

Werk

Label: Article **Jahr:** 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0015|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

15,1 (1974)

A NOTE ON NONISOMORPHIC STEINER QUADRUPLE SYSTEMS
C.C. LINDNER *) and T.H. STRALEY, Auburn

Abstract: Let (Q,Q) and (V,w) be Steiner quadruple systems. In [1] J. Doyen and M. Vandensavel give conditions under which the |V| mutually disjoint subsystems $(Q \times i_X i, w)$ of the direct product $(Q \times V, w)$ can be unplugged and replaced with any collection of quadruple systems $(Q \times i_X i, w(x))$ so that the only subsystems of order |Q| of the resulting quadruple system are the quadruple systems $(Q \times i_X i, w(x))$. Namely, if |V| = 2 and |Q| = 2 or |Q| (mod |Q|), $|Q| \neq 2$. In this note we generalize this result to (V,w) contains no subsystem of order |Q| and for any m > 1, m > 1 the order of a subsystem of |Q| and for any |Q| = 1 or |Q| and |Q| = 1 or |Q| and |Q| = 1 or |Q| and |Q| and |Q| = 1 or |Q| and |Q| and

 $\underline{\text{Key words}}\colon \text{Steiner quadruple systems, nonisomorphic Steiner quadruple systems.}$

AMS: Primary 05B05

Ref. Z. 8.812.3

Secondary 62Kl0

1. Introduction. A Steiner quadruple system (or more simply a quadruple system) is a pair (Q,Q) where Q is a finite set and Q is a collection of 4-element subsets of Q (called blocks) such that any three distinct elements of Q belong to exactly one block of Q. The number |Q| is called the order of the quadruple system (Q,Q). Hanani proved in 1960 that the spectrum for quadruple systems is

x) Research supported by National Science Foundation Grant GP-37629.

the set of all positive integers $m \equiv 2$ or $4 \pmod{6}$ [2]. If (0,q) and (V,v) are quadruple systems and (Q \times V, &) denotes their direct product, then for each x in Y, $(Q \times \{x\}, \&)$ is a subsystem of $(Q \times Y, \&)$ which is isomorphic to (Q, q). See [1] or [5]. It is well known that a subsystem of a quadruple system can be "unplugged" and replaced with any quadruple system on these same elements and the result is always a quadruple system. Since the subsystems ($Q \times \{x\}, \&$) are mutually disjoint we can independently replace each subsystem $(0 \times 4 \times 3, b)$ of $(0 \times 7, b)$ by any quadruple system $(0 \times \{x\}, b(x))$ and the result is still a quadruple system which we will denote by $(Q \times Y, L^*)$. It is of considerable interest to determine under what conditions for every collection of quadruple systems (Q x {x}, & (x)) the only subsystems of $(0, \times Y, &*)$ of order |0| are the quadruple systems ($0 \times \{x\}$, b(x)). (The reason being, of course, that t collections of |V| quadruple systems of order | Q | such that no two collections can be isomorphically paired gives t nonisomorphic quadruple systems of order [Q||V| .) In [1] J. Doyen and M. Vandensavel give conditions under which this is the case. Namely, when |Y| = 2 and |Q| = 2 or $10 \pmod{12}$, |Q| = 4+ 2 . In this note we generalize these conditions to cases where |Y| > 2 . The techniques used in this note are analogous to those developed by the authors in [3],[4], and [7].

2. Nonisomorphic Steiner quadruple systems. Let (Q, Q) and (V, w) be quadruple systems and $(Q \times V, P)$ their direct product. For each x in V let $(Q \times \{x\}, \&(x))$ be a quadruple system. In view of the above remarks, if the mutually disjoint subsystems $(Q \times \{x\}, b)$ are 171 unplugged and replaced by the | Y | mutually disjoint quadruple systems ($Q \times \{x\}, \&(x)$), the result is still a quadruple system which, as above, we will denote by $(Q \times V, \mathcal{L}^*)$. We remark that the |V| mutually disjoint quadruple systems ($Q \times \{x\}, \& (x)$) are not necessarily related to the corresponding subsystem ($0, \times 1 \times 3, \mathcal{X}$) nor to each other. This observation is crucial in what follows. Now let (Q, imes V, &*) be the quadruple system constructed above and let $(\mathtt{T}, \mathscr{L}^{*})$ be any subsystem of $(\mathtt{Q} \times \mathtt{V}, \mathscr{L}^{*})$. and $T_x = iq \in Q_1(q,x) \in T_1^2$. Set $V' = \{x \in V \mid (q, x) \in T\}$

Lemma. If $(Q \times V, \&^*)$, $(T, \&^*)$, V' and $T_{\mathcal{U}}$ are as above, then $|T_{\chi}| = |T_{\chi}|$ for all $x, y \in V'$.

Proof. Let $x \neq y \in V'$ and let (s,x) be any element in T_X and (t,y) any element in T_Y . For each element $(s',x) \in T_X$ there is exactly one element $(t',y) \in T_Y$ such that $i(s,x),(s',x),(t,y),(t',y) \in \mathcal{L}^*$. However, if $s' \neq s$ then $t' \neq t$ so that $|T_X| \leq |T_Y|$. A similar argument shows that $|T_Y| \leq |T_X|$ so that $|T_X| = |T_Y|$.

Theorem 1. Let $(Q \times V, \&^*)$ be the quadruple system constructed above. Suppose that (V, w) contains no subsystem of order |Q|. If for any m > 1, where m is the or-

der of a subsystem of (V, w), $|Q|/w \neq 2$ or $4 \pmod{6}$, then the only subsystems of $(Q \times V, b^*)$ of order |Q| are the |V| mutually disjoint quadruple systems $(Q \times \{x\}, b(x))$.

Proof. Let $(T, \&^*)$ be a subsystem of $(Q \times V, \&^*)$ of order |Q| and let $V' = \{x \in V | (Q, x) \in T\}$. Since (V, w) contains no subsystem of order |Q| it follows from the Lemma that $|T_x| = |T_{Q}| = t \ge 2$ for all $x, y \in V'$. Hence |T| = mt where m = |V'|. Since each of $(Q \times \{x\}, \&^*)$ and $(T, \&^*)$ is a subsystem of $(Q \times V, \&^*)$ and $(T, \&^*)$ is a subsystem of $(Q \times V, \&^*)$ and $(T_x \times \{x\}) = 1$ or $|T_x| = 2$ or $|T_x| = 2$ or $|T_x| \ge 2$ we must have $|T_x| = 2$ or $|T_x| \ge 2$ or $|T_x| = 2$ or $|T_x|$

Let b and t be positive integers. We will denote by P_b^t the number of t -tuples of integers (x_1, x_2, \dots, x_t) where $x_1 + x_2 + \dots + x_t = b$ and $0 \le x_1 < b$, $i = 1, 2, \dots, t$. The following theorem is the main result in this note.

Theorem 2. Let q and w be positive integers $\equiv 2$ or $4 \pmod{6}$ and suppose there exists a quadruple system (V, ω) of order w containing no subsystem of order q. If for any m > 1, where m is the order of a subsystem of (V, ω) , $|Q| \ge 2$ or $4 \pmod{6}$ then the construction in Theorem 1 gives at least P_v^t nonisomorphic

Steiner quadruple systems of order qv where t is the number of nonisomorphic quadruple systems of order q.

Remark. Note that if |V|=2 and $|Q_i|\equiv 2$ or $|Q_i|=2$, the conditions of Theorem 2 are automatically satisfied so that Theorem 2 is in fact a generalization of the result of Doyen and Vandensavel [1] mentioned in the introduction.

3. Example. Let q=44 and N=4. N.S. Mendelsohn and H.S.Y. Hung have shown that there are exactly 4 nonisomorphic quadruple systems of order 14 [6]. The only subsystems of a quadruple system of order 4 have orders 1, 2, or 4. Since neither $\frac{44}{2}$ nor $\frac{44}{4}$ is $\equiv 2$ or $4 \pmod 6$, Theorem 2 gives at least $P_4^4 = 35$ nonisomorphic Steiner quadruple systems of order 56. As far as the authors can tell, this cannot be obtained via the results of Doyen and Vandensavel [1] since $56 = 28 \cdot 2$ and $28 \neq 2$ or $40 \pmod{42}$.

The spectrum for pairs of nonisomorphic quadruple systems remains open.

References

- [1] Jean DOYEN and M. VANDENSAVEL: Non isomorphic Steiner quadruple systems (to appear).
- [2] H. HANANI: On quadruple systems, Canad.J.Math.12(1960), 145-157.
- [3] C.C. LINDMER and Tina H. STRALEY: Construction of quasigroups containing a specified number of subquasigroups of a given order, Algebra Univer-

salis 1(1971),238-247.

- [4] C.C. LINDNER and Tina H. STRALEY: A note on nonisomorphic reverse Steiner quasigroups, submitted to Publicationes Mathematicae
- [5] C.C. LINDNER: On the construction of nonisomorphic Steiner quadruple systems, Colloq.Math.(to appear).
- [6] N.S. MENDELSOHN and H.S.Y. HUNG: On the Steiner systems S(3, 4, 14) and S(4, 5, 15), Utilitas Mathematica 1(1972),5-95.
- [7] Tina H. STRALEY: Construction of Steiner quasigroups containing a specified number of subquasigroups of a given order, J.Comb.Theory, Ser.A 13(1972), 374-382.

Mathematics Department Auburn University Auburn, Alabama 36830 U.S.A.

(Oblatum 12.12.1973)