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ON A QUESTION OF PULTR REGARDING CATEGORIES OF STRUCTURES

James WILLIAMS, Bowling Green

Abstract: It is known that every constructive struc-
ture can be realized as a structure based on a power (un-
der composition) of the contravariant power-set functor.

It is proved here that one can use the covariant one instead.
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Aled Pultr has given a definition which allows one to
describe models of higher order theories in terms of first-
order structures defined in the range of a functor from
Set to Set . This suggests the question: which functors
generate structures comparable with those of ordinary nth
order logic (for some m )7 Pultir has given a partial answer
by finding a class of categories of models that can be rea-
lized in S(CP™)™o V,) , the category of all models
(X, W) . whose structure L consists of a distinguished
subset of ((P7)™ o Vp) (X) , where P~ is the usual
contravariant power set functor and Vp is a sum of the
identity functor and a constant functor. The present paper
gives a similar partial answer by showing that these same

categories can be realized in S((PH)™ o V,) , where p*
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is the usual covariant power set functor. As with Pultr’s
work, if one is willing to allow infinite powers of P*,
then the class of functors involved can be enlarged by ta-

king limits and colimits over small categories.

When not specified, the terminology is as in [1l.
Set  denotes the category of sets and functionas. For any
function £: X—> Y , let £¥ equal (P7)(£): P(Y)—> P(X),
and let £~ ambiguously represent (P*)®(g): P00 — PHY) .

1 Lemma: S((P—)%) is realizable in S(P*)4);
(P-)r  is majorized by (P*5

Proof. For any %A s P(X) eand AsX , define A to
be 2« -substantial iff YlueX, Lel iff UNA € .
Step I: For any function £: X—Y and 4 = P(X), ifA
is 2 -substantial, then £LA]l is £V(%) -substantial.
Since £V () =4VeY:£fY(V)e 243 , we have that
YVsY, VAfLAl e £¥¥ (L) iff £Y(YN£LAD) e U ;
but £Y(YN£LAJ) = £Y(V)NEV(£LAT) , and _
£Y(VINEY(FIAL ¢ U iff €¥(V)NAeld , iff
£Y(V) el iff Ve £¥YW(U), Hence £LA] is £YV(U)-

substantial.

Define a functor R: Set—» Set as follows: for any
set X, R(X) ia the set of all pairs {%, @ 3 such that

i) x;uu;iu;x; N

ii)fel@, ® =i{8,,8,3:8,,08, =X} =and @2
24iQ,,0,3: 6, + G, =and G,,8,€UB},

iii) UWUX e UUG
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for any map £: X—> Y let R(£)= (P*)4(£) . By nonstan-
dard convention, we shall consider phrases such as.
" £%,83 e R(X) " to abbreviate " 1%,B3eRX),

% satisfies (i), and @ satisfies (iil)".

Step II: If £: X—Y, 4{%£,83ec R(X),4{Y,R3e R(Y), and
SYEE,B3) =Y, R}, then £¥(X) =Y and £7(B) = R .
Suppose not; then £V(@) =Y and £¥Y (&)= R . Now if

uv e were non-empty, £V(@) would contain a nontri-
vial pair of the form 4#,fCL&13% . But Y contains only
singletons. Hence @ =4{{f3} since f eU@ . Consequent-
ly £¥(Q)=44@¢3%% . Similarly, UUEV(E) = UUR  must
be empty, so that R = i{f33= % . Hence £VY(¥) =Y and
£VB) =R .

For any 1%£,@% € R(X) , define & to be signi-
ficant iff V£G,,0,3€Q, @, N8, =7 -

Step III: It is easy to see that given £: X—Y and
{%,8% e R¢X) , £7(@) is significant iff @ is sig-
nificant and V@,,8, « UG , B4 # @, impliesa
£L0,INEL8, 1= -

A realization of S(C(P-)2) in S(R) can now be
given as follows: for each X and % s P2(X), let U*
be the set of all {X,B3e R(X) such that if @G is si-
gnificant, then for some LeU, UURQ is U -substan-
tiel and UL =4fleU:30sUQ, U =U0F . Let
£:X—Y, U = P2(X), and ¥ < PY) be arbitrary.

Step IV: If R(£)LU*] s U* , then £VLUI s . Pick
W eid . Let @ be the set of all pairs {£Y(A),£Y(B)F
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such that A, BsY, ANB=f , and caxdA,caxdB<1.
let ={{U3:UeU and 3 s UG, U=UQ3% . Then
{2,083 e %* , and thue £Y4X,B3) e V*, £V(B) is cle-
arly significant, and thus we may choose ¥'e ¥  .so that
UUSY(Q) is 1 -substantial and U~ (%) =4Ve 7 :
:3B sULY@B), V=UB3 . We need to show %= £Y¥(%) . From
the choice of % and the definition of @ , it is clear
that Ufv (&) =V{Ve’v': Ve£fLX1% .- Hence US¥(Z) =

= VI£LX] since £[X] is % -substantial. From the
definitions of £ and ® , it is clear that

UEM(E) =4VEFIX1: £Y(V) e U}

={Ve f'Y(U)s Ve £LXI3
Hence U£f¥(X) = £YVW(U)|fLX] since f£LX] is
£YY(U) -substantial, o that P(£[X]=£YVC(UI£LX] .

But then %=f£vV(%) by substantialnega. Therefore
fYWILUIes VY

Step V: If £"™[Uls V', then R(£)LU*] € ¥* ., Pick
{1€,83 e U*, If £¥(Q) isn’t significant, then
ROHIHLE,B3) = {€Y(X) , £Y(B)} e ¥ * . If £7(@)
is significant, then so is @ , and for some N e U, ue
is U -substantial and UX =4{Ue2%Z:3Q = U@ ,L=Uuaz .
But then £™v(UUQ@) is £YV(U) -substantial .and
fYWvY(U) e v . To see that £V ({ZE,Q3)e V* , We need
to show that

UEY(E) =4Ve£V™(W): 30 € UGB , V= Us™car? .

Pick Ye U£~ (%) 5 then for some Wel andlcsl@,

U=UQ and £CUI=V. We have £VCFLUDNUUQ = U |,
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since if not, there would be some (l.,1 e andd,el@-

- Q@ such that £r@,INfLR,1+ # , in which case
£~(@) wouldn't be significant. Consequently,

fV(E£IUl) e U since UUQ is 7L -substantial. Hence
fLUle £YYCU) . Conversely, if V€ £¥YV (%) and for
some A sU@ ,V=U£vY(Q) , then £V(VINUUE = Ua
again since £V(@) would otherwise not ‘be significant.
Since £fY(YV)e U and UU@ is % -substantial,
YY) NUUQ € 4 . Hence £(VINUUG  UX , and

FLEVCVINUUGB] = £CLURT = Ve UV (E)

Therefore £V({%,Q3) e ¥* , as required.

We have just shown that the map 9 +—>>* induces a
realization of SC(P~)2) in S(R) .Since for each struc-
ture % € P2(X), U* s (PHI*(X) , the same construction
may be considered as a realization of S¢(P)?) in
S(CP*)%) . Using a similar construction, we can now show
that (P+)5 majorizes (P™)2 ., For each set X, each
% g P(X) , and each U-substantial A< X, let U
be the set of all 4% ,83 € R(A) such that UU@ = A
and if @ is significant, then UX¥={UeU:30 s ue ,

UL =UQR3 . Define a functor E: Set—Set as follows:
for each set X , let E(X) = {%y : U € P(X) and A
is 9% -substantial} ; for each function f£: X—Y and
_Up € EXX) , let E(£)(UA) = (P¥)5¢g£) . E isin

fact a functor, as a result of the following

Step VI: For any given f: X—>Y and Up € ECO ,
EC) (U = £V U)orpy - The argument of.atep V
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shows that E(£)(Ux) € £V (Up)popay . Now pick
{1YU,R3e £V UVpra; . Let £ =4{£V[VINAI:Ve UY3,
and let @ ={£v(R NA),£"(Ry NA)} 4R, R 7€ R Clearly,
£fYU{E,@¥)=4¥,R§ and UUX s UUQ = A , - so that
{%,R3eRCA). If B isn’t significant, neither is @ ,
and thus {¥,Q3e Uy . Assume R is significant; then so
is @ . To see that {%,83 ¢ %, ,we need to show that U® =
=4{le%:30csUB, U=UA? . First pick U € UZ ;
then £[UJ e UY , so that for some B s UR, F[UI=UB
and £LUl e£Y(WU) . But if A ={£Y[BINA:Be B3 ,
then A UGB, U=£YFIUI)NA = UQ , andlie ? since
A is QU -substantial and £V(£fLU1) e % , since £[U] e
e £YY(U). Conversely, if le%, A = UQ , and U=lQ ,
then £LU]=Ufv(Q) with £¥(Q) s UR . Moreover,
EYEILUNNA=Ue U , so that £Y(£[U]) e U and
fLU] € £¥Y(U) , &0 that £LU] € UY . But then
U=£Y£LUNA € UX . Therefore 1{2,0% e Uy -

For each set X , let <y be the inclusion map from
E(X) to (P*)(X), ¢ is clearly a monotransformation
from E  to (P*)% , Now define an epitransformation ¥
from E to (P)? as follows: YU, ézcx), (U =U .

Each 9y is well-defined since each WU, contains a pair
{€,@3% such that UZ = A[A (just let @ = 448,,8,3 :
:8,,8, 4, GNBy=g, and caxd@,, caxrd G, «13) .,

Each 4y 1is clearly onto; to see that ¥ is a natural trens-
formation from E to (P™)% y Pick £:X—Y and U, e

€ ECX) ; then (P)2(£) (45 (UyY) = £YV(U) = Yy (£ (Uecas)

= 9y (B, .
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Therefore (P¥)® majorizes (P2 .

2 Theorem. If @;,..., 65 are constructively majoriz-
able functors and A ,..., 4, are types, then S«Gy, Ay -
v005-(6p,8p)) is realizable in scp™. Y, ) for some
set A and natural number fe -

Proof. The numbered theorems which will be referred
to are those of [1]. By Theorem 6.5,5((61,A,),..., (Gm,4m))
is realizable in S((P)* Yu) for some number %  and
set M . If & is 0dd, then S(( %, Vy ) is realizable
in SC(P-)**1.V,) by Theorem 1.5. Hence S((Gy 84,
vey (G, Ap)) is Tealizable in some SR )™ Vy) - By
Corollary 3.7 and the above lemma, (P-)*™ oV, is majori-
zed by (P")s"" oVy . Hence by Theorem 6.1, SP-)*™e /")
is realizable in S((P*)’™o Vy) -

Problem: Characterize the class of all categories
S(F) which can be realized in some S«p** eV (or,
equivalently,S((]"‘)"o Y3) ). Characterize the class of all
categories S(FP,A) which can be realized in some

SWP*™ I') (equivalently, in SWP-™,T) ).

The above theorem may be extended to the infinite case

with the help of the following result.

3 Lemms. For each monotransformetion <T@ I—(B* )™
there is an m =Zm and a monotransformation 8: (PH™— (BH™
such that Gz-g"‘ ,where §: 1— P* is the unique monotransfor-

mation.
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Proof: First we need some facts about natural transforma-
tions from I to (P*)™, By Remark 2.9 of [2], the natural trans-
formations from I to (P*)™ are in 1-1 correspondence with the
elements of (P+)™({@3}) and for any set A e (P*)™(4 g3) ,we nmay
let T, A be the transformation such that for each set X and
XeX, m,ax(x) = (P*)™(ey)(A), where g :ifi— X is given
‘by €y (#) =x,Since % A, X doesn’t depend on X in a signifi-
cant way, we will usually drop this third subscript. Notice that
it A s ()™ 4p3) | then
Tmsah (0 = (PN (e ) (A) = 4(BH™ (g, )(a): a6 Al =, 4 (iaedd.
1) The following are equivalent:
a) ¢, a is a monotransformation
b) xamk A=m (where gamk A is inductively defined as the smal-
lest ordinal greater than xamka ,for all a ed) .
¢) Vx, Un'r“’A (x) = X , where for any set S, U°S =S and U™S)=
=UiU™r16e83 .
Q) 3x, Uep . )+ 2 .

Proof: The only element of (PH)°({f}) ia ¢ , and so g ¢

L]

tI—> 1 is the identity transformation; %,y clearly satisfies
the four conditions. By induction, assume for m = 0 that the
four conditions are equivalent. Pick A e (P*)**1(403). Then
namlA=m+4 iff for some a €A, ramk a=m ,in which case
%m,q Would satisfy the four conditions. Thus if rank Amma+1,
then

U»M't,.,”,A(x’-' U’"’[vy,,,,, (x):a €At
= KU, (x):aeA}
= Uixi, if YaeA, rank a=m
{ s Uix, 93, if 3ae A, ank a<m

= X,
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and so the four conditions hold. But if xamk A<m +1 ,
then

U™ e, a0 = ULU™s, () acAS=UigI= 1 ,
and they don’t hold.

For any set X , let ary be the unique map from X to
4f3 . For each natural number % and C e (P*Y*(X) , define
the v -type of C to be C(P+*M(m)(C) . Notice that a set
Ac (P ((f3)  is the k+1 -type of € ePH®(X)
iff A is the set of o -types of elements of € . We will
need the following properties of natural transformations

from (l"")é to (PH)® .

2) Suppose that A e(P"’)*’(-{ﬂ}) and samfe A< % .Then
for any set Y, A e (PHY®(Y) , @s can be easily seen by
induction on the rank of A . Consequently the conatant
transformation 4 from (PH* to (PP , given by YX ,
YC e(BM)#(X), 94x(C)=A is natural.

3 If Ce(PH)P(X) and £:X—>Y, then (PH¥(C)
has the same 4 -type as C since
CB*)%(ar, ) ((PHYP(£)(C)) = CPHF (o, £)(C)
= (pHEmpce) .
From this fact, it follows immediately that given ¢,y :
((PY¥—> (P*)™  and A s (P*)é({ﬂ}) , one can define a na-
tural transformation 8: (PHL.(P*™ by ¥X,VC e (PH%x) "

-

@y (C) ,if the j -type of C is in 4
8 ()=
Py (C), otherwise.

4) The sesme fact guarantees that if for each a e A , we
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croose some 8y : (P*)?— (P*)™ | and define g@: 3 e M
=@ by VX, Ve e (BRI, g () =10, ,¢0)
:Ce«€,aeh, and a is the j-type of C} ,then @ is
also a natural transformation. Notice that if each 6, x €C)
is of % -type E"(ﬂ) , then either g (€) is of &+1 -type
E"‘“(ﬂ) » or, possibly, g (€) =4 .

5) Given natural transformations Pyr--> @ Lrom
(PhH? to (P")"' ,we can define a product transformation

@y -on % @, 3 CPHYP s (P*Y**+P 45 follows: inducti-
vely define <{x)={x3, and

(Xgreees Xy g P = 4y ey Xy D 5 <Rggoey X YUE Mk ey 0 . TE is
easy to see that N<xy ..., Xy 4g? = <Xgqy--., Xp,> 80d (by in-
duction) that U"'(.x.,,...,x,,”‘) = dXgy0ees Xmyq ¥} 5 S0 that
this is an acceptable convention for m -tuples. Alsao, if
Xgreee9Xgp € X, then <Xy .ec,Xpde (PHP(X) ; hence
if € eCPHP (XD, then < (C)yer., @ (C)) = @ - x g (O e
€ (PYY™P(X) . Notice that if <D4,--.,D,Y are of k-type

§ P , then<D,,.. D) is of kefu-type ETCH) .

We can now find the required @: (P*)™—» (PH)™ as
follows: for m =0 the only monotransformation from I to
(P*)™  is the identity. For m = 1 , the only one is § it-
self. In either case we may let 6 be the identity on (P*)™,
Notice that if a e (P*)™({@3) , then for each set X and
X € X, T, o is characterized by the fact that the m -ty-
pe of %, .(x) is a, since

P (I (T 0 (x)) = Tm,a (T (XN =Ty o (@)= a -

Our inductive assumption will, accordingly, be that for
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m =4 ,there is & & =m such that for each monotransfor-

mation -z,,h

0, : CP*)™ 5 (PH™ such that whenever C e (P*)™ is of

o : I—(PH)™ | there is a monotransformation

m -type a , 6,5 CC) is of k-type §“(ﬂ) . We then have,
in particuler that VX, ¥m,q (X) is of m~type a , and
B, Tm o (X) is of M-type §NC(H) , so that O tma =

= T = £ . et gy, 3 I (P! be any
fixed monotransformation. Let A=4@y,...,apnd U19;,..., B F

be an indexing of A such that @4,-.-p @p  are the elements
of A of rank m .For each a; ,let 6; be a monotransforma-
tion from CPHY™ to (PH)% satisfying the induction hypothe-
sis. Define @, : CPHY™+1 s (PN by ¥X, Y€ €

€ CPH)™+1(x)

9u<€)=4eixcc); Ce € and C is of m -type @ ;¥ .

Let @:(P+H)™+1_5 (PHYR+P+1 be given by Y€ e (PH™(X),
By (€)= @ ..o §pl®), if € is of m+4 -type A, and

—m -1 .
6y ("t):-[fM (€),@3% otherwise. The g are natural

by (4), and & is natural by (3), (5), and (4) and (2).

To see that if € is of m+4 -type A , then O (€) is
of p+se+4 -type gk"‘“’"‘(ﬂ) , notice first that {ay,.--,@pnt
is nonempty by (1) since 'cm,A is a monotransformation.
Each element of each @,y (€) is of & -type g“"(ﬂ) by the
inductive assumption. Hence each element of ¢, > ... q?,f,'(‘f)
is of M+p -type g"”’(ﬂ) , S0 that @ = ...xqg,(€) is
of +p+4 -type g"“’""""(ﬂ) .

Finally, each Gx is mono: let 6y (€) be given.
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€ may be recovered as follows: if g e Oy C(€) , then
= u*”"‘”exce). Assume @ ¢ 64 (¢). Then € is ofms4 -
type A. Let ¢ = ¢, U<, , where <, is the set of ele-
ments of € of rank less than m » and ¢, is the rest. We
know that (P m (€)= A =tay,..., apd Uidy,., by .
By an easy induction we have that Y(C e (P*)™(X), rank
Czm irr m:b(?"‘)""(:rx)((i) = m , and that if rank
C<m ,then (PHY™(m)(C)=C . Consequently, €, =
‘ ={b:',...,,bé} , and {a,,,,...,aw} is the m+ 1 -type of &, .
For each q; , let MN; be a left inverae function for
0,x ; clearly,

‘CD--(‘R,‘-‘ D):D is the ithelement of some fr -tuple
in 9x (€)3 .

As it stands, the number mp=R+p +1 depends on
A, since p does. However, a uniform m = mac {m,:Ae

€ Py UX)} 34 easily obtained by composing 6 with

§7 A . mia completes the induction.

4 Theorem. Let F tceT™) be TB-functors (in the

sense of [2]), and A, (L & ") types. Then there is an or-
dinal o eand a set A such that

SUF, ,8) )= S((PHI% . Y2 .

Proof. Let A:I—=(P-)2 bpe the monotransformation
given by YX, VxeX s Ax)={AsX:xeA% . Define
&:I—F by VX, VxeX » @y (x) = a.x<x){x, =4{X,B3%¢
eRx3): UG = ix3 , and if @ is significant, then

UX = §{x333 . The condition that UUZE < UWWR = {x?
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forces ‘ux(x) to be independent of X , and a moment ‘s
thought shows that w is a monotransformation. As at the
end of Lemma 1, let @ :E— (P*)® be the monotransformation
given by the equation @y(%,) = %, , and let 3:E— (P2
be the epitransformation given by ayy (%Uy) = U . ' Then
Yu = A . Finally, for some m  bigger than 5 , we may
let 8: (PH5—» (P*)™ be a monotransformation such that

B = §™
We need to show that any functor of the form cep)tad
is majorized by some (P+, §)* . Let o be a limit ordi-
nel larger than @. Then (CP))B < (¢(P)2)= by
Lemma 3.7 of [2]. The equations 7w = A and fgu = g'm',

and Lemma 2.8 of [2]1 show that

¢ (P A%< (B, @< (B’ gur®< ((BH)™, §7% .

But by Lemma 2.4 of [2], C((PH)™,§™)% = (P+,§)% , since
the first colimit is just being taken over a subsequence of
the second. Now by Theorem 3.7 of [1], we have

(P2, oV, < (P*,§)%oV, ,  for any set A ,and thus
by Theorem 6.1 of [11, S(KP)L AP V)2 S((P*, §)% eV, ) -
Finelly, let S(F_ ,A)) ¢p be as in the statement of the
‘theorem. Then by Theorem 4.2 of [21, SU(F,A ) ¢p) =2

= SKCE?, P e vy for some ordinal @ and set A

and the theorem follows.
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