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Every mathematician working in module theory and in the
torsion theories, in particular, feels that a lot of talking
about torsion theories can be extended to preradicals, in ge-
neral. On the other hand, no background for the theory of pre-
radicals (except for scattered quotations) has ever been pro-
vided, as far as we know. Hence our aim is to bring such a
background, ready for further use. The authors have been in-
vestigating the properties of preradicals more deeply and some
of their results have already been submitted for publication
([13,02],03]). The theory of preradicals appears to be the
real know-how in the theory of modules and rings. In particu-

lar, it seems to be an jdeal tool for dualization problems.
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Now, let us introduce a few definitions. _

All rings will be associative and with identity and
will be denoted by R . A preradical # for R-mod (the
category of unitary left R -modules) is any subfunctor of
the identity functor. If s is a preradical then 'I;,‘ =
=iM;x(M)=M? and F, = {M; (M) =03 . The modules
from T, (Fy) are called x -torsion ( x -torsionfree)
modules . If x (M)e Ty, (M/n(M)eF, ), forall Mek -
modl , then we shall say that x is idempotent (x is a
radical). Further, the symbole jfl' and M(I) are used
for the direct sum and the symbol 'I;l' for the direct
product of modules. If x,4 are preradicals then & & »
if A (M) e A(M) for every module M . A class of mo-
dules is called hereditary (cohereditary) if it is closed
under submodules and isomorphic images (under epimorphic
images).

If a prospective reader will find some of the proofs

too short, it is due to the fact that obvious parts are om-
itted.

Propogition 1. Let st be a preradical, M &€ R-mod and
NeM be a submodule. Then:

1) wN)sNarh) .

(1) (M) +NI/N s n(H/N) .
(iii) If w (M/N)=0 then n(M)ENXN .
(iv) I2 #(N)= N then Nsx(N) .

Proposition 2. Let 4 be a preradical and ‘Mi" +el,
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be a family of modules. Then x (Ll M:) =4 (M;) and

Proposition 3. Let J be a preradical. Then:

(i) T, is a cohereditary class closed under arbitrary

direct sums.

(ii) F, is a hereditary class closed under arbitrary di-

rect products.

(iii) HmR(T,F) =0 forall TeT, and FeF, -
(iv) Tn (a} PIL =0

(v) If My ,4 €1 is a femily of submodules of a module

M such that M, € T, , forall + € 1, then’;%IM;cTn .
(vi) If My , 4 € I , is a family of submodules of a module
M such that M/M; € F, , for all v ¢ I , then

M/kQIMb € F)L .

Proposition 4. Let x be a preradical and M eR-mod,
Then:

(i) % (M) is a characteristic submodule of M .
(ii) If M € R-mod-R then (M) e R-mod-R .
(iii) If M is free then x (M) &€ R-mod-R .
(iv) 2 (R) is a twosided ideal.

(v) n(R). Mg r(M) .
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(vi) I£ M is projective then x(M)= 2C(R). M .

Proof. (ii) The right R -multiplication on M is a
left R -endomorphism of M .
(v) Let m € M be arbitrary. The mapping £: R— M , gi-
ven by @ —> am , is a homomorphism, and consequently

ACR)eem = €£CRCR) € (M) .

(vi) There is a free module F such that F=M ® N. We

can suppose that T = R ¥’ , for some index set I . Then

2 CP) = 2 (R 2 (e RN (e (R).R) P2 e (RYL R

by Proposition 2. Further, 2 (M)@® 2 (N) =2 (F) =

2RI, F=n(R). MA@ N)=2(R). M@ (R).N .

However, x (R) . Ms (M), x(R). N s x (N) and there-

fore (R). M = (M) .

Proposition 5. Let x be a preradical, and for every
MeR-mod let T(M)= SN, where N runs through all
the x -torsion submodules of M . Then:

(1) X is an idempotent preradical, ¥ s % and T, = T -«

(ii) If o 1is an idempotent preradical and & s % , then

A S X ., Hence X is the largest idempotent preradical
contained in x .

Proof. (i) is obvious from Proposition 3.

(ii) since » s x, T, = T, , and hence »(M)6 T, , for
all MeR-mod .Thus »(M)s T(M) .
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Proposition 6. Let x be a preradical, and for every
MeR-mod let X (M)= NN, where N runs through
all the submodules N &« M  with M/N & T, . Then:

(i) ¥ is a radical, x g X and F, =Fz .

(ii) If » is a radical end % & 4 , then ¥ = b . Hence @

is the least radical containing x .

Proof. The proof is similar to that of Proposition 5.

Proposition 7. Let x be a preradical. Then the follo-

wing are equivalent:

(i) If MeR-mod and Ns M is a submodule such that
A(M)s N(Nsn(M)), then 2 (N) = () (e (N/N)=x(W)/N).

(ii) x is idempotent ( x is a radical).

4ii) n m wCa=X) .

Definition. Let x be a preradical. The preradical X

(% ) is called the idempotent core (the radical closure) of x

Proposition 8. Let x be an idempotent preradical. Then:
(i) FeF, iff HmR(T,F)- 0 for a11 Te T, .
(ii) F, is closed under extensions.

Proof. (i) According to Proposition 3 we have only to
prove the sufficiency. But if HmR (T, }‘).-. 0 , for each
TeT then n (F)= 0 since A (F)e T, .

r o n

(ii) is an easy ccnsequence of (i),
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Proposition 9. Let » be a radical. Then:
(i) TeT, iff Homp (T,F)= 0 for all FefF, .

(ii) T, is closed under extensions.

Proof. The proof is similar to that of the preceding
proposition.

Theorem 10. Let 2 be g preradical. Then the following

are equivalent:
(1) x is an idempotent radical.

(ii) For each M & R-mod there exists a uniquely determi-
ned (up to an isomorphism) exact sequence 0—T—>M—> F—0

with T e T, and PGF,‘ .

\1ii) FPor each M € R-mod there is an exact sequence

0—+T—+M—>F—>0 with TeT, and Fe F. -

(iv) & is idempotent ana Ty = Tg .

(v) 2 1is idempotent ana Ty is closed under extensions.
(vi) F, = Fg and T, is closed under extensions.
(vii) F, = Fz and T, = Ty -

(viii) T, = Ty and T, is closed under extensions.
(ix) 2 is a radical and E,=F; .

(x) o is a radical and Ty, is closed under extensions.

(xi)){f—)—bn%.

Proof. (i) === (ii). Obviously 0—  (M)— (M)—M/z (M)~ D
is the desired sequence.
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(ii) ==> (iii) eand (xi) ===y (i) trivially.

(111) ==> (xi). Let N € R-mod and 0T N— F— 0

be an exact sequence with T e T, eand Pe ¥, . Then
£(T) e Ty and M/£(T)e F, , and therefore we can
write £(T) R (M)s n (M) s B(M) = £(T) .

(i) ==> (iv) is obvious, (iv) ==> (v) by Proposition 9 and
(v) === (vi) by Proposition 5.

(vi) ==y (vii). T, € Ty eince x = Z . Let Me Ty
and T M/EN) = N/E (M) . Then XeTy = Tg sin-
ce T, is closed under extensions, and consequently X =
=X (M). Hence N/E (M) eFg =F, =Fy , andeo
XM =MNsAT(M) . Thus M= X (M) & T, .

(vii) == (viii) by Proposition 8.

(viii) ==> (xi). Let M € R-mod . In the exact sequence

0T (M) /R(R N — MSR(RINN— MR M)— 0

the first and the third module belong to Fy = F, (since x
is @ radical), and therefore M/H(Z(M)) € Fy = Fg « So
(M) = R(R(M)) , that is, Z(M)eTy =T, ,end hence
T s RM) & (M) s TN -

The other implications are either trivial or follow immedia-

tely from Propositions 8, 9.

Corollary 11. Let & be a preradical. Then:

(i) If T, (F,) is closed under extensions, then X (%)

is an idempotent radical.

(ii) % end X are idempotent radicals.
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i) T e ¥ s s % .
iv) If » is idempotent (if » is & radical), then % =

X =% (T=% =% ) is an idempotent radical.

.v) If both T, and F, are closed under extensions, then

~
=

E=RersZ=x .

(vi) 1 % = % and both T, and F, are closed under

extensions, then » is an idempotent radical.

Proof. (i) By Theorem 10(v) ((x)).
(ii) By (i) and by Propositions 8, 9.
(iii) The only non-trivial inclusion is % s X . However
2 S % implies X & X end, since X is a radicel,
Proposition 6 yields A f .
(iv) Since x is idempotent, we have L S X =% S K by
Proposition 7.
Similarly, if x is a radical.

(v) is obvious.

Example 12. Let R = Z (the ring of integers), fo be
a prime and & be a preradical defined by x(G)=s.8n GLAIl.
Then, as one may check easily, X (H)=0 and % (H)=H, H
being the Prifer s -group. Hence '% = z .
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