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ON WEAK HOMOTOPY
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batract: If the definition of homotopy is weakened
by using the cross-product instead cf the usual cartesian
product of spaces, all connected polyhedra become contrac-
tible.
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The cross-product X ® Y (the space obtained from
the cartesian product; of the underlying sets by the condi-
tion thet £f: X @ Y—> Z is continuous iff it is conti-
nuous in each variable) is well-known to be a tensor pro-
duct ‘in the category of topological spaces. Thus, we can
base on it a notion similar to homotopy - we will call it
weak homotopy or W-homotépy - defined as follows:

£,9: X—> Y  are said to be W-homotopic if there
isan M :X® I — Y such that h(x,0) = £(x) and
h(x,4) = ¢ (x) .

Thus, W-homotopy is a weaker equivalence than the nor-

¥ This work was done while the author was supported by a
scholarsnip ofsered in the framework of cultural relation-

ship Czechoslovakia-Belgium.
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mal one. In this paper we are going to show that it is ac-
tually much weaker: e.g. all connected polyhedra are W-ho-
motopically trivial.

It is evident that every W-homotopically trivial spa-
ce has to be arcwise connected. The converse is probably
not true, but we do not have a counterexample. I em indeb-
ted to prof. Pultr, who suggested this problem, and who ga-

ve me valuable help.

1. Conventions_and notations

Throughout this paper the circle is considered as the
interval [ 0,4J , with identified endpoints. The closed
(open) unit-interval will be denoted by I(J) . The closed
unit-ball (sphere) in the m -dimensional Euclidean space
R™  will be denoted by By, (S,) . The polyhedra will al-
ways be connected, and they are supposed to be embedded in
a suitable Euclidean space. The points of this Euclidean
space are sometimes considered as vectors - in order to sim-
plify the notation. For every point € R"™ , we define
Ulp) = ,Tf/n ol Given two pointed spaces (X, x,)
and (¥, n4) , (X,x%,) % (7, Y,) 1is the topological space,
obtained from Xx X identifying the points (X, %)
with X = Xp or s = 4, (with the quotient-topology).

Propgsition 1. The products of W-homotopically trivial
spaces are W-homotopically trivial.

Proof. Given a family (Xgq)q of W-homotopically
trivial spaces with homotopy-functions £, , consider the

following diagram:
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where eﬂAf@ is defined in the following way:
ada £q((Xg)g,t) = (£ (%, ,t)), . This function is

continuous.

Proposition 2. The long line is W-homotopically tri-
vial.

Proof. Let L = {(x,4)IxeR,yel0,41[ % Dbe endowed
with the lexicographical order, and the associated order-
topology. The function #:L®I—1 35 ((x,q),1) = (xt, yt),

is continuous, and L is W-homotopically trivial.
Proposition 3. The circle is W-homotopically trivial.
Proof. Consider #:S®1—> S defined by:

K/
nd,e) =87 ir tx0

= 0 if +=10
Clearly, %, 1is continuous.
Corollary. Every torus is W-homotopically trivial.

3.

Suspension
Proposition. The suspension of an arbitrary space is

W-homotopically trivial.
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Proof. Let (X,x,) be an arbitrary pointed space.
Define h: ((X,x5) = ($,,0)® I —> (X,x%,) = (S ,0)
by

h(x,8),8) = (x, 8 7%)  if t40

(X,o) if t=0 .
Let g:(X,xq)>(5,,0)—>(x,x,) # (5,,0) be

the natural quotient-mepping. % is usually not continu-

ous, but g o & is. The commutativity of the @iagram

WX, %)= €S, 0NBT__ 4,

(X,%,) # (5,,0)

(X, %) # (S, ,00@1

defines uniquely a continuous mapping H* (because

¢ ® 4id is a quotient mapping).
Corollary. Every sphere is W-homotopically trivial.
4. Polyhedra

Proposition 1. All one-dimensional connected polyhedra
ape W-homotopically trivial. If Xp is an arbitrary ver-
tex of the polyhedrdn P , then the homotopy functions can
be chosen in such a way that YteI, £(x,,t) = x, -

Proof. The proposition is trivial for all one-dimensio-
nal polyhedra with at most two vertices. Suppose it is pro-
ved for all one-dimensional polyhedra with at most m - 1

vertices, m = 3. Let P be an arbitrary but fixed poly-
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hedron with m  vertices, embedded in a suitable R ,
and suppose all segments of P have length 4 . Choose an
arbitrary vertex X, of P , denote the vertices of P by
g dosiaman -

The segments [x;,x31eP, x; and X3 % X, , form at
most m -1 maximal connected one-dimensional polyhedra

P s WEp -4y P NPy =4 if & % %’ . Choose
*30 € B, such that [xj ,x,1€P, Vi e4p . Consider
the polyhedra T, , consisting of the vertices of Py and
Xo , and all the segments in P  between these vertices.
By induction, the P}  are W-homotopically trivial, and
there exist continuous functions £ : Pu@I —> Pe such

that
Px,MD=x, VxeP,
T (x,00=x;., Yx e Py,
£ (X300 8) = X5, 5 Ytel .

We will define the homotopy functions g4, on the po-
lyhedra Pg, . Suppose % fixed for the time being.
1) Consider the segment E‘xo,.x;-,hj .

Define g, (x,t)=1t.Xx,X if xe Cops X3 o

J .
2) Consider the polyhedron P;u .
Define dg, : By > Py —> R, by
, . m-1 ,
d%(n,,ly, )= an;f‘{;z;}‘ I Xg Xg_ 4 ] X, =4, Xy =1y,

xa.EP;g} Exan“a;-aJ]c.P;a} *
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A) t =14
put gy (X, 1) = £, (x,1) = X
B) t#1
a) if d'b(fh(“'t)’“éb) z1/2
put Qe (x,t) = £ (x,t)
b) if 1/4 £ d’).,(fh(""t)""éb) £ 172

—

put Qg (x,t) = Z(xagkfhc.x,%) - “/4)"(53.,‘*9') , where

; . P i ined
£o.(x,t) € E\x?b, x;] and X; is uniquely determ

c) it 0 = d*(fﬁ(.x,t),xé_h) £ 1/4

———————————————
put gz*(x,t)=4-.d.~(fm(x,t),xéh).f(x?-b,t).xéb .

3) Consider the segments
Cxy %37, x; €By 5 [, %31, 343,
. . )
Define thy : (Pk—fk)®l—->l+ by

— 1
Ay (x,t) = Il.xéa(llt ift#+0,and xelx,,x;]

0 if t=0

if t =1 , put qr*(.x,'ﬂa.x
if t1

8) if 1/2 £ by (x,t)

put q&(x,t)ahb(x,t).xéx; x € [xo,xé]
b) if 41/4 £ h*(.x,t) £ 4/2
put gy (x,t)= 2”"‘;("‘:*)'4/2)-“5“ 5

c) if Oehb(x,t)é4/q. ,
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i) t=0
put g (x,0)= X,
ii) t %0

put qvi’k:J-—Hl‘_ by

m=A4 >
q,é,)&(-t)=mwx{1§4 "9’&("‘3"1:4')9‘3.("‘3"1:%4” meN, (t;);

partitions of [t,1L0,Lg, (%;,t;), 9 (X5 tiug)d C P .
Define sy o : J’”"(Qg,k,) —> P, W
)c‘-,“qu’th)) = g (X5,t)

define /’g',h,t’rx%’xt,—}:‘"—) Lo, Q.j..h] by

b&,ﬁb,t("‘) = Qé_’b(t).ﬁ—#,ﬁk(.x,t)) if xe Lxy,Xp]

and where X, ; is that point on [X;,%Xo] such that
’h’h(xt,g’,,t)= 41/4, Define gab(x,t)= Hi%® by %t (x)

if x € E\x,},xol ;

4) The polyhedron P . Define g (x,t)= Gge (X, t)
if x € Py, . It is clear from the construction that g :
. P®I—> P is a continuous function such that
g (=, NN =ddp , g(=,0) =X, -

Proposition 2. All connected polyhedra are W-homotopi-
cally trivial.

Proof. The theorem is proved for all one-dimensional
polyhedra, suppose it is proved for all o -dimensional ones,
with d £m-1,m =2 ,Let P Dbe an arbitrary fixed m =-di-
mensional polyhedron embedded in a suitable R®. P’ is the
(m - 1)-dimensionel steleton of P , with a homotopy func-
tion 9,’ ;
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A) Define g (x,t) = ¢'(x,t) for xeP’

B) 1) There exist £,5 Bn—> Jt"", 4« &% <m , such that
f“(_Bm) c P, Y 2 m

£k|B,,V is a homeomorphism onto the image
£ |S,cP

f&(Bm,) nf, (BYcP; k=%ik

& %, (B) UP' =P .

2) If B, is the unit-ball, define 4’ :B,XI—3,
as follows:

a) h(€0,0,...,0),) = (41-t,0,...,0)

b) 4 +0,0,...,0): ' (g,t) e [A1-1,0,...,0), Uly)]

and

2 = IR y,t) - 4-+,0,..., 01
N4 -£,0,...,0) = Ucg)ll

teke an h: B, ®J—> B, such that
W (€0,0,...,0),t) = #(C0,0,...,0),t)

hiy,t)el41-t,0,...,0), Uly)l, 4 +0,0,..,0)
and .

—_— —_—

I (g,t) - UCg)

—— —

1R (g, t) - W)l

—)"%
1(4-t,0,..., 0) = Ua) | 4=, 0,...,0) - Wig)1

3) If x eP~-P" then 3!%k « m such that z e

€ £, (B,) . Define the functions Mg : £, (B,) @ J—
— £ (B,) by
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Iy (2,t) = £, o (£ (=), .

‘n
4) x e P’

Define @, :I—> R by

lb—‘ —
9y () = supr {L§4 g (x,t;) ¢/ (x,t, 41

where (t,). are partitions of [t,11% .

<
Define x, : Im (q,) —>Im(gX(x,~)) c P’ by
ny(qx(t)) = @ (x,t) .
5) % e £4,(Bn) ~-P’; % fixed.
a) Put gp (2,4) = x and gy (%,0) =X, ,where
X, = ¢ (=, 0)
b) teJ .
Notation:
2y, t)m N (A=F,0,..,0) = Wig)N, 4 €Bp, g # (0,0,...,0)

@ (2, 8) = d (g2 (20, t), Uig (200 .

Let 'A'z,t,,ﬁ, and Bz,t,h be the points on the segment

[(1-1,0,..,0), W(£;%(z))]  such that

1yt~ (T-1,0,.., 00l = » (£, (2),) /2
1B, g - (1-8,0,., 000 = 39 (£5"2),4) /%
1) If -n(f;"(x),t)/z £ e (z,t) put

Y (Z,t) = My (2, %)
-1
2) It » (£ (2),£)/4 & @ (z,8) & » (£ (2),8)/2

define the linear functions
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fv;,,tb:fA B

Z,t, %) x,t,hj—’ E'A'z,t’k, u(f; (z2))1

such that
'Vz,t,h'<‘A2,t,h) = 'A‘R,t,ﬂo
-1
'”‘z,t,,t (‘Bz,t,h) = H(fh (Z))

define g, (2,t) =G0 v, 4 o A (g (x),t))
3 If 02 @ (2,t) £ » (2 (), 8)/4

define Pyt et [uc@')1Bz,t,hJ_+ 00, g ()1 where

x=1£,(y) and x=£, (UL(g)) , to be the linear func-

tions such that

(B )=0

Pyt fe T2tk
Ayt s (L) =g, (),
define g@p(z,t) = x, o Pyt,% (z), where z=%(y%),

x=£, (U(g)) .
4) zeP-P’
put g(z,t)=q, (2,t) if ze £ (B,) -
The function ¢:P®I—T is continuous.
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