, \Delta_1), ..., (G_m, \Delta_n))$ is realizable in $S((P^+)^k \cdot V_A)$ for some set A and natural number k.

<u>Proof.</u> The numbered theorems which will be referred to are those of [1]. By Theorem 6.5, $S((G_1, \Lambda_4), ..., (G_m, \Lambda_m))$ is realizable in $S((P^-)^{\frac{1}{2m}} \circ V_M)$ for some number \Re and set M. If \Re is odd, then $S((P^-)^{\frac{1}{2m}} \circ V_M)$ is realizable in $S((P^-)^{\frac{1}{2m}} \circ V_M)$ by Theorem 1.5. Hence $S((G_1, \Lambda_4), ..., (G_m, \Lambda_m))$ is realizable in some $S((P^-)^{\frac{2m}{m}} \circ V_M)$. By Corollary 3.7 and the above lemma, $(P^-)^{2m} \circ V_M$ is majorized by $(P^+)^{5m} \circ V_M$. Hence by Theorem 6.1, $S((P^-)^{2m} \circ V_M)$ is realizable in $S((P^+)^{5m} \circ V_M)$.

<u>Problem:</u> Characterize the class of all categories S(F) which can be realized in some $S((P^+)^{\frac{1}{4}} \circ V_A)$ (or, equivalently, $S((P^-)^{\frac{1}{4}} \circ V_A)$). Characterize the class of all categories $S(F,\Delta)$ which can be realized in some $S((P^+)^{\frac{1}{4}},\Gamma)$ (equivalently, in $S((P^-)^{\frac{1}{4}},\Gamma)$).

The above theorem may be extended to the infinite case with the help of the following result.

3 Lemma. For each monotransformation $\tau: I \to (P^+)^m$ there is an $m \ge n$ and a monotransformation $\theta: (P^+)^m \to (P^+)^m$ such that $\theta \tau = \xi^m$, where $\xi: I \to P^+$ is the unique monotransformation.

<u>Proof</u>: First we need some facts about natural transformations from I to $(P^+)^m$. By Remark 2.9 of [2], the natural transformations from I to $(P^+)^m$ are in 1-1 correspondence with the elements of $(P^+)^m(\{\beta\})$, and for any set $A \in (P^+)^m(\{\beta\})$, we may let $\tau_{m,A}$ be the transformation such that for each set X and $X \in X$, $\tau_{m,A,X}(X) = (P^+)^m(\mathfrak{E}_X)(A)$, where $\mathfrak{E}_X: \{\beta\} \to X$ is given by $\mathfrak{E}_X(\beta) = X$. Since $\mathfrak{E}_{m,A,X}$ doesn't depend on X in a significant way, we will usually drop this third subscript. Notice that if $A \in (P^+)^{m+1}(\{\beta\})$, then

 $v_{m+1,A}(x) = (P^+)^{m+1}(\varepsilon_X)(A) = \{(P^+)^m(\varepsilon_X)(a): a \in A\} = \{v_{m,a}(x): a \in A\}.$

1) The following are equivalent:

a) Tm.A is a monotransformation

- b) xank A = m (where xank A is inductively defined as the smallest ordinal greater than xank a for all $a \in A$).
- c) $\forall x, U^n \tau_{m,A}(x) = x$, where for any set S, $U^0 S = S$ and $U^{n+1}(S) = x$ = U($U^n A : A \in S$).
- a) 3x, U"=, (x) + Ø.

<u>Proof</u>: The only element of $(P^+)^0(4\beta)$ is \mathcal{G} , and so $\mathcal{T}_{0,\beta}$: $I \to I$ is the identity transformation; $\mathcal{T}_{0,\beta}$ clearly satisfies the four conditions. By induction, assume for $m \geq 0$ that the four conditions are equivalent. Pick $A \in (P^+)^{n+1}(4\beta)$. Then $\operatorname{mank} A = m+1$ iff for some $a \in A$, $\operatorname{mank} a = m$, in which case $\mathcal{T}_{m,a}$ would satisfy the four conditions. Thus if $\operatorname{rank} A = m+1$, then

$$U^{m+1} \varepsilon_{m+1,A}(x) = U^{m+1} f \varepsilon_{m,a}(x) : a \in A$$

$$= Uf U^m \varepsilon_{m,a}(x) : a \in A$$

$$= Uf x^3, \text{ if } \forall a \in A, \text{ rank } a = m$$

$$= Uf x, \varphi^3, \text{ if } \exists a \in A, \text{ rank } a < m$$

$$= x,$$

and so the four conditions hold. But if rank A < m + 1, then

$$U^{m+1} \varepsilon_{m+1,A}(x) = U \{ U^m \varepsilon_{m,a}(x) : a \in A \} = U \{ \emptyset \} = \emptyset ,$$

and they don't hold.

For any set X, let π_X be the unique map from X to $4 \beta 3$. For each natural number $\mathcal M$ and $C \in (P^+)^{k_0}(X)$, define the $\mathcal M$ -type of C to be $(P^+)^{k_0}(\pi_X)(C)$. Notice that a set $A \in (P^+)^{k_0+1}(4 \beta 3)$ is the $\mathcal M+1$ -type of $\mathcal C \in (P^+)^{k_0+1}(X)$ iff A is the set of $\mathcal M$ -types of elements of $\mathcal C$. We will need the following properties of natural transformations from $(P^+)^{\frac{1}{2}}$ to $(P^+)^{\frac{1}{2}}$:

- 2) Suppose that $A \in (P^+)^{\frac{1}{2}}(\{\emptyset\})$ and $\operatorname{mank} A < k$. Then for any set Y, $A \in (P^+)^{\frac{1}{2}}(Y)$, as can be easily seen by induction on the rank of A. Consequently the constant transformation Y from $(P^+)^{\frac{1}{2}}$ to $(P^+)^{\frac{1}{2}}$, given by YX, $YC \in (P^+)^{\frac{1}{2}}(X)$, $Y_X(C) = A$ is natural.
- 3) If $C \in (P^+)^{\frac{1}{2}}(X)$ and $f: X \longrightarrow Y$, then $(P^+)^{\frac{1}{2}}(C)$ has the same $\frac{1}{2}$ -type as C since

$$(P^{+})^{\dot{\sigma}}(\pi_{Y})((P^{+})^{\dot{\sigma}}(£)(C)) = (P^{+})^{\dot{\sigma}}(\pi_{Y}£)(C)$$

$$= (P^{+})^{\dot{\sigma}}(\pi_{X})(C) .$$

From this fact, it follows immediately that given φ, ψ : $: (P^+)^{\frac{1}{2}} \longrightarrow (P^+)^{\frac{1}{2}} \quad \text{and} \quad \Delta \subseteq (P^+)^{\frac{1}{2}} (\{\beta\}\})$, one can define a natural transformation $\theta: (P^+)^{\frac{1}{2}} \hookrightarrow (P^+)^{\frac{1}{2}}$ by $\forall X, \forall C \in (P^+)^{\frac{1}{2}}(X)$,

$$\Theta_{\chi}(C) = \begin{cases} \varphi_{\chi}(C), & \text{if the j-type of C is in Δ} \\ \psi_{\chi}(C), & \text{otherwise.} \end{cases}$$

4) The same fact guarantees that if for each $a \in A$, we

choose some $\theta_a: (P^+)^{2} \to (P^+)^{2}$, and define $g: (P^+)^{2+1} \to (P^+)^{2+1}$ by $YX, VC \in (P^+)^{2+1}(X)$, $g_X(C) = i\theta_{a,X}(C)$: $C \in C$, $a \in A$, and a is the j-type of C_3^2 , then g is also a natural transformation. Notice that if each $\theta_{a,X}(C)$ is of k-type $f^{(k)}(0)$, then either $g_X(C)$ is of k-1-type $f^{(k)}(0)$, or, possibly, $g_X(C) = 0$.

5) Given natural transformations $\varphi_1, ..., \varphi_p$ from $(P^+)^{\frac{1}{p}}$ to $(P^+)^{\frac{1}{p}}$, we can define a product transformation $\varphi_1 \times ... \times \varphi_p : (P^+)^{\frac{1}{p}} \longrightarrow (P^+)^{\frac{1}{p}+p}$ as follows: inductively define $\langle x \rangle = \{x\}$, and

 $\langle \mathbf{x}_1, \dots, \mathbf{x}_{m+1} \rangle = \{\langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle, \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle \cup \S^m(\mathbf{x}_{m+1}) \}$. It is easy to see that $0 \langle \mathbf{x}_1, \dots, \mathbf{x}_{m+1} \rangle = \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$ and (by induction) that $U^m(\mathbf{x}_1, \dots, \mathbf{x}_{m+1}) = \{\mathbf{x}_1, \dots, \mathbf{x}_{m+1}\}$, so that this is an acceptable convention for m -tuples. Also, if $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{X}$, then $\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle \in (P^+)^m(\mathbb{X})$; hence if $C \in (P^+)^{\frac{1}{2}}(\mathbb{X})$, then $\langle \mathbf{q}_1(C), \dots, \mathbf{q}_n(C) \rangle = \mathbf{q}_1 \times \dots \times \mathbf{q}_n(C) \in (P^+)^{\frac{1}{2}+p}(\mathbb{X})$. Notice that if $\langle \mathbf{D}_1, \dots, \mathbf{D}_n \rangle$ are of k-type $\S^{k}(\emptyset)$, then $\langle \mathbf{D}_1, \dots, \mathbf{D}_n \rangle$ is of k+p-type $\S^{k+p}(\emptyset)$.

We can now find the required $\theta: (P^+)^m \to (P^+)^m$ as follows: for m=0 the only monotransformation from I to $(P^+)^m$ is the identity. For m=1, the only one is ξ itself. In either case we may let θ be the identity on $(P^+)^m$. Notice that if $\alpha \in (P^+)^m (\{\emptyset\})$, then for each set I and $x \in X$, $\tau_{m,\alpha}$ is characterized by the fact that the m-ty-pe of $\tau_{m,\alpha}(x)$ is α , since

 $(P^+)^m(\pi_\chi)(\tau_{m,a}(x)) = \tau_{m,a}(\pi_\chi(x)) = \tau_{m,a}(g) = a$. Our inductive assumption will, accordingly, be that for

m ≥ 1 , there is a $k \geq m$ such that for each monotransformation $v_{m,a}: I \longrightarrow (P^+)^m$, there is a monotransformation $\theta_a: (P^+)^m \longrightarrow (P^+)^k$ such that whenever $C \in (P^+)^m$ is of m-type a, $\theta_a(C)$ is of k-type $\xi^k(\emptyset)$. We then have, in particular that $\forall x, v_{m,a}(x)$ is of m-type a, and $\theta_a v_{m,a}(x)$ is of k-type $\xi^k(\emptyset)$, so that $\theta_a v_{m,a} = v_{m,a}(x)$ is of k-type $\xi^k(\emptyset)$, so that $\theta_a v_{m,a} = v_{m,a}(y) = \xi^k$. Let $v_{m+1,A}: I \longrightarrow (P^+)^{m+1}$ be any fixed monotransformation. Let $A = \{a_1, \dots, a_k\} \cup \{b_1, \dots, b_k\}$ be an indexing of A such that a_1, \dots, a_k are the elements of A of rank m. For each a_i , let θ_i be a monotransformation from $(P^+)^m$ to $(P^+)^k$ satisfying the induction hypothesis. Define $g_i: (P^+)^{m+1} \longrightarrow (P^+)^{k+1}$ by $\forall X, \forall \ell \in (P^+)^{m+1}(X)$

 $q_{i,i}(\mathcal{C}) = \{\theta_{i,i}(C) : C \in \mathcal{C} \}$ and C is of m-type $a_{i,i}$?

Let $\theta : (P^+)^{m+4} \longrightarrow (P^+)^{m+m+1}$ be given by $V\mathcal{C} \in (P^+)^{m+1}(X)$, $\theta_X(\mathcal{C}) = q_1 \times \ldots \times q_m(\mathcal{C})$, if \mathcal{C} is of m+1-type A, and $\theta_X(\mathcal{C}) = \{\xi^{p+m-m-1}(\mathcal{C}), \emptyset\}$ otherwise. The q_i are natural by (4), and θ is natural by (3), (5), and (4) and (2).

To see that if $\mathscr C$ is of m+1 -type A, then $\theta_X(\mathscr C)$ is of p+k+1 -type $f^{k+n+1}(\emptyset)$, notice first that $\{a_1,\dots,a_n\}$ is nonempty by (1) since $x_{m,A}$ is a monotransformation. Each element of each $g_{iX}(\mathscr C)$ is of k -type $f^k(\emptyset)$ by the inductive assumption. Hence each element of $g_1 \times \dots \times g_n(\mathscr C)$ is of k+n-type $f^{k+n}(\emptyset)$, so that $g_1 \times \dots \times g_n(\mathscr C)$ is of k+n+1-type $f^{k+n+1}(\emptyset)$.

Finally, each θ_x is mono: let $\theta_x(\mathcal{C})$ be given.

 $\mathcal C$ may be recovered as follows: if $\beta \in \theta_X(\mathcal C)$, then $\mathcal C = U^{n+k-m}\theta_X(\mathcal C)$. Assume $\beta \notin \theta_X(\mathcal C)$. Then $\mathcal C$ is of m+1-type A. Let $\mathcal C = \mathcal C_0 \cup \mathcal C_1$, where $\mathcal C_1$ is the set of elements of $\mathcal C$ of rank less than m, and $\mathcal C_0$ is the rest. We know that $(P^+)^{m+1}(\pi_X)(\mathcal C) = A = \{a_1, \ldots, a_n\} \cup \{b_1, \ldots, b_2\}$. By an easy induction we have that $VC \in (P^+)^m(X)$, rank $C \ge m$ iff $kank(P^+)^m(\pi_X)(C) = m$, and that if rank C < m, then $(P^+)^m(\pi_X)(C) = C$. Consequently, $\mathcal C_1 = \{b_1, \ldots, b_2\}$, and $\{a_1, \ldots, a_p\}$ is the m+1-type of $\mathcal C_0$. For each a_i , let $\mathcal C_i$ be a left inverse function for θ_{iX} ; clearly,

 $\mathcal{C}_0 = \{\mathcal{N}_i(\mathbb{D}) : \mathbb{D} \text{ is the } i^{th} \text{ element of some } p \text{-tuple}$ in $\theta_{\chi}(\mathcal{C})$ }.

As it stands, the number $m_A = n + p + 1$ depends on A, since p does. However, a uniform $m = max + im_A : A \in (P^+)^{m+1}(X)$ is easily obtained by composing θ with f^{m-m_A} . This completes the induction.

4 Theorem. Let P_{L} ($L \in \Gamma$) be TB-functors (in the sense of [2]), and Δ_{L} ($L \in \Gamma$) types. Then there is an ordinal ∞ and a set A such that $S((F_{L}, \Delta)_{L \in \Gamma}) \Longrightarrow S((P^{+})^{\infty} \circ V_{A}).$

<u>Proof.</u> Let $\lambda: I \to (P^-)^2$ be the monotransformation given by YX, $Yx \in X$, $\Lambda_X(x) = \{A \subseteq X : x \in A\}$. Define $\mu: I \to E$ by YX, $Yx \in X$, $\mu_X(x) = \lambda_X(x)_{\{x\}} = \{\{x, 0, 3\} \in E(\{x\}) : UUQ = \{x\}$, and if Q is significant, then $UX = \{\{x\}\}\}$. The condition that $UUX \subseteq UUQ = \{x\}$

forces $\mu_X(x)$ to be independent of X, and a moment's thought shows that μ is a monotransformation. As at the end of Lemma 1, let $\varphi: E \to (P^+)^5$ be the monotransformation given by the equation $\varphi_X(\mathcal{U}_A) = \mathcal{U}_A$, and let $\psi: E \to (P^-)^2$ be the epitransformation given by $\psi_X(\mathcal{U}_A) = \mathcal{U}$. Then $\psi_{\mathcal{U}} = \mathcal{X}$. Finally, for some m bigger than 5, we may let $\theta: (P^+)^5 \to (P^+)^m$ be a monotransformation such that $\theta \varphi_{\mathcal{U}} = \xi^m$.

We need to show that any functor of the form $((P^-)^2)^\beta$ is majorized by some $(P^+, \xi)^\alpha$. Let α be a limit ordinal larger than β . Then $((P^-)^2)^\beta < ((P^-)^2)^\alpha$ by Lemma 3.7 of [2]. The equations $\psi_{\ell\ell} = \lambda$ and $\theta \varphi_{\ell\ell} = \xi^{m\ell}$, and Lemma 2.8 of [2] show that

•
$$(((P^{-})^{2}, \lambda)^{\alpha} < (E, \mu)^{\alpha} < ((P^{+})^{5}, g\mu)^{\alpha} < ((P^{+})^{m}, \xi^{m})^{\alpha}$$
.

But by Lemma 2.4 of [2], $((P^+)^m, \xi^m)^{\infty} \simeq (P^+, \xi)^{\infty}$, since the first colimit is just being taken over a subsequence of the second. Now by Theorem 3.7 of [1], we have $((P^-)^2, \lambda)^{\beta} \circ V_A < (P^+, \xi)^{\infty} \circ V_A$, for any set A ,and thus by Theorem 6.1 of [1], $S(((P^-)^2, \lambda)^{\beta} \circ V_A) \Rightarrow S((P^+, \xi)^{\infty} \circ V_A)$. Finally, let $S(F_L, \Delta_L)_{L \in \Gamma}$ be as in the statement of the theorem. Then by Theorem 4.2 of [2], $S((F_L, \Delta_L)_{L \in \Gamma}) \Rightarrow S(((P^-)^2, \lambda)^{\beta} \circ V_A)$, for some ordinal β and set A and the theorem follows.

References

[1] A. PULTR: On selecting of morphisms among all mappings between underlying sets of objects in concrete

categories and realizations of these, Comment. Math. Univ. Carolinae 8(1967),53-83.

[2] A. PULTR: Limits of functors and realizations of categories, Comment.Math.Univ.Carolinae 8(1967), 663-682.

Department of Mathematics
Bowling Green State University
Bowling Green, Ohio 43403
U.S.A.

(Oblatum 30.7.1973)