

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log14

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

15,1 (1974)

ON WEAK HOMOTOPY

Jan MENU* Antwerpen

Abstract: If the definition of homotopy is weakened by using the cross-product instead of the usual cartesian product of spaces, all connected polyhedra become contractible.

Key-words: Cross-product, weak homotopy, polyhedron.

AMS, Primary: 54E60

Ref. Z. 3.972

Secondary: 55D15

The cross-product $X\otimes Y$ (the space obtained from the cartesian product of the underlying sets by the condition that $f\colon X\otimes Y\longrightarrow Z$ is continuous iff it is continuous in each variable) is well-known to be a tensor product in the category of topological spaces. Thus, we can base on it a notion similar to homotopy - we will call it weak homotopy or W-homotopy - defined as follows:

 $f, g: X \longrightarrow Y$ are said to be W-homotopic if there is an $h: X \otimes I \longrightarrow Y$ such that h(x, 0) = f(x) and h(x, 1) = g(x).

Thus, W-homotopy is a weaker equivalence than the nor-

^{*} This work was done while the author was supported by a scholarsnip of ered in the framework of cultural relationship Czechoslovakia-Belgium.

mal one. In this paper we are going to show that it is actually much weaker: e.g. all connected polyhedra are W-ho-motopically trivial.

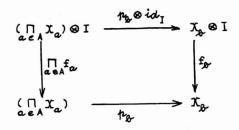
It is evident that every W-homotopically trivial space has to be arcwise connected. The converse is probably not true, but we do not have a counterexample. I am indebted to prof. Pultr, who suggested this problem, and who gave me valuable help.

1. Conventions and notations

Throughout this paper the circle is considered as the interval [0,4], with identified endpoints. The closed (open) unit-interval will be denoted by I(J). The closed unit-ball (sphere) in the m-dimensional Euclidean space \mathbb{R}^m will be denoted by \mathbb{B}_m (\mathbb{S}_m). The polyhedra will always be connected, and they are supposed to be embedded in a suitable Euclidean space. The points of this Euclidean space are sometimes considered as vectors - in order to simplify the notation. For every point $p \in \mathbb{R}^m$, we define $\mathbb{U}(p) = \sqrt[3]{|p|} |p| \mathbb{E}^m$. Given two pointed spaces (X, x_0) and (Y, y_0) , $(X, x_0) \neq (Y, y_0)$ is the topological space, obtained from $X \times X$ identifying the points (x, y) with $X = x_0$ or $y = y_0$ (with the quotient-topology).

<u>Proposition 1.</u> The products of W-homotopically trivial spaces are W-homotopically trivial.

<u>Proof.</u> Given a family $(X_a)_a$ of W-homotopically trivial spaces with homotopy-functions f_a , consider the following diagram:



where $\bigcap_{a \in A} f_a$ is defined in the following way: $\bigcap_{a \in A} f_a((x_a)_a, t) = (f_a(x_a, t))_a$. This function is continuous.

Proposition 2. The long line is W-homotopically trivial.

<u>Proof.</u> Let $L = \{(x,y) | x \in \mathbb{R}, y \in [0,1\mathbb{I}] \}$ be endowed with the lexicographical order, and the associated order-topology. The function $h: L \otimes \mathbb{I} \to L$; h((x,y),t) = (xt,yt), is continuous, and L is W-homotopically trivial.

<u>Proposition 3.</u> The circle is W-homotopically trivial. <u>Proof.</u> Consider $\mathcal{M}: S \otimes I \longrightarrow S$ defined by:

$$h(\vartheta,t) = \vartheta^{1/4} \quad \text{if } t \neq 0$$
$$= 0 \quad \text{if } t = 0 .$$

Clearly, & is continuous.

Corollary. Every torus is W-homotopically trivial.

3.

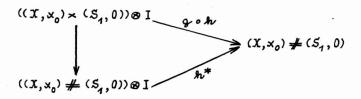
Suspension

<u>Proposition</u>. The suspension of an arbitrary space is W-homotopically trivial.

<u>Proof.</u> Let (X, x_0) be an arbitrary pointed space. Define $h: ((X, x_0) \times (S_1, 0)) \otimes I \longrightarrow (X, x_0) \times (S_1, 0)$ by

$$h(((x, 0), t)) = (x, 0)^{1/t}$$
 if $t \neq 0$
 $(x, 0)$ if $t = 0$.

Let $q:(X,x_0)\times(S_1,0)\longrightarrow(x,x_0)\neq(S_1,0)$ be the natural quotient-mapping. At is usually not continuous, but $q\circ h$ is. The commutativity of the diagram



defines uniquely a continuous mapping h^* (because $g \otimes id$ is a quotient mapping).

Corollary. Every sphere is W-homotopically trivial.

4. Polyhedra

<u>Proposition 1.</u> All one-dimensional connected polyhedra are W-homotopically trivial. If x_0 is an arbitrary vertex of the polyhedron P, then the homotopy functions can be chosen in such a way that $\forall t \in I$, $f(x_0,t)=x_0$.

<u>Proof.</u> The proposition is trivial for all one-dimensional polyhedra with at most two vertices. Suppose it is proved for all one-dimensional polyhedra with at most m-1 vertices, $m \geq 3$. Let P be an arbitrary but fixed poly-

hedron with m vertices, embedded in a suitable \mathbb{R}^{4^n} , and suppose all segments of P have length 4. Choose an arbitrary vertex x_0 of P, denote the vertices of P by $(x_i)_{0 \le i \le m-1}$.

The segments $[x_i, x_j] \in P$, x_i and $x_j \neq x_0$, form at most m-1 maximal connected one-dimensional polyhedra $P_k'; k \neq i_p \neq m-1$; $P_k' \cap P_k' = \emptyset$ if $k \neq k'$. Choose $x_j \in P_k'$ such that $[x_j, x_0] \in P$, $\forall k \in i_p$. Consider the polyhedra P_k , consisting of the vertices of P_k' and x_0 , and all the segments in P between these vertices. By induction, the P_k' are W-homotopically trivial, and there exist continuous functions $f_k: P_k' \otimes I \longrightarrow P_k'$ such that

$$\begin{split} &f_{g_{k}}\left(x,1\right)=x\,,\quad\forall x\in P_{g_{k}}'\\ &f_{g_{k}}\left(x,0\right)=x_{j_{g_{k}}}\,,\quad\forall x\in P_{g_{k}}'\\ &f_{g_{k}}(x_{j_{g_{k}}},t)=x_{j_{g_{k}}}\,,\quad\forall t\in I \quad. \end{split}$$

We will define the homotopy functions ϕ_{2k} on the polyhedra P_{2k} . Suppose 2k fixed for the time being.

- 1) Consider the segment $[x_0, x_{j_k}]$.

 Define $q_k(x,t) = t \cdot \overline{x_0 \cdot x}$ if $x \in [x_0, x_{j_k}]$.

Define
$$d_{\mathcal{R}}: P_{\mathcal{R}}' \times P_{\mathcal{R}}' \longrightarrow R_{+}$$
 by
$$d_{\mathcal{R}}(y, y') = \inf \left\{ \sum_{\alpha=1}^{m-1} \| x_{\alpha} x_{\alpha-1} \| | x_{1} = y, x_{m} = y', x_{1} \in P_{\mathcal{R}}' \right\}.$$

$$\times_{\alpha} \in P_{\mathcal{R}}', [x_{\alpha}, x_{\alpha+1}] \subset P_{\mathcal{R}}' \right\}.$$

$$= 107 -$$

put
$$g_{\mathbf{k}}(x,1) = f_{\mathbf{k}}(x,1) = x$$

a) if
$$d_{\mathbf{g}_{\mathbf{t}}}(\mathbf{f}_{\mathbf{g}_{\mathbf{t}}}(\mathbf{x},\mathbf{t}),\mathbf{x}_{\mathbf{f}_{\mathbf{g}_{\mathbf{t}}}}) \ge 1/2$$

put
$$q_{\mathbf{x}}(x,t) = \mathbf{f}_{\mathbf{x}}(x,t)$$

b) if
$$1/4 \le d_{g_0}(f_{g_0}(x,t), x_{g_0}) \le 1/2$$

put
$$q_{ik}(x,t) = 2(\overline{x_{jk}}f_{ik}(x,t) - (1/4).\overline{x_{jk}}$$
, where

 $f_{g_k}(x,t) \in [x_{j_k}, x_{j_k}]$ and x_{j_k} is uniquely determined

c) if
$$0 \le d_{\Re}(f_{\Re}(x,t),x_{f_{\Re}}) \le 1/4$$

put
$$q_{\mathbf{k}}(x,t) = 4 \cdot d_{\mathbf{k}}(\mathbf{f}_{\mathbf{k}}(x,t), \mathbf{x}_{\mathbf{j}_{\mathbf{k}}}) \cdot \overbrace{\mathbf{f}(\mathbf{x}_{\mathbf{j}_{\mathbf{k}}}, t) \mathbf{x}_{\mathbf{j}_{\mathbf{k}}}}^{\mathbf{k}}$$

3) Consider the segments

$$[x_0, x_j], x_j \in P_k$$
; $[x_0, x_j] \in P$, $j \neq j_k$.

Define $\mathcal{H}_{g_{\underline{a}}}: (P_{g_{\underline{a}}} - P'_{g_{\underline{a}}}) \otimes I \longrightarrow R_{+}$ by

$$h_{\mathbf{k}}(\mathbf{x},t) = \|\overrightarrow{\mathbf{x}_{j}} \times \|^{1/t}$$
 if $t \neq 0$, and $\mathbf{x} \in [\mathbf{x}_{o}, \mathbf{x}_{j}]$

$$0 if t = 0$$

if
$$t = 1$$
, put $q_{q_k}(x, 1) = x$

if
$$t + 1$$

a) if
$$1/2 \leq h_{\mathbf{k}}(\mathbf{x}, \mathbf{t})$$

put
$$q_{\underline{a}}(x,t) = \mathcal{H}_{\underline{a}}(x,t) \cdot \overrightarrow{x_{\underline{j}} x}; x \in [x_0, x_{\underline{j}}]$$

b) if
$$1/4 \le \Re_{\mathbf{k}}(x,t) \le 1/2$$

put
$$g_{g_0}(x,t) = 2(h_{g_0}(x,t) - 1/2) \cdot \overrightarrow{x_i} x$$
,

c) if
$$0 \le h_{g_k}(x, t) \le 1/4$$
,

$$i)$$
 $t = 0$

put $q_{\mathbf{k}}(\mathbf{x},0) = \mathbf{x}_{\mathbf{0}}$

ii) $t \neq 0$

put $Q_{3,k}: J \longrightarrow R_+$ by

 $Q_{j,k}(t) = \max \left\{ \sum_{i=1}^{m-1} || \overline{q_{k}(x_{j}, t_{i})} \, q_{k}(x_{j}, t_{i+1})|| | m \in \mathbb{N}, (t_{i})_{i} \right\}$

partitions of [t,1[,[$g_{\mathbf{k}}(\mathbf{x}_{j},\mathbf{t}_{i}),g_{\mathbf{k}}(\mathbf{x}_{j},\mathbf{t}_{i+1})$] c P } .

Define $\kappa_{j,k}$: $Im(q_{j,k}) \longrightarrow P_{k}$ by $\kappa_{j,k}(q_{j,k}(t)) = g_{j,k}(x_{j},t) ,$

define $s_{j,k,t}:[x_j,x_{t,j}] \longrightarrow [0,q_{j,k}]$ by

$$\begin{split} & \lambda_{j,\mathcal{R},t}(\mathbf{x}) = q_{j,\mathcal{R}}(t).\left(1-4h_{\mathcal{R}}(\mathbf{x},t)\right) \text{ if } \mathbf{x} \in [\mathbf{x}_{j},\mathbf{x}_{0}] \\ & \text{and where } \mathbf{x}_{t,j} \text{ is that point on } [\mathbf{x}_{j},\mathbf{x}_{0}] \text{ such that } \\ & h_{\mathcal{R}}(\mathbf{x}_{t,j},t) = 1/4. \text{ Define } q_{\mathcal{R}}(\mathbf{x},t) = h_{j,\mathcal{R}} \circ h_{j,\mathcal{R},t}(\mathbf{x}) \\ & \text{if } \mathbf{x} \in [\mathbf{x}_{j},\mathbf{x}_{0}]. \end{split}$$

4) The polyhedron P. Define $g(x,t) = g_{\mathcal{R}}(x,t)$ if $x \in P_{\mathcal{R}}$. It is clear from the construction that $g: P \otimes I \longrightarrow P$ is a continuous function such that $g(-,1) = id_P$, $g(-,0) = x_0$.

Proposition 2. All connected polyhedra are W-homotopically trivial.

<u>Proof.</u> The theorem is proved for all one-dimensional polyhedra, suppose it is proved for all d-dimensional ones, with $d \leq m-1, m \geq 2$. Let P be an arbitrary fixed m-dimensional polyhedron embedded in a suitable R^n . P' is the (m-1)-dimensional sheleton of P, with a homotopy function q'.

- A) Define g(x,t) = g'(x,t) for $x \in P'$.
- B) 1) There exist $f_k \colon B_n \longrightarrow \mathbb{R}^n$, $1 \le k \le m$, such that $f_k(B_m) \subset \mathbb{P}, \ \forall k \le m$

 $f_{R} \mid B_{m}$ is a homeomorphism onto the image

$$f_{a_n}(B_m) \cap f_{a_n}(B_m) \subset P'; \quad k \neq k'$$

$$\bigcup_{k=1}^{m} f_{k}(B_m) \cup P' = P .$$

- 2) If B_m is the unit-ball, define $h': B_m \times I \longrightarrow B_m$ as follows:
- a) h'((0,0,...,0),t)=(1-t,0,...,0)
- b) $q \neq (0, 0, ..., 0): h'(q, t) \in [(1-t, 0, ..., 0), L(q)]$ and

$$\| \vec{y} \| = \frac{\| \vec{k}'(y,t) - (1-t,0,...,0) \|}{\| (1-t,0,...,0) - \overline{u}(y) \|}$$

take an $h: B_m \otimes J \longrightarrow B_m$ such that

$$k((0,0,...,0),t) = k'((0,0,...,0),t)$$

$$h(y,t) \in \mathbb{I}(1-t,0,...,0), \, \mathrm{ll}(y) \, \mathrm{l} \, , \quad y \neq (0,0,...,0)$$

and

$$\frac{\| \ln(q,t) - \mathrm{U}(q) \|}{\| (1-t,0,...,0) - \mathrm{U}(q) \|} = \left(\frac{\| \ln(q,t) - \mathrm{U}(q) \|}{\| (1-t,0,...,0) - \mathrm{U}(q) \|} \right)^{1/t}$$

3) If $\alpha \in P - P'$, then $\exists ! k \leq m$ such that $\alpha \in f_{k}(B_m)$. Define the functions $k_k : f_{k}(B_m) \otimes J \longrightarrow f_{k}(B_m)$ by

$$h_{g_k}(z,t) = f_{g_k} \circ h((f_{g_k}^{-1}(z),t))$$
.

4) x ∈ P' .

Define $q_x: I \longrightarrow \mathbb{R}$ by

$$q_{x}(t) = \sup \left\{ \sum_{i=1}^{n-1} \left\| \frac{g'(x,t_{i}) g'(x,t_{i+1})}{g'(x,t_{i+1})} \right\| \right\}$$

where (t_i) ; are partitions of [t, 11].

Define $\kappa_x : Im(q_x) \longrightarrow Im(q'(x,-)) \subset P'$ by $\kappa_x(q_x(t)) = q'(x,t).$

- 5) α ε f_a (B_m) P'; & fixed.
- a) Put $q_{2k}(x,1)=x$ and $q_{2k}(x,0)=x_0$, where $x_0=q^3(-,0)$
 - b) teJ.

Notation:

$$v(y,t) = \|(1-t,0,...,0) - \overline{u(y)}\|, y \in B_m, y \neq (0,0,...,0)$$

$$u_k(x,t) = d(h(f_k^{-1}(x),t), u(f_k^{-1}(x))).$$

Let $A_{x,t,k}$ and $B_{x,t,k}$ be the points on the segment $\Gamma(1-t,0,...,0), U(f_{k}^{-1}(x))$ such that

$$\|\overline{A_{\alpha,t,g_k}} - (\overline{1-t,0,...,0})\| = v(f_{g_k}^{-1}(\alpha),t)/2$$

$$\|\overline{B_{\alpha,t,g_k}} - (\overline{1-\theta,0,...,0})\| = 3v(f_{g_k}^{-1}(\alpha),t)/4$$

1) If
$$\nu(f_{k}^{-1}(x), t)/2 \le \mu_{k}(x, t)$$
 put $q_{k}(x, t) = h_{k}(x, t)$.

2) If $v(f_{n}^{-1}(x),t)/4 \le \mu_{n}(x,t) \le v(f_{n}^{-1}(x),t)/2$ define the linear functions

 $v_{x,t,k}: \lceil A_{x,t,k}, B_{x,t,k} \rceil \longrightarrow \lceil A_{x,t,k}, U(f_k^-(x)) \rceil$ such that

$$\begin{split} v_{\alpha,t,k}(A_{\alpha,t,k}) &= A_{\alpha,t,k} \\ v_{\alpha,t,k}(B_{\alpha,t,k}) &= \mathcal{U}(f_k^{-1}(\alpha)) \end{split}$$

define $q_{\mathbf{k}}(x,t) = \mathbf{f}_{\mathbf{k}} \circ v_{x,t,\mathbf{k}} \circ h\left((\mathbf{f}_{\mathbf{k}}^{-1}(x),t)\right)$.

3) If $0 \le \mu_{g_k}(x,t) \le \nu(f_{g_k}^{-1}(x),t)/4$

define $\mathcal{A}_{q_i,t,k}:[U(q_i),B_{z,t,k}] \longrightarrow [0,q_x(t)]$, where $z=f_{k}(q_i)$ and $x=f_{k}(U(q_i))$, to be the linear functions such that

$$S_{y,t,R}(B_{z,t,R})=0$$

$$s_{y,t,k}\left(\mathbb{L}(y)\right) = q_{x}(t) \ ,$$

define $q_{k}(x,t) = x_{x} \circ s_{y,t,k}(x)$, where $x = f_{k}(y)$, $x = f_{k}(U(y))$.

4) z ∈ P - P'

put $q(x,t) = q_{g_k}(x,t)$ if $x \in f_{g_k}(B_m)$.

The function $q: P \otimes I \longrightarrow P$ is continuous.

Department of Mathematics University of Antwerpen Antwerpen

Belgium

(Oblatum 14.12.1973)