

Werk

Label: Article Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0013|log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Commentationes Mathematicae Universitatis Carolinae

13,1 (1972)

MORSE-SARD THEOREM FOR REAL-ANALYTIC FUNCTIONS

J. SOUČEK, V. SOUČEK, Praha

In this paper we will prove that the set of all critical values must be countable for every real-analytic function, which is defined on $\mathbb{D}\subset\mathbb{E}_N$.

<u>Definition 1.</u> A real-valued function f(x) defined on an open subset $D \subset E_N$ is called real-analytic, if each point $w \in D$ has an open neighborhood $\mathcal U$, $w \in \mathcal U \subset D$ such that the function has a power series expansion in $\mathcal U$.

Theorem 1. Let f be a <u>real-analytic</u> function defined on an open subset $D \subset E_N$. Let us denote by Z the set of critical values of f, i.e.

$$Z = \{x \in D; \frac{\partial f}{\partial x_2}(x) = 0, i = 1, 2, ..., N\}$$

then the set $f(Z \cap K)$ is finite for every compact subset $K \subset D$ and hence f(Z) is at most countable.

Remark. The Morse-Sard theorem for \mathcal{C}^{∞} -functions gives us only

$$H_{\infty}(f(Z)) = 0$$

for all $\alpha>0$ (where H_{∞} is the α -dimensional Hausdorff measure). But we can construct an uncountable subset

AMS, Primary 47H99

Ref.Z. 7.978.46

 $M\subset E_4$ such that $H_{\infty}(M)=0$ for all $\alpha>0$. On the other hand, there can be easily constructed a real-analytic function defined on (0,1) such that the set f(Z) is infinite.

The proof of Theorem 1 is based on some theorems about germs of varieties from the theory of several complex variables. We recapitulate for the reader the necessary definitions and theorems from [G-R] in § 1.

§ 2 contains then the proof of Theorem 1.

§ 1. Germs of varieties

This paragraph is only a recapitulation of the facts i'rom [G-R] (in brackets we shall refer to the numbers of definitions and theorems in [G-R]).

Definition 2 (II.E.4). Let X, Y be subsets of \mathbb{C}^N (the Cartesian product of N copies of the complex plane). The sets X and Y are said to be equivalent at 0 if there is a neighborhood \mathcal{U} of 0 such that $X \cap \mathcal{U} = Y \cap \mathcal{U}$. An equivalence class of sets is called the germ of a set. The equivalence class of X is to be denoted by X.

If X_1 , X_2 are germs of a set, we can define $X_4 \cup X_2$, $X_4 \cap X_2$ by the natural way.

Definition 3 (II.E.6). A germ X is the germ of a variety if there are a neighborhood $\mathcal U$ of $\mathcal O$ and functions f_1,\ldots,f_t holomorphic in $\mathcal U$, such that

 $\label{eq:continuous} \{x\in\mathcal{U}\ ;\ f_i(x)=0\ ,\quad 1\leq i\leq t\ \}$ is a representative for X .

We shall denote the collection of germs of a variety at 0 by ${\mathfrak B}$.

<u>Definition 4</u> (II.E.12). A germ $V \in \mathcal{B}$ is said to be <u>irreducible</u> if $V = V_1 \cup V_2$ for V_1 , $V_2 \in \mathcal{B}$ implies either $V = V_4$ or $V = V_2$.

Theorem 2 (II.E.15). Let $V \in \mathcal{B}$. We can write $V = V_1 \cup \ldots \cup V_k$ where the V_i are irreducible and $V_i \neq V_j$ for i + j. V_1, \ldots, V_k are uniquely determined by V.

An open polydisc in \mathbb{C}^N is a subset $\Delta(w,\kappa)\subset\mathbb{C}^N$ of the form

$$\Delta(w, \kappa) = \Delta(w_1, ..., w_N; \kappa_1, ..., \kappa_N) =$$

$$= \{ z \in \mathbb{C}^N ; |z_i - w_i| < \kappa_i, 1 \le j \le N \}.$$

Definition 5 (I.B.8, I.B.10). A subset M of \mathbb{C}^N is a complex submanifold of \mathbb{C}^N if to every point $n \in M$ there correspond a neighborhood \mathcal{U} of n, a polydisc $\Delta\left(0,\sigma'\right)$ in $\mathbb{C}^{N}\left(N \in N\right)$ and a nonsingular holomorphic mapping $F:\Delta\left(0,\sigma'\right)\longrightarrow\mathbb{C}^N$ such that $F\left(0\right)=n$, and

$$M \cap \mathcal{U} = F(\Delta(0, \sigma))$$
.

Theorem 3. Let $\mathbb V\in\mathcal B$ be an irreducible germ. Then there exist a polydisc $\Delta\left(0,\kappa\right)$ and a set $V_o\subset\Delta\left(0,\kappa\right)$ such that:

- (1) \overline{V}_o is a representative of V ,
- (ii) for each polydisc $\Delta_1(0) \subset \Delta$ there exists a polydisc $\Delta_2(0) \subset \Delta_1(0)$ such that $V_0 \cap \Delta_2$ is a connected complex submanifold.

This theorem follows immediately from III.A.10, III.A.9 and III.A.8; this is only a reformulation of a part of Theorem III.A.10.

§ 2. The proof of Theorem 1

Let $x_0 \in \mathbb{D}$ be fixed. Suppose that there exist points $x_m \in \mathbb{D}$ such that

- (1) $x_m \rightarrow x_o$,
- (2) $\operatorname{grad} f(x_m) = 0$, m = 1, 2, ...,
- (3) if n + m then $f(x_m) + f(x_m)$.

We want to show that such sequence cannot exist.

Suppose that $x_0 = 0$ (for easy notation). In a small neighborhood of the point 0 we can write

$$\mathbf{f}(\mathbf{x}) = \sum_{\alpha_1, \dots, \alpha_N \geq 0} \alpha_{\alpha_1, \dots, \alpha_N} \mathbf{x}_1 \cdot \mathbf{x}_2 \cdot \dots \cdot \mathbf{x}_N \quad .$$

We can consider $E_N \subset C_N$ and extend the function f on a small polydisc $\Delta = \Delta(0, \kappa) \subset C^N$;

$$f(x) = \sum_{\alpha_1, \dots, \alpha_N \geq 0} a_{\alpha_1, \dots, \alpha_N} x_1^{\alpha_1} . x_2^{\alpha_2} \dots x_N^{\alpha_N} , x \in \Delta(0, \kappa) .$$

From (2) we have (if $x_n \in \Delta(0, \kappa)$)

$$\frac{\partial f}{\partial x_i} (x_m) = 0, \quad i = 1, ..., N .$$

Let $V \in \mathcal{B}$ be the germ of a variety determined by the

$$(4) \ \mathcal{V} = \{\alpha \in \Delta(0,\kappa) \ ; \ \frac{\partial f}{\partial \alpha_1}(\alpha) = 0, \ldots, \ \frac{\partial f}{\partial \alpha_N}(\alpha) = 0 \} \ .$$

There is a decomposition V into its irreducible branches (see Theorem 2)

 $\mathbb{V} = \mathbb{V}_1 \cup \mathbb{V}_2 \cup \ldots \cup \mathbb{V}_k .$

If V_1,\ldots,V_k are representatives of V_1,\ldots,V_k then there exists a polydisc $\Delta_1(0)$ such that

(5)
$$V \cap \Delta_1 = (V_1 \cap \Delta_1) \cup \dots \cup (V_{A_k} \cap \Delta_1)$$
.

By (1) we have (for all m sufficiently large)

and hence infinite number of x_n must lie in some $V_i \cap \Delta_i$. So we can suppose that there exists a subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ such that

$$(6) \qquad \qquad x_{m_{\frac{1}{2}}} \in V_1 \cap \Delta_1$$

for all j. Because the germ V_q is irreducible, it follows from Theorem 3 that there exist a polydisc Δ_2 (0) and a set $V_o \subset \Delta_2$ such that

- (i) \overline{V}_a is a representative of V_a ,
- (ii) for every polydisc Δ_g (0) \subset Δ_2 there exists a polydisc Δ_4 (0) \subset Δ_5 such that $V_0 \cap \Delta_4$ is a connected complex submanifold.

Because the seta V_1 and \overline{V}_0 are both representatives of the same germ V_4 , there exists a polydisc Δ_3 (0) such that

$$V_1 \cap \Delta_3 = \overline{V_0} \cap \Delta_3$$
.

There exists (by (ii)) a polydisc $\Delta_{4}(0)\subset\Delta_{3}\cap\Delta_{4}$ such that

$$(7) Y_1 \wedge \Delta_4 = \overline{V}_0 \wedge \Delta_4$$

and $V_0 \wedge \Delta_4$ is a connected complex submanifold.

We shall prove that f must be constant on $\overline{V_0}$ \cap Δ_4 . Let $z_0 \in V_0 \cap \Delta_4$ be fixed, let us denote $M = fz \in V_0 \cap \Delta_4$; $f(z) = f(z_0)$;

Suppose $z\in M$. By Definition 5 there exist a neighborhood $\mathcal U$ of z, a polydisc $\Delta_{Ac}\subset \mathbb C^{Ac}$, $(Ac\in N.)$ and a nonsingular holomorphic mapping F:

$$F: \Delta_{k} \rightarrow C^{N}$$

such that

$$F(\Delta_{g_a}) = \mathcal{U} \cap V_o$$
; $F(0) = \infty$.

Hence for arbitrary $w\in\mathcal{U}\cap\mathcal{V}_o$ there exists $\mu\in\mathcal{L}_+$ such that

$$F(n) = w .$$

Let us denote

$$\gamma(t) = t p$$
; $0 \le t \le 1$.

Then $F(\gamma(t))$, $0 \le t \le 1$ is a smooth curve, lying in $U \cap Y_0$ and by (7) and (5) we have

$$F(\gamma(t)) \in V$$
, $0 \le t \le 1$,

and hence (by (4))

$$\frac{d}{dt}\left[f(F(\gamma(t)))\right] = 0, \quad 0 \le t \le 1.$$

From this it follows immediately that f(w) = f(z), hence

Because the set $\, \underline{\rm M} \,$ is open and closed in $\, \, \, \, \, V_{o} \, \wedge \, \Delta_{\, 4} \,$, we have

$$V_0 \cap \Delta_{\mu} = M$$
.

The function f is a constant function on $V_o \cap \Delta_4$, and hence also on $\overline{V_o} \cap \Delta_4$. But from (1),(6),(7) we have (for $j \geq j_o$)

$$x_{m_{\hat{d}}} \in \overline{V_0} \cap \Delta_4$$
 ,

hence $f(x_{m_{\hat{j}}}) = f(x_{m_{\hat{k}}})$; $\ell, \dot{j} \ge \dot{j}_0$, which is a contradiction with (3).

Now the proof of Theorem 1 can be easily finished. Suppose that $K\subset \mathbb{D}$ is a compact set and that the set $f(Z\cap K)$ is intinite. We can find a sequence $\{x_m\}^\infty\subset C\subset Z\cap K$ such that $f(x_m)+f(x_m)$ (for m+m). Then there exists a subsequence $\{x_{m_{A_0}}\}$, $x_{m_{A_0}}\to x_o\in K$. Because (1),(2),(3) is true for $\{x_{m_{A_0}}\}$, we have a contradiction.

Reference

[G-R] R.GUNNING, H. ROSSI: Analytic functions of several complex variables, Prentice-Hall, 1965.

Matematicko-fyzikální fakulta Karlova universita Sokolovská 83, Praha 8 Československo

(Oblatum 12.7.1971)

