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A NOTE ON NONISOMORPHIC STEINER QUADRUPLE SYSTEMS
C.C. LINDNER *) and T.H. STRALEY, Auburn

Abstract: Let (&,¢) and (V,n~) be Steiner quadrup-
le systems. In [1] J. Doyen and M. Vandensavel give condi-
tions under which the l\;l mutually disjoint subsystems
(8 % 4x3, &) of the direct product (@ x= V, &) can be
unplugged and replaced with any collection of quadruple sys-
tems (0 x4ix3,2(x)) so that the only subsystems of order
18! of the resulting quadruple system are the quadruple
systems (G x 4x3, & (x)) . Namely, if IV| =2 and
181 = 2 or 40 (mod 12) 8] % 2 . In this note we ge-
neralize this result to (V’, ~ ) contains no subsystem of
order |@| and for any m >4, m the order of a subsystem
of (Y,w),8l~-m £ 2 oOT b (ool 6) .

Key words: Steiner quadruple systems, nonisomorphic
Steiner gquadruple systems.

ANS: Primary 05BO05 Ref. Z. 8.812.3
Secondary 62K10

1. Introduction. A Steiner quadruple system (or more
simply a guadruple system) is a pair (&, g) where @ 1is
a finite set and q is a collection of 4-element subsets
of G (called blocks) such that any three distinct elements
of @ belong to exactly one block of @ . The number 181
is called the order of the quadruple system (@,¢) . Hanani
proved in 1960 that the spectrum for quadruple systems is
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the set of all positive integers m = 2 or 4(mod 6)
£2]. If (Q,q) and (V,+) are quadruple systems and
(8 xV, &) denotes their direct product, then for each
x in V, (@ x 4x3, &) is a subsystem of (§xV,2)
which is isomorphic to (@,q). See [1) or [5]. It is well
known that a subsystem of a quadruple system can be "un-
plugged" and replaced with an& quadruple system on these
same elements and the result is always a quadruple system.
Since the subsystems (G = €x3, &) are mutually dis-
Joint we can independently replace each subsysten
(@x<4x3, &) of (§ =%V, &) by any quadruple system
(@x4x}, &r(x)) and the result is still a quadruple ‘sys-
tem which we will denote by (Q =<V, &* ) . It is of con-
siderable interest to determine under what conditions for
every collection of quadruple systems (8 = fx3, & (x))
the only subsystems of CO{xY, &*) of order |G| are
the quadruple systems (0 x {x31, & (x)) , (The reason
being, of course, that % collections of |V| quadruple
systems of order |@| such that no two collections can

be isomorphically paired gives % noni somorphic quadruple
systems of order 1@l |Vl .) In [1] J. Doyen and M. Van-
densavel give conditions under which this is the case. Na-
mely, when IVl =2 and |8l=2 or 40(mod 12), |G| %
% 2 . In this note we generalize these conditions to ca-
ses where |Vl > 2 , The techniques used in this note are

analogous to those developed by the authors in £3],04], and
[7] .
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2. Nonisomorphic Steiner guadruple systems. Let (®,¢)
and (V,~) . be quadruple systems and (@ xV,%) their

direct product. For each x in V let (@x4x3%, & (X))
be a quadruple system. In view of the above remarks, if the
1V mutually disjoint subsystems (@ < 4x3}, & ) are
unplugged and replaced by the 1Y mutually disjoint qua-
druple systems (@ x €x3, & (x)) , the result is still a
quadruple system which, as above, we will denote by

(@xV, &*) . We remark that the |V| mutuvally disjoint
quadruple systems (@ x 4x3, & (x)) are not necessarily
related to tl.e corresponding subsystem (G x 4x3, &) nor
to each other. This observation is crucial in what follows.
Now let (Q x V, &%) be the quadruple system constructed
above and let (T, &%) be any subsystem of (G x V, *) .
Set V’'=4xeVI(g,x)eT} and T =4qs€ Bi(q,x)eT3.

Lemma. If CQ@ >V, &*),(T,&#*), ¥’ and Ty are as
above, then |T, | = l'I',y_l for all X,y e V' .

Proof. Let X % 4 € V’ and let (h,x) be any ele-
ment in Ty and (t,%) any element in Ty - For each
element (4', x) e Ty there is exactly one element
(t',4) e Ty such that icb,w,(b',x),<t,g,),<t’,n,)}e2r*.
However, if A'% s then t'$ t so that 1Tyl £ LTyl .
A similar argument shows that 1'1‘4‘_1 £ I Tyl so that I T =

=lT,*| .

Theorem 1. Let (B x V, &#*) be the quadruple systen
constructed above. Suppose that ¢V, ) contains no subsys-

tem of order |6 ., If for any m > A , where m is the or-
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der of a subsystem of (V,a), 1@/ m £ 2 or

4 Cmod 6) , then the only subsystems of ( @ =V, &™) of
order 18| are the |¥| mutually disjoint quadruple sys-
tems (@ x 4x3%, #(x)) .

Proof. Let (T, &*) be a subsystem of (& =V, &*)
of order 1@l andlet V'=4xeVlI(qg,x)e T}¥ . Since

(Y¥,») contains no subsystem of order 181 it follows
from the Lemma that |T,|= lT,u'l =t= 92 for allx,geV’.
Hence |ITI=mt where m = |V’] . Since each of
(@x4x3,&*) and (T, &*) is a subsystem of

(B xV,&*) and Ty x4x3=@x4{x)NT we must ha-
ve either [Tyl=ITyx §xil=1 or [ Tyl=2 or 4 (mod 6).
As \Ty! 2 2 we must have 1Tyl = 2 or 4 (mod 6) .
Hence |TI/m = 2 or 4(mool 6) . But (V’,nr) 1is a
subsystem of (V,~) and so |V’'I =4 ., Hence T= (xix}

for some X in V which completes the proof.

Let » and t be positive integers. We will denote
by ,P: the number of t -tuples of integers (x4 3 Xpyoeee
,x,ﬁ) where X4 + Xg + sce 4 Xy = A and 0 2 X3, < 5
4 =4,2,...,t. The following theorem is the main result

in this note.

Theorem 2. Let q and + be positive integers = 2
or 4 Cmod 6) and suppose there exists a quadruple system
(V, ) of order » containing no subsystem of order g -
If for any m > 1 5 where m is the order of a subsystem
of (V,u),I18l/ " m =2 or 4 (mod 6) then the con-

struction in Theorem 1 gives at least P:_ nonisomorphic
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Steiner quadruple systems of order Qv where t is the

number of nonisomorphic quadruple systems of order q -

Remark. Note that if VI = 2 and 161 =2 or
A0 (mod 42) , 161 & 2 , the conditions of Theorem 2 are
automatically satisfied so that Theorem 2 is in fact a gene-
ralization of the result of Doyen and Vandensavel [1] men-

tioned in the introduction.

3. Example. Let ¢ = 14 and o = 4 , N.S. Mendelsohn
and H.S.Y. Hung have shown that there are exactly 4 noniso-
morphic quadruple systems of order 14 [6]. The only subsys-
tems of a quadruple system of order 4 have orders 1, 2, or
4 . Since neither -%— nor —44-1‘_; ia =2 or
4 (omod. 6) , Theorem 2 gives at least P,t: = 35 nonisomor-
phic Steiner quadruple systems of order 56 . As far as the
authors can tell, this cannot be obtained via the results of
Doyen and Vandensavel [1] since 56 = 28 . 2 and 28 £ 2

or 40 Cmodl 42) .

The spectrum for pairs of nonisomorphic quadruple sys-

tems remains open.
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